// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/api/api-inl.h" #include "src/base/strings.h" #include "src/base/utils/random-number-generator.h" #include "src/builtins/builtins-promise-gen.h" #include "src/builtins/builtins-promise.h" #include "src/builtins/builtins-string-gen.h" #include "src/codegen/code-factory.h" #include "src/codegen/code-stub-assembler.h" #include "src/codegen/interface-descriptors-inl.h" #include "src/compiler/node.h" #include "src/debug/debug.h" #include "src/execution/isolate.h" #include "src/heap/heap-inl.h" #include "src/numbers/hash-seed-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/heap-number-inl.h" #include "src/objects/js-array-buffer-inl.h" #include "src/objects/js-array-inl.h" #include "src/objects/objects-inl.h" #include "src/objects/ordered-hash-table-inl.h" #include "src/objects/promise-inl.h" #include "src/objects/smi.h" #include "src/objects/struct-inl.h" #include "src/objects/transitions-inl.h" #include "src/strings/char-predicates.h" #include "test/cctest/cctest-utils.h" #include "test/cctest/compiler/code-assembler-tester.h" #include "test/cctest/compiler/function-tester.h" namespace v8 { namespace internal { namespace compiler { namespace { using Label = CodeAssemblerLabel; template using TVariable = TypedCodeAssemblerVariable; using PromiseResolvingFunctions = TorqueStructPromiseResolvingFunctions; intptr_t sum10(intptr_t a0, intptr_t a1, intptr_t a2, intptr_t a3, intptr_t a4, intptr_t a5, intptr_t a6, intptr_t a7, intptr_t a8, intptr_t a9) { return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9; } static int sum3(int a0, int a1, int a2) { return a0 + a1 + a2; } } // namespace TEST(CallCFunction) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); { const TNode fun_constant = m.ExternalConstant( ExternalReference::Create(reinterpret_cast
(sum10))); MachineType type_intptr = MachineType::IntPtr(); TNode const result = m.UncheckedCast( m.CallCFunction(fun_constant, type_intptr, std::make_pair(type_intptr, m.IntPtrConstant(0)), std::make_pair(type_intptr, m.IntPtrConstant(1)), std::make_pair(type_intptr, m.IntPtrConstant(2)), std::make_pair(type_intptr, m.IntPtrConstant(3)), std::make_pair(type_intptr, m.IntPtrConstant(4)), std::make_pair(type_intptr, m.IntPtrConstant(5)), std::make_pair(type_intptr, m.IntPtrConstant(6)), std::make_pair(type_intptr, m.IntPtrConstant(7)), std::make_pair(type_intptr, m.IntPtrConstant(8)), std::make_pair(type_intptr, m.IntPtrConstant(9)))); m.Return(m.SmiTag(result)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call().ToHandleChecked(); CHECK_EQ(45, Handle::cast(result)->value()); } TEST(CallCFunctionWithCallerSavedRegisters) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); { const TNode fun_constant = m.ExternalConstant( ExternalReference::Create(reinterpret_cast
(sum3))); MachineType type_intptr = MachineType::IntPtr(); TNode const result = m.UncheckedCast(m.CallCFunctionWithCallerSavedRegisters( fun_constant, type_intptr, SaveFPRegsMode::kSave, std::make_pair(type_intptr, m.IntPtrConstant(0)), std::make_pair(type_intptr, m.IntPtrConstant(1)), std::make_pair(type_intptr, m.IntPtrConstant(2)))); m.Return(m.SmiTag(result)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call().ToHandleChecked(); CHECK_EQ(3, Handle::cast(result)->value()); } TEST(NumberToString) { Isolate* isolate(CcTest::InitIsolateOnce()); Factory* factory = isolate->factory(); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); { auto input = m.Parameter(1); Label bailout(&m); m.Return(m.NumberToString(input, &bailout)); m.BIND(&bailout); m.Return(m.UndefinedConstant()); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); // clang-format off double inputs[] = { 1, 2, 42, 153, -1, -100, 0, 51095154, -1241950, std::nan("-1"), std::nan("1"), std::nan("2"), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), -0.0, -0.001, -0.5, -0.999, -1.0, 0.0, 0.001, 0.5, 0.999, 1.0, -2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin. 2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax. -4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32. 4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32. }; // clang-format on const int kFullCacheSize = isolate->heap()->MaxNumberToStringCacheSize(); const int test_count = arraysize(inputs); for (int i = 0; i < test_count; i++) { int cache_length_before_addition = factory->number_string_cache()->length(); Handle input = factory->NewNumber(inputs[i]); Handle expected = factory->NumberToString(input); Handle result = ft.Call(input).ToHandleChecked(); if (result->IsUndefined(isolate)) { // Query may fail if cache was resized, in which case the entry is not // added to the cache. CHECK_LT(cache_length_before_addition, kFullCacheSize); CHECK_EQ(factory->number_string_cache()->length(), kFullCacheSize); expected = factory->NumberToString(input); result = ft.Call(input).ToHandleChecked(); } CHECK(!result->IsUndefined(isolate)); CHECK_EQ(*expected, *result); } } namespace { void CheckToUint32Result(uint32_t expected, Handle result) { const int64_t result_int64 = NumberToInt64(*result); const uint32_t result_uint32 = NumberToUint32(*result); CHECK_EQ(static_cast(result_uint32), result_int64); CHECK_EQ(expected, result_uint32); // Ensure that the result is normalized to a Smi, i.e. a HeapNumber is only // returned if the result is not within Smi range. const bool expected_fits_into_intptr = static_cast(expected) <= static_cast(std::numeric_limits::max()); if (expected_fits_into_intptr && Smi::IsValid(static_cast(expected))) { CHECK(result->IsSmi()); } else { CHECK(result->IsHeapNumber()); } } } // namespace TEST(ToUint32) { Isolate* isolate(CcTest::InitIsolateOnce()); Factory* factory = isolate->factory(); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); const int kContextOffset = 3; auto context = m.Parameter(kNumParams + kContextOffset); auto input = m.Parameter(1); m.Return(m.ToUint32(context, input)); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); // clang-format off double inputs[] = { std::nan("-1"), std::nan("1"), std::nan("2"), -std::numeric_limits::infinity(), std::numeric_limits::infinity(), -0.0, -0.001, -0.5, -0.999, -1.0, 0.0, 0.001, 0.5, 0.999, 1.0, -2147483647.9, -2147483648.0, -2147483648.5, -2147483648.9, // SmiMin. 2147483646.9, 2147483647.0, 2147483647.5, 2147483647.9, // SmiMax. -4294967295.9, -4294967296.0, -4294967296.5, -4294967297.0, // - 2^32. 4294967295.9, 4294967296.0, 4294967296.5, 4294967297.0, // 2^32. }; uint32_t expectations[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 4294967295, 0, 0, 0, 0, 1, 2147483649, 2147483648, 2147483648, 2147483648, 2147483646, 2147483647, 2147483647, 2147483647, 1, 0, 0, 4294967295, 4294967295, 0, 0, 1, }; // clang-format on STATIC_ASSERT(arraysize(inputs) == arraysize(expectations)); const int test_count = arraysize(inputs); for (int i = 0; i < test_count; i++) { Handle input_obj = factory->NewNumber(inputs[i]); Handle input_num; // Check with Smi input. if (input_obj->IsSmi()) { Handle input_smi = Handle::cast(input_obj); Handle result = ft.Call(input_smi).ToHandleChecked(); CheckToUint32Result(expectations[i], result); input_num = factory->NewHeapNumber(inputs[i]); } else { input_num = Handle::cast(input_obj); } // Check with HeapNumber input. { CHECK(input_num->IsHeapNumber()); Handle result = ft.Call(input_num).ToHandleChecked(); CheckToUint32Result(expectations[i], result); } } // A couple of final cases for ToNumber conversions. CheckToUint32Result(0, ft.Call(factory->undefined_value()).ToHandleChecked()); CheckToUint32Result(0, ft.Call(factory->null_value()).ToHandleChecked()); CheckToUint32Result(0, ft.Call(factory->false_value()).ToHandleChecked()); CheckToUint32Result(1, ft.Call(factory->true_value()).ToHandleChecked()); CheckToUint32Result( 42, ft.Call(factory->NewStringFromAsciiChecked("0x2A")).ToHandleChecked()); ft.CheckThrows(factory->match_symbol()); } namespace { void IsValidPositiveSmiCase(Isolate* isolate, intptr_t value) { const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); m.Return( m.SelectBooleanConstant(m.IsValidPositiveSmi(m.IntPtrConstant(value)))); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); MaybeHandle maybe_handle = ft.Call(); bool expected = i::PlatformSmiTagging::IsValidSmi(value) && (value >= 0); if (expected) { CHECK(maybe_handle.ToHandleChecked()->IsTrue(isolate)); } else { CHECK(maybe_handle.ToHandleChecked()->IsFalse(isolate)); } } } // namespace TEST(IsValidPositiveSmi) { Isolate* isolate(CcTest::InitIsolateOnce()); IsValidPositiveSmiCase(isolate, -1); IsValidPositiveSmiCase(isolate, 0); IsValidPositiveSmiCase(isolate, 1); IsValidPositiveSmiCase(isolate, 0x3FFFFFFFU); IsValidPositiveSmiCase(isolate, 0xC0000000U); IsValidPositiveSmiCase(isolate, 0x40000000U); IsValidPositiveSmiCase(isolate, 0xBFFFFFFFU); using int32_limits = std::numeric_limits; IsValidPositiveSmiCase(isolate, int32_limits::max()); IsValidPositiveSmiCase(isolate, int32_limits::min()); #if V8_TARGET_ARCH_64_BIT IsValidPositiveSmiCase(isolate, static_cast(int32_limits::max()) + 1); IsValidPositiveSmiCase(isolate, static_cast(int32_limits::min()) - 1); #endif } TEST(ConvertToRelativeIndex) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 3; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); enum Result { kFound, kNotFound }; { auto index = m.Parameter(1); auto length_number = m.Parameter(2); auto expected_relative_index = m.Parameter(3); TNode length = m.ChangeUintPtrNumberToUintPtr(length_number); TNode expected = m.ChangeUintPtrNumberToUintPtr(expected_relative_index); TNode result = m.ConvertToRelativeIndex(index, length); m.Return(m.SelectBooleanConstant(m.WordEqual(result, expected))); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); const double kMaxSmi = static_cast(kSmiMaxValue); const double kMaxInt32 = static_cast(std::numeric_limits::max()); const double kMaxUInt32 = static_cast(std::numeric_limits::max()); const double kMaxUIntPtr = static_cast(std::numeric_limits::max()); struct { double index; double length; double expected_result; } test_cases[] = { // Simple Smi-range cases. {0, 0, 0}, {0, 42, 0}, {5, 42, 5}, {100, 42, 42}, {-10, 153, 153 - 10}, {-200, 153, 0}, // Beyond Smi-range index cases. {0, kMaxSmi, 0}, {-153, kMaxSmi, kMaxSmi - 153}, {kMaxSmi + 153, kMaxSmi, kMaxSmi}, {kMaxSmi * 33, kMaxSmi, kMaxSmi}, {-kMaxSmi, kMaxSmi, 0}, {-kMaxSmi - 1, kMaxSmi, 0}, {-kMaxSmi - 153, kMaxSmi, 0}, {-kMaxSmi * 33, kMaxSmi, 0}, {-std::numeric_limits::infinity(), 153, 0}, {std::numeric_limits::infinity(), 424242, 424242}, // Beyond Smi-range length cases. {kMaxSmi + 2, kMaxSmi + 1, kMaxSmi + 1}, {-kMaxSmi + 2, kMaxSmi + 1, 3}, {kMaxInt32 + 1, kMaxInt32, kMaxInt32}, {-kMaxInt32 + 1, kMaxInt32, 1}, {kMaxUInt32 + 1, kMaxUInt32, kMaxUInt32}, {-42, kMaxUInt32, kMaxUInt32 - 42}, {-kMaxUInt32 - 1, kMaxUInt32, 0}, {-kMaxUInt32, kMaxUInt32, 0}, {-kMaxUInt32 + 1, kMaxUInt32, 1}, {-kMaxUInt32 + 5, kMaxUInt32, 5}, {-kMaxUInt32 + 5, kMaxUInt32 + 1, 6}, {-kMaxSmi * 33, kMaxSmi * 153, kMaxSmi * (153 - 33)}, {0, kMaxSafeInteger, 0}, {kMaxSmi, kMaxSafeInteger, kMaxSmi}, {kMaxSmi * 153, kMaxSafeInteger, kMaxSmi * 153}, {-10, kMaxSafeInteger, kMaxSafeInteger - 10}, {-kMaxSafeInteger, kMaxSafeInteger, 0}, {-kMaxSafeInteger + 1, kMaxSafeInteger, 1}, {-kMaxSafeInteger + 42, kMaxSafeInteger, 42}, {kMaxSafeInteger - 153, kMaxSafeInteger, kMaxSafeInteger - 153}, {kMaxSafeInteger - 1, kMaxSafeInteger, kMaxSafeInteger - 1}, {kMaxSafeInteger, kMaxSafeInteger, kMaxSafeInteger}, {kMaxSafeInteger + 1, kMaxSafeInteger, kMaxSafeInteger}, {kMaxSafeInteger + 42, kMaxSafeInteger, kMaxSafeInteger}, {kMaxSafeInteger * 11, kMaxSafeInteger, kMaxSafeInteger}, }; Factory* factory = isolate->factory(); for (size_t i = 0; i < arraysize(test_cases); i++) { if (test_cases[i].length > kMaxUIntPtr) { // Test cases where length does not fit into uintptr are not valid, so // skip them instead of ifdef'ing the test cases above. continue; } Handle index = factory->NewNumber(test_cases[i].index); Handle length = factory->NewNumber(test_cases[i].length); Handle expected = factory->NewNumber(test_cases[i].expected_result); ft.CheckTrue(index, length, expected); } } TEST(FixedArrayAccessSmiIndex) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate); CodeStubAssembler m(asm_tester.state()); Handle array = isolate->factory()->NewFixedArray(5); array->set(4, Smi::FromInt(733)); m.Return(m.LoadFixedArrayElement(m.HeapConstant(array), m.SmiTag(m.IntPtrConstant(4)), 0)); FunctionTester ft(asm_tester.GenerateCode()); MaybeHandle result = ft.Call(); CHECK_EQ(733, Handle::cast(result.ToHandleChecked())->value()); } TEST(LoadHeapNumberValue) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate); CodeStubAssembler m(asm_tester.state()); Handle number = isolate->factory()->NewHeapNumber(1234); m.Return(m.SmiFromInt32(m.Signed( m.ChangeFloat64ToUint32(m.LoadHeapNumberValue(m.HeapConstant(number)))))); FunctionTester ft(asm_tester.GenerateCode()); MaybeHandle result = ft.Call(); CHECK_EQ(1234, Handle::cast(result.ToHandleChecked())->value()); } TEST(LoadInstanceType) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate); CodeStubAssembler m(asm_tester.state()); Handle undefined = isolate->factory()->undefined_value(); m.Return(m.SmiFromInt32(m.LoadInstanceType(m.HeapConstant(undefined)))); FunctionTester ft(asm_tester.GenerateCode()); MaybeHandle result = ft.Call(); CHECK_EQ(InstanceType::ODDBALL_TYPE, Handle::cast(result.ToHandleChecked())->value()); } TEST(DecodeWordFromWord32) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate); CodeStubAssembler m(asm_tester.state()); using TestBitField = base::BitField; m.Return(m.SmiTag( m.Signed(m.DecodeWordFromWord32(m.Int32Constant(0x2F))))); FunctionTester ft(asm_tester.GenerateCode()); MaybeHandle result = ft.Call(); // value = 00101111 // mask = 00111000 // result = 101 CHECK_EQ(5, Handle::cast(result.ToHandleChecked())->value()); } TEST(JSFunction) { const int kNumParams = 2; // left, right. Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); m.Return(m.SmiFromInt32(m.Int32Add(m.SmiToInt32(m.Parameter(1)), m.SmiToInt32(m.Parameter(2))))); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); MaybeHandle result = ft.Call(handle(Smi::FromInt(23), isolate), handle(Smi::FromInt(34), isolate)); CHECK_EQ(57, Handle::cast(result.ToHandleChecked())->value()); } TEST(ComputeIntegerHash) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); m.Return(m.SmiFromInt32(m.UncheckedCast( m.ComputeSeededHash(m.SmiUntag(m.Parameter(1)))))); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); base::RandomNumberGenerator rand_gen(FLAG_random_seed); for (int i = 0; i < 1024; i++) { int k = rand_gen.NextInt(Smi::kMaxValue); Handle key(Smi::FromInt(k), isolate); Handle result = ft.Call(key).ToHandleChecked(); uint32_t hash = ComputeSeededHash(k, HashSeed(isolate)); Smi expected = Smi::FromInt(hash); CHECK_EQ(expected, Smi::cast(*result)); } } TEST(ToString) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); m.Return(m.ToStringImpl(m.Parameter(kNumParams + 3), m.Parameter(1))); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle test_cases = isolate->factory()->NewFixedArray(5); Handle smi_test = isolate->factory()->NewFixedArray(2); smi_test->set(0, Smi::FromInt(42)); Handle str(isolate->factory()->InternalizeUtf8String("42")); smi_test->set(1, *str); test_cases->set(0, *smi_test); Handle number_test = isolate->factory()->NewFixedArray(2); Handle num(isolate->factory()->NewHeapNumber(3.14)); number_test->set(0, *num); str = isolate->factory()->InternalizeUtf8String("3.14"); number_test->set(1, *str); test_cases->set(1, *number_test); Handle string_test = isolate->factory()->NewFixedArray(2); str = isolate->factory()->InternalizeUtf8String("test"); string_test->set(0, *str); string_test->set(1, *str); test_cases->set(2, *string_test); Handle oddball_test = isolate->factory()->NewFixedArray(2); oddball_test->set(0, ReadOnlyRoots(isolate).undefined_value()); str = isolate->factory()->InternalizeUtf8String("undefined"); oddball_test->set(1, *str); test_cases->set(3, *oddball_test); Handle tostring_test = isolate->factory()->NewFixedArray(2); Handle js_array_storage = isolate->factory()->NewFixedArray(2); js_array_storage->set(0, Smi::FromInt(1)); js_array_storage->set(1, Smi::FromInt(2)); Handle js_array = isolate->factory()->NewJSArray(2); JSArray::SetContent(js_array, js_array_storage); tostring_test->set(0, *js_array); str = isolate->factory()->InternalizeUtf8String("1,2"); tostring_test->set(1, *str); test_cases->set(4, *tostring_test); for (int i = 0; i < 5; ++i) { Handle test = handle(FixedArray::cast(test_cases->get(i)), isolate); Handle obj = handle(test->get(0), isolate); Handle expected = handle(String::cast(test->get(1)), isolate); Handle result = ft.Call(obj).ToHandleChecked(); CHECK(result->IsString()); CHECK(String::Equals(isolate, Handle::cast(result), expected)); } } TEST(TryToName) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 3; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); enum Result { kKeyIsIndex, kKeyIsUnique, kBailout }; { auto key = m.Parameter(1); auto expected_result = m.UncheckedParameter(2); auto expected_arg = m.Parameter(3); Label passed(&m), failed(&m); Label if_keyisindex(&m), if_keyisunique(&m), if_bailout(&m); { TYPED_VARIABLE_DEF(IntPtrT, var_index, &m); TYPED_VARIABLE_DEF(Name, var_unique, &m); TYPED_VARIABLE_DEF(IntPtrT, var_expected, &m); m.TryToName(key, &if_keyisindex, &var_index, &if_keyisunique, &var_unique, &if_bailout); m.BIND(&if_keyisindex); m.GotoIfNot(m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kKeyIsIndex))), &failed); Label if_expectedissmi(&m), if_expectedisheapnumber(&m), check_result(&m); m.Branch(m.TaggedIsSmi(expected_arg), &if_expectedissmi, &if_expectedisheapnumber); m.BIND(&if_expectedissmi); var_expected = m.SmiUntag(m.CAST(expected_arg)); m.Goto(&check_result); m.BIND(&if_expectedisheapnumber); CSA_ASSERT(&m, m.IsHeapNumber(m.CAST(expected_arg))); TNode value = m.LoadHeapNumberValue(m.CAST(expected_arg)); // We know this to be safe as all expected values are in intptr // range. var_expected = m.UncheckedCast(m.ChangeFloat64ToUintPtr(value)); m.Goto(&check_result); m.BIND(&check_result); m.Branch(m.IntPtrEqual(var_expected.value(), var_index.value()), &passed, &failed); m.BIND(&if_keyisunique); m.GotoIfNot(m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kKeyIsUnique))), &failed); m.Branch(m.TaggedEqual(expected_arg, var_unique.value()), &passed, &failed); } m.BIND(&if_bailout); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))), &passed, &failed); m.BIND(&passed); m.Return(m.BooleanConstant(true)); m.BIND(&failed); m.Return(m.BooleanConstant(false)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle expect_index(Smi::FromInt(kKeyIsIndex), isolate); Handle expect_unique(Smi::FromInt(kKeyIsUnique), isolate); Handle expect_bailout(Smi::FromInt(kBailout), isolate); { // TryToName() => if_keyisindex: smi value. Handle key(Smi::zero(), isolate); ft.CheckTrue(key, expect_index, key); } { // TryToName() => if_keyisindex: smi value. Handle key(Smi::FromInt(153), isolate); ft.CheckTrue(key, expect_index, key); } { // TryToName() => if_keyisindex: smi value. // A subsequent bounds check needs to take care of this case. Handle key(Smi::FromInt(-1), isolate); ft.CheckTrue(key, expect_index, key); } { // TryToName() => if_keyisindex: number. Handle key(isolate->factory()->NewHeapNumber(153)); Handle index(Smi::FromInt(153), isolate); ft.CheckTrue(key, expect_index, index); } { // TryToName() => if_keyisunique: "true". Handle key = isolate->factory()->true_value(); Handle unique = isolate->factory()->InternalizeUtf8String("true"); ft.CheckTrue(key, expect_unique, unique); } { // TryToName() => if_keyisunique: "false". Handle key = isolate->factory()->false_value(); Handle unique = isolate->factory()->InternalizeUtf8String("false"); ft.CheckTrue(key, expect_unique, unique); } { // TryToName() => if_keyisunique: "null". Handle key = isolate->factory()->null_value(); Handle unique = isolate->factory()->InternalizeUtf8String("null"); ft.CheckTrue(key, expect_unique, unique); } { // TryToName() => if_keyisunique: "undefined". Handle key = isolate->factory()->undefined_value(); Handle unique = isolate->factory()->InternalizeUtf8String("undefined"); ft.CheckTrue(key, expect_unique, unique); } { // TryToName() => if_keyisunique: . Handle key = isolate->factory()->NewSymbol(); ft.CheckTrue(key, expect_unique, key); } { // TryToName() => if_keyisunique: Handle key = isolate->factory()->InternalizeUtf8String("test"); ft.CheckTrue(key, expect_unique, key); } { // TryToName() => if_keyisindex: number. Handle key = isolate->factory()->InternalizeUtf8String("153"); Handle index(Smi::FromInt(153), isolate); ft.CheckTrue(key, expect_index, index); } { // TryToName() => 32-bit platforms // take the if_keyisunique path, 64-bit platforms bail out because they // let the runtime handle the string-to-size_t parsing. Handle key = isolate->factory()->InternalizeUtf8String("4294967296"); #if V8_TARGET_ARCH_64_BIT ft.CheckTrue(key, expect_bailout); #else ft.CheckTrue(key, expect_unique, key); #endif } { // TryToName() => bailout. Handle key = isolate->factory()->InternalizeUtf8String("4294967294"); ft.CheckTrue(key, expect_bailout); } { // TryToName() => bailout Handle key = isolate->factory()->InternalizeUtf8String("2147483647"); ft.CheckTrue(key, expect_bailout); } { // TryToName() => if_keyisindex: number. Handle key = isolate->factory()->NewStringFromAsciiChecked("153"); uint32_t dummy; CHECK(key->AsArrayIndex(&dummy)); CHECK(key->HasHashCode()); CHECK(!key->IsInternalizedString()); Handle index(Smi::FromInt(153), isolate); ft.CheckTrue(key, expect_index, index); } { // TryToName() => is_keyisindex: number. Handle key = isolate->factory()->NewStringFromAsciiChecked("153"); CHECK(!key->HasHashCode()); ft.CheckTrue(key, expect_bailout); } { // TryToName() => bailout. Handle key = isolate->factory()->NewStringFromAsciiChecked("test"); ft.CheckTrue(key, expect_bailout); } { // TryToName() => internalized version. Handle s = isolate->factory()->NewStringFromAsciiChecked("foo"); Handle internalized = isolate->factory()->InternalizeString(s); ft.CheckTrue(s, expect_unique, internalized); } { // TryToName() => internalized version. base::uc16 array1[] = {2001, 2002, 2003}; Handle s = isolate->factory() ->NewStringFromTwoByte(base::ArrayVector(array1)) .ToHandleChecked(); Handle internalized = isolate->factory()->InternalizeString(s); ft.CheckTrue(s, expect_unique, internalized); } } namespace { template void TestEntryToIndex() { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); { TNode entry = m.SmiUntag(m.Parameter(1)); TNode result = m.EntryToIndex(entry); m.Return(m.SmiTag(result)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); // Test a wide range of entries but staying linear in the first 100 entries. for (int entry = 0; entry < Dictionary::kMaxCapacity; entry = entry * 1.01 + 1) { Handle result = ft.Call(handle(Smi::FromInt(entry), isolate)).ToHandleChecked(); CHECK_EQ(Dictionary::EntryToIndex(InternalIndex(entry)), Smi::ToInt(*result)); } } TEST(NameDictionaryEntryToIndex) { TestEntryToIndex(); } TEST(GlobalDictionaryEntryToIndex) { TestEntryToIndex(); } } // namespace namespace { template void TestNameDictionaryLookup() { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 4; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); enum Result { kFound, kNotFound }; { auto dictionary = m.Parameter(1); auto unique_name = m.Parameter(2); auto expected_result = m.Parameter(3); auto expected_arg = m.Parameter(4); Label passed(&m), failed(&m); Label if_found(&m), if_not_found(&m); TVariable var_name_index(&m); m.NameDictionaryLookup(dictionary, unique_name, &if_found, &var_name_index, &if_not_found); m.BIND(&if_found); m.GotoIfNot( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))), &failed); m.Branch( m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_name_index.value()), &passed, &failed); m.BIND(&if_not_found); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))), &passed, &failed); m.BIND(&passed); m.Return(m.BooleanConstant(true)); m.BIND(&failed); m.Return(m.BooleanConstant(false)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle expect_found(Smi::FromInt(kFound), isolate); Handle expect_not_found(Smi::FromInt(kNotFound), isolate); Handle dictionary = Dictionary::New(isolate, 40); PropertyDetails fake_details = PropertyDetails::Empty(); Factory* factory = isolate->factory(); Handle keys[] = { factory->InternalizeUtf8String("0"), factory->InternalizeUtf8String("42"), factory->InternalizeUtf8String("-153"), factory->InternalizeUtf8String("0.0"), factory->InternalizeUtf8String("4.2"), factory->InternalizeUtf8String(""), factory->InternalizeUtf8String("name"), factory->NewSymbol(), factory->NewPrivateSymbol(), }; for (size_t i = 0; i < arraysize(keys); i++) { Handle value = factory->NewPropertyCell(keys[i], fake_details, keys[i]); dictionary = Dictionary::Add(isolate, dictionary, keys[i], value, fake_details); } for (size_t i = 0; i < arraysize(keys); i++) { InternalIndex entry = dictionary->FindEntry(isolate, keys[i]); int name_index = Dictionary::EntryToIndex(entry) + Dictionary::kEntryKeyIndex; CHECK(entry.is_found()); Handle expected_name_index(Smi::FromInt(name_index), isolate); ft.CheckTrue(dictionary, keys[i], expect_found, expected_name_index); } Handle non_existing_keys[] = { factory->InternalizeUtf8String("1"), factory->InternalizeUtf8String("-42"), factory->InternalizeUtf8String("153"), factory->InternalizeUtf8String("-1.0"), factory->InternalizeUtf8String("1.3"), factory->InternalizeUtf8String("a"), factory->InternalizeUtf8String("boom"), factory->NewSymbol(), factory->NewPrivateSymbol(), }; for (size_t i = 0; i < arraysize(non_existing_keys); i++) { InternalIndex entry = dictionary->FindEntry(isolate, non_existing_keys[i]); CHECK(entry.is_not_found()); ft.CheckTrue(dictionary, non_existing_keys[i], expect_not_found); } } } // namespace TEST(NameDictionaryLookup) { TestNameDictionaryLookup(); } TEST(GlobalDictionaryLookup) { TestNameDictionaryLookup(); } TEST(NumberDictionaryLookup) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 4; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); enum Result { kFound, kNotFound }; { auto dictionary = m.Parameter(1); TNode key = m.SmiUntag(m.Parameter(2)); auto expected_result = m.Parameter(3); auto expected_arg = m.Parameter(4); Label passed(&m), failed(&m); Label if_found(&m), if_not_found(&m); TVariable var_entry(&m); m.NumberDictionaryLookup(dictionary, key, &if_found, &var_entry, &if_not_found); m.BIND(&if_found); m.GotoIfNot( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))), &failed); m.Branch(m.WordEqual(m.SmiUntag(m.CAST(expected_arg)), var_entry.value()), &passed, &failed); m.BIND(&if_not_found); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))), &passed, &failed); m.BIND(&passed); m.Return(m.BooleanConstant(true)); m.BIND(&failed); m.Return(m.BooleanConstant(false)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle expect_found(Smi::FromInt(kFound), isolate); Handle expect_not_found(Smi::FromInt(kNotFound), isolate); const int kKeysCount = 1000; Handle dictionary = NumberDictionary::New(isolate, kKeysCount); uint32_t keys[kKeysCount]; Handle fake_value(Smi::FromInt(42), isolate); PropertyDetails fake_details = PropertyDetails::Empty(); base::RandomNumberGenerator rand_gen(FLAG_random_seed); for (int i = 0; i < kKeysCount; i++) { int random_key = rand_gen.NextInt(Smi::kMaxValue); keys[i] = static_cast(random_key); if (dictionary->FindEntry(isolate, keys[i]).is_found()) continue; dictionary = NumberDictionary::Add(isolate, dictionary, keys[i], fake_value, fake_details); } // Now try querying existing keys. for (int i = 0; i < kKeysCount; i++) { InternalIndex entry = dictionary->FindEntry(isolate, keys[i]); CHECK(entry.is_found()); Handle key(Smi::FromInt(keys[i]), isolate); Handle expected_entry(Smi::FromInt(entry.as_int()), isolate); ft.CheckTrue(dictionary, key, expect_found, expected_entry); } // Now try querying random keys which do not exist in the dictionary. for (int i = 0; i < kKeysCount;) { int random_key = rand_gen.NextInt(Smi::kMaxValue); InternalIndex entry = dictionary->FindEntry(isolate, random_key); if (entry.is_found()) continue; i++; Handle key(Smi::FromInt(random_key), isolate); ft.CheckTrue(dictionary, key, expect_not_found); } } TEST(TransitionLookup) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 4; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. enum Result { kFound, kNotFound }; class TempAssembler : public CodeStubAssembler { public: explicit TempAssembler(compiler::CodeAssemblerState* state) : CodeStubAssembler(state) {} void Generate() { auto transitions = Parameter(1); auto name = Parameter(2); auto expected_result = Parameter(3); auto expected_arg = Parameter(4); Label passed(this), failed(this); Label if_found(this), if_not_found(this); TVARIABLE(IntPtrT, var_transition_index); TransitionLookup(name, transitions, &if_found, &var_transition_index, &if_not_found); BIND(&if_found); GotoIfNot(TaggedEqual(expected_result, SmiConstant(kFound)), &failed); Branch(TaggedEqual(expected_arg, SmiTag(var_transition_index.value())), &passed, &failed); BIND(&if_not_found); Branch(TaggedEqual(expected_result, SmiConstant(kNotFound)), &passed, &failed); BIND(&passed); Return(BooleanConstant(true)); BIND(&failed); Return(BooleanConstant(false)); } }; TempAssembler(asm_tester.state()).Generate(); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle expect_found(Smi::FromInt(kFound), isolate); Handle expect_not_found(Smi::FromInt(kNotFound), isolate); const int ATTRS_COUNT = (READ_ONLY | DONT_ENUM | DONT_DELETE) + 1; STATIC_ASSERT(ATTRS_COUNT == 8); const int kKeysCount = 300; Handle root_map = Map::Create(isolate, 0); Handle keys[kKeysCount]; base::RandomNumberGenerator rand_gen(FLAG_random_seed); Factory* factory = isolate->factory(); Handle any = FieldType::Any(isolate); for (int i = 0; i < kKeysCount; i++) { Handle name; if (i % 30 == 0) { name = factory->NewPrivateSymbol(); } else if (i % 10 == 0) { name = factory->NewSymbol(); } else { int random_key = rand_gen.NextInt(Smi::kMaxValue); name = CcTest::MakeName("p", random_key); } keys[i] = name; bool is_private = name->IsPrivate(); PropertyAttributes base_attributes = is_private ? DONT_ENUM : NONE; // Ensure that all the combinations of cases are covered: // 1) there is a "base" attributes transition // 2) there are other non-base attributes transitions if ((i & 1) == 0) { CHECK(!Map::CopyWithField(isolate, root_map, name, any, base_attributes, PropertyConstness::kMutable, Representation::Tagged(), INSERT_TRANSITION) .is_null()); } if ((i & 2) == 0) { for (int j = 0; j < ATTRS_COUNT; j++) { PropertyAttributes attributes = static_cast(j); if (attributes == base_attributes) continue; // Don't add private symbols with enumerable attributes. if (is_private && ((attributes & DONT_ENUM) == 0)) continue; CHECK(!Map::CopyWithField(isolate, root_map, name, any, attributes, PropertyConstness::kMutable, Representation::Tagged(), INSERT_TRANSITION) .is_null()); } } } CHECK(root_map->raw_transitions() ->GetHeapObjectAssumeStrong() .IsTransitionArray()); Handle transitions( TransitionArray::cast( root_map->raw_transitions()->GetHeapObjectAssumeStrong()), isolate); DCHECK(transitions->IsSortedNoDuplicates()); // Ensure we didn't overflow transition array and therefore all the // combinations of cases are covered. CHECK(TransitionsAccessor(isolate, root_map).CanHaveMoreTransitions()); // Now try querying keys. bool positive_lookup_tested = false; bool negative_lookup_tested = false; for (int i = 0; i < kKeysCount; i++) { Handle name = keys[i]; int transition_number = transitions->SearchNameForTesting(*name); if (transition_number != TransitionArray::kNotFound) { Handle expected_value( Smi::FromInt(TransitionArray::ToKeyIndex(transition_number)), isolate); ft.CheckTrue(transitions, name, expect_found, expected_value); positive_lookup_tested = true; } else { ft.CheckTrue(transitions, name, expect_not_found); negative_lookup_tested = true; } } CHECK(positive_lookup_tested); CHECK(negative_lookup_tested); } namespace { void AddProperties(Handle object, Handle names[], size_t count) { Isolate* isolate = object->GetIsolate(); for (size_t i = 0; i < count; i++) { Handle value(Smi::FromInt(static_cast(42 + i)), isolate); JSObject::AddProperty(isolate, object, names[i], value, NONE); } } Handle CreateAccessorPair(FunctionTester* ft, const char* getter_body, const char* setter_body) { Handle pair = ft->isolate->factory()->NewAccessorPair(); if (getter_body) { pair->set_getter(*ft->NewFunction(getter_body)); } if (setter_body) { pair->set_setter(*ft->NewFunction(setter_body)); } return pair; } void AddProperties(Handle object, Handle names[], size_t names_count, Handle values[], size_t values_count, int seed = 0) { Isolate* isolate = object->GetIsolate(); for (size_t i = 0; i < names_count; i++) { Handle value = values[(seed + i) % values_count]; if (value->IsAccessorPair()) { Handle pair = Handle::cast(value); Handle getter(pair->getter(), isolate); Handle setter(pair->setter(), isolate); JSObject::DefineAccessor(object, names[i], getter, setter, NONE).Check(); } else { JSObject::AddProperty(isolate, object, names[i], value, NONE); } } } } // namespace TEST(TryHasOwnProperty) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 3; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); enum Result { kFound, kNotFound, kBailout }; { auto object = m.Parameter(1); auto unique_name = m.Parameter(2); TNode expected_result = m.UncheckedParameter(3); Label passed(&m), failed(&m); Label if_found(&m), if_not_found(&m), if_bailout(&m); TNode map = m.LoadMap(object); TNode instance_type = m.LoadMapInstanceType(map); m.TryHasOwnProperty(object, map, instance_type, unique_name, &if_found, &if_not_found, &if_bailout); m.BIND(&if_found); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))), &passed, &failed); m.BIND(&if_not_found); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))), &passed, &failed); m.BIND(&if_bailout); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))), &passed, &failed); m.BIND(&passed); m.Return(m.BooleanConstant(true)); m.BIND(&failed); m.Return(m.BooleanConstant(false)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle expect_found(Smi::FromInt(kFound), isolate); Handle expect_not_found(Smi::FromInt(kNotFound), isolate); Handle expect_bailout(Smi::FromInt(kBailout), isolate); Factory* factory = isolate->factory(); Handle deleted_property_name = factory->InternalizeUtf8String("deleted"); Handle names[] = { factory->InternalizeUtf8String("a"), factory->InternalizeUtf8String("bb"), factory->InternalizeUtf8String("ccc"), factory->InternalizeUtf8String("dddd"), factory->InternalizeUtf8String("eeeee"), factory->InternalizeUtf8String(""), factory->InternalizeUtf8String("name"), factory->NewSymbol(), factory->NewPrivateSymbol(), }; std::vector> objects; { // Fast object, no inobject properties. int inobject_properties = 0; Handle map = Map::Create(isolate, inobject_properties); Handle object = factory->NewJSObjectFromMap(map); AddProperties(object, names, arraysize(names)); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK_EQ(inobject_properties, object->map().GetInObjectProperties()); CHECK(!object->map().is_dictionary_map()); objects.push_back(object); } { // Fast object, all inobject properties. int inobject_properties = arraysize(names) * 2; Handle map = Map::Create(isolate, inobject_properties); Handle object = factory->NewJSObjectFromMap(map); AddProperties(object, names, arraysize(names)); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK_EQ(inobject_properties, object->map().GetInObjectProperties()); CHECK(!object->map().is_dictionary_map()); objects.push_back(object); } { // Fast object, half inobject properties. int inobject_properties = arraysize(names) / 2; Handle map = Map::Create(isolate, inobject_properties); Handle object = factory->NewJSObjectFromMap(map); AddProperties(object, names, arraysize(names)); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK_EQ(inobject_properties, object->map().GetInObjectProperties()); CHECK(!object->map().is_dictionary_map()); objects.push_back(object); } { // Dictionary mode object. Handle function = factory->NewFunctionForTesting(factory->empty_string()); Handle object = factory->NewJSObject(function); AddProperties(object, names, arraysize(names)); JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0, "test"); JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE); CHECK(JSObject::DeleteProperty(object, deleted_property_name, LanguageMode::kSloppy) .FromJust()); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK(object->map().is_dictionary_map()); objects.push_back(object); } { // Global object. Handle function = factory->NewFunctionForTesting(factory->empty_string()); JSFunction::EnsureHasInitialMap(function); function->initial_map().set_instance_type(JS_GLOBAL_OBJECT_TYPE); function->initial_map().set_is_prototype_map(true); function->initial_map().set_is_dictionary_map(true); function->initial_map().set_may_have_interesting_symbols(true); Handle object = factory->NewJSGlobalObject(function); AddProperties(object, names, arraysize(names)); JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE); CHECK(JSObject::DeleteProperty(object, deleted_property_name, LanguageMode::kSloppy) .FromJust()); CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type()); CHECK(object->map().is_dictionary_map()); objects.push_back(object); } { for (Handle object : objects) { for (size_t name_index = 0; name_index < arraysize(names); name_index++) { Handle name = names[name_index]; CHECK(JSReceiver::HasProperty(object, name).FromJust()); ft.CheckTrue(object, name, expect_found); } } } { Handle non_existing_names[] = { factory->NewSymbol(), factory->InternalizeUtf8String("ne_a"), factory->InternalizeUtf8String("ne_bb"), factory->NewPrivateSymbol(), factory->InternalizeUtf8String("ne_ccc"), factory->InternalizeUtf8String("ne_dddd"), deleted_property_name, }; for (Handle object : objects) { for (size_t key_index = 0; key_index < arraysize(non_existing_names); key_index++) { Handle name = non_existing_names[key_index]; CHECK(!JSReceiver::HasProperty(object, name).FromJust()); ft.CheckTrue(object, name, expect_not_found); } } } { Handle function = factory->NewFunctionForTesting(factory->empty_string()); Handle object = factory->NewJSProxy(function, objects[0]); CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type()); ft.CheckTrue(object, names[0], expect_bailout); } { Handle object = isolate->global_proxy(); CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type()); ft.CheckTrue(object, names[0], expect_bailout); } } TEST(TryGetOwnProperty) { Isolate* isolate(CcTest::InitIsolateOnce()); Factory* factory = isolate->factory(); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); Handle not_found_symbol = factory->NewSymbol(); Handle bailout_symbol = factory->NewSymbol(); { auto object = m.Parameter(1); auto unique_name = m.Parameter(2); auto context = m.Parameter(kNumParams + 3); TVariable var_value(&m); Label if_found(&m), if_not_found(&m), if_bailout(&m); TNode map = m.LoadMap(object); TNode instance_type = m.LoadMapInstanceType(map); m.TryGetOwnProperty(context, object, object, map, instance_type, unique_name, &if_found, &var_value, &if_not_found, &if_bailout); m.BIND(&if_found); m.Return(m.UncheckedCast(var_value.value())); m.BIND(&if_not_found); m.Return(m.HeapConstant(not_found_symbol)); m.BIND(&if_bailout); m.Return(m.HeapConstant(bailout_symbol)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle deleted_property_name = factory->InternalizeUtf8String("deleted"); Handle names[] = { factory->InternalizeUtf8String("bb"), factory->NewSymbol(), factory->InternalizeUtf8String("a"), factory->InternalizeUtf8String("ccc"), factory->InternalizeUtf8String("esajefe"), factory->NewPrivateSymbol(), factory->InternalizeUtf8String("eeeee"), factory->InternalizeUtf8String("p1"), factory->InternalizeUtf8String("acshw23e"), factory->InternalizeUtf8String(""), factory->InternalizeUtf8String("dddd"), factory->NewPrivateSymbol(), factory->InternalizeUtf8String("name"), factory->InternalizeUtf8String("p2"), factory->InternalizeUtf8String("p3"), factory->InternalizeUtf8String("p4"), factory->NewPrivateSymbol(), }; Handle values[] = { factory->NewFunctionForTesting(factory->empty_string()), factory->NewSymbol(), factory->InternalizeUtf8String("a"), CreateAccessorPair(&ft, "() => 188;", "() => 199;"), factory->NewFunctionForTesting(factory->InternalizeUtf8String("bb")), factory->InternalizeUtf8String("ccc"), CreateAccessorPair(&ft, "() => 88;", nullptr), handle(Smi::FromInt(1), isolate), factory->InternalizeUtf8String(""), CreateAccessorPair(&ft, nullptr, "() => 99;"), factory->NewHeapNumber(4.2), handle(Smi::FromInt(153), isolate), factory->NewJSObject( factory->NewFunctionForTesting(factory->empty_string())), factory->NewPrivateSymbol(), }; STATIC_ASSERT(arraysize(values) < arraysize(names)); base::RandomNumberGenerator rand_gen(FLAG_random_seed); std::vector> objects; { // Fast object, no inobject properties. int inobject_properties = 0; Handle map = Map::Create(isolate, inobject_properties); Handle object = factory->NewJSObjectFromMap(map); AddProperties(object, names, arraysize(names), values, arraysize(values), rand_gen.NextInt()); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK_EQ(inobject_properties, object->map().GetInObjectProperties()); CHECK(!object->map().is_dictionary_map()); objects.push_back(object); } { // Fast object, all inobject properties. int inobject_properties = arraysize(names) * 2; Handle map = Map::Create(isolate, inobject_properties); Handle object = factory->NewJSObjectFromMap(map); AddProperties(object, names, arraysize(names), values, arraysize(values), rand_gen.NextInt()); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK_EQ(inobject_properties, object->map().GetInObjectProperties()); CHECK(!object->map().is_dictionary_map()); objects.push_back(object); } { // Fast object, half inobject properties. int inobject_properties = arraysize(names) / 2; Handle map = Map::Create(isolate, inobject_properties); Handle object = factory->NewJSObjectFromMap(map); AddProperties(object, names, arraysize(names), values, arraysize(values), rand_gen.NextInt()); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK_EQ(inobject_properties, object->map().GetInObjectProperties()); CHECK(!object->map().is_dictionary_map()); objects.push_back(object); } { // Dictionary mode object. Handle function = factory->NewFunctionForTesting(factory->empty_string()); Handle object = factory->NewJSObject(function); AddProperties(object, names, arraysize(names), values, arraysize(values), rand_gen.NextInt()); JSObject::NormalizeProperties(isolate, object, CLEAR_INOBJECT_PROPERTIES, 0, "test"); JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE); CHECK(JSObject::DeleteProperty(object, deleted_property_name, LanguageMode::kSloppy) .FromJust()); CHECK_EQ(JS_OBJECT_TYPE, object->map().instance_type()); CHECK(object->map().is_dictionary_map()); objects.push_back(object); } { // Global object. Handle object = isolate->global_object(); AddProperties(object, names, arraysize(names), values, arraysize(values), rand_gen.NextInt()); JSObject::AddProperty(isolate, object, deleted_property_name, object, NONE); CHECK(JSObject::DeleteProperty(object, deleted_property_name, LanguageMode::kSloppy) .FromJust()); CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type()); CHECK(object->map().is_dictionary_map()); objects.push_back(object); } // TODO(ishell): test proxy and interceptors when they are supported. { for (Handle object : objects) { for (size_t name_index = 0; name_index < arraysize(names); name_index++) { Handle name = names[name_index]; Handle expected_value = JSReceiver::GetProperty(isolate, object, name).ToHandleChecked(); Handle value = ft.Call(object, name).ToHandleChecked(); CHECK(expected_value->SameValue(*value)); } } } { Handle non_existing_names[] = { factory->NewSymbol(), factory->InternalizeUtf8String("ne_a"), factory->InternalizeUtf8String("ne_bb"), factory->NewPrivateSymbol(), factory->InternalizeUtf8String("ne_ccc"), factory->InternalizeUtf8String("ne_dddd"), deleted_property_name, }; for (Handle object : objects) { for (size_t key_index = 0; key_index < arraysize(non_existing_names); key_index++) { Handle name = non_existing_names[key_index]; Handle expected_value = JSReceiver::GetProperty(isolate, object, name).ToHandleChecked(); CHECK(expected_value->IsUndefined(isolate)); Handle value = ft.Call(object, name).ToHandleChecked(); CHECK_EQ(*not_found_symbol, *value); } } } { Handle function = factory->NewFunctionForTesting(factory->empty_string()); Handle object = factory->NewJSProxy(function, objects[0]); CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type()); Handle value = ft.Call(object, names[0]).ToHandleChecked(); // Proxies are not supported yet. CHECK_EQ(*bailout_symbol, *value); } { Handle object = isolate->global_proxy(); CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type()); // Global proxies are not supported yet. Handle value = ft.Call(object, names[0]).ToHandleChecked(); CHECK_EQ(*bailout_symbol, *value); } } namespace { void AddElement(Handle object, uint32_t index, Handle value, PropertyAttributes attributes = NONE) { JSObject::AddDataElement(object, index, value, attributes); } } // namespace TEST(TryLookupElement) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 3; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); enum Result { kFound, kAbsent, kNotFound, kBailout }; { auto object = m.Parameter(1); TNode index = m.SmiUntag(m.Parameter(2)); TNode expected_result = m.UncheckedParameter(3); Label passed(&m), failed(&m); Label if_found(&m), if_not_found(&m), if_bailout(&m), if_absent(&m); TNode map = m.LoadMap(object); TNode instance_type = m.LoadMapInstanceType(map); m.TryLookupElement(object, map, instance_type, index, &if_found, &if_absent, &if_not_found, &if_bailout); m.BIND(&if_found); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kFound))), &passed, &failed); m.BIND(&if_absent); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kAbsent))), &passed, &failed); m.BIND(&if_not_found); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kNotFound))), &passed, &failed); m.BIND(&if_bailout); m.Branch( m.TaggedEqual(expected_result, m.SmiConstant(Smi::FromInt(kBailout))), &passed, &failed); m.BIND(&passed); m.Return(m.BooleanConstant(true)); m.BIND(&failed); m.Return(m.BooleanConstant(false)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Factory* factory = isolate->factory(); Handle smi0(Smi::zero(), isolate); Handle smi1(Smi::FromInt(1), isolate); Handle smi7(Smi::FromInt(7), isolate); Handle smi13(Smi::FromInt(13), isolate); Handle smi42(Smi::FromInt(42), isolate); Handle expect_found(Smi::FromInt(kFound), isolate); Handle expect_absent(Smi::FromInt(kAbsent), isolate); Handle expect_not_found(Smi::FromInt(kNotFound), isolate); Handle expect_bailout(Smi::FromInt(kBailout), isolate); #define CHECK_FOUND(object, index) \ CHECK(JSReceiver::HasElement(object, index).FromJust()); \ ft.CheckTrue(object, smi##index, expect_found); #define CHECK_NOT_FOUND(object, index) \ CHECK(!JSReceiver::HasElement(object, index).FromJust()); \ ft.CheckTrue(object, smi##index, expect_not_found); #define CHECK_ABSENT(object, index) \ { \ Handle smi(Smi::FromInt(index), isolate); \ PropertyKey key(isolate, smi); \ LookupIterator it(isolate, object, key); \ CHECK(!JSReceiver::HasProperty(&it).FromJust()); \ ft.CheckTrue(object, smi, expect_absent); \ } { Handle object = factory->NewJSArray(0, PACKED_SMI_ELEMENTS); AddElement(object, 0, smi0); AddElement(object, 1, smi0); CHECK_EQ(PACKED_SMI_ELEMENTS, object->map().elements_kind()); CHECK_FOUND(object, 0); CHECK_FOUND(object, 1); CHECK_NOT_FOUND(object, 7); CHECK_NOT_FOUND(object, 13); CHECK_NOT_FOUND(object, 42); } { Handle object = factory->NewJSArray(0, HOLEY_SMI_ELEMENTS); AddElement(object, 0, smi0); AddElement(object, 13, smi0); CHECK_EQ(HOLEY_SMI_ELEMENTS, object->map().elements_kind()); CHECK_FOUND(object, 0); CHECK_NOT_FOUND(object, 1); CHECK_NOT_FOUND(object, 7); CHECK_FOUND(object, 13); CHECK_NOT_FOUND(object, 42); } { Handle object = factory->NewJSArray(0, PACKED_ELEMENTS); AddElement(object, 0, smi0); AddElement(object, 1, smi0); CHECK_EQ(PACKED_ELEMENTS, object->map().elements_kind()); CHECK_FOUND(object, 0); CHECK_FOUND(object, 1); CHECK_NOT_FOUND(object, 7); CHECK_NOT_FOUND(object, 13); CHECK_NOT_FOUND(object, 42); } { Handle object = factory->NewJSArray(0, HOLEY_ELEMENTS); AddElement(object, 0, smi0); AddElement(object, 13, smi0); CHECK_EQ(HOLEY_ELEMENTS, object->map().elements_kind()); CHECK_FOUND(object, 0); CHECK_NOT_FOUND(object, 1); CHECK_NOT_FOUND(object, 7); CHECK_FOUND(object, 13); CHECK_NOT_FOUND(object, 42); } { v8::Local buffer = v8::ArrayBuffer::New(reinterpret_cast(isolate), 8); Handle object = factory->NewJSTypedArray( kExternalInt32Array, v8::Utils::OpenHandle(*buffer), 0, 2); CHECK_EQ(INT32_ELEMENTS, object->map().elements_kind()); CHECK_FOUND(object, 0); CHECK_FOUND(object, 1); CHECK_ABSENT(object, -10); CHECK_ABSENT(object, 13); CHECK_ABSENT(object, 42); { std::shared_ptr backing_store = buffer->GetBackingStore(); buffer->Detach(); } CHECK_ABSENT(object, 0); CHECK_ABSENT(object, 1); CHECK_ABSENT(object, -10); CHECK_ABSENT(object, 13); CHECK_ABSENT(object, 42); } { Handle constructor = isolate->string_function(); Handle object = factory->NewJSObject(constructor); Handle str = factory->InternalizeUtf8String("ab"); Handle::cast(object)->set_value(*str); AddElement(object, 13, smi0); CHECK_EQ(FAST_STRING_WRAPPER_ELEMENTS, object->map().elements_kind()); CHECK_FOUND(object, 0); CHECK_FOUND(object, 1); CHECK_NOT_FOUND(object, 7); CHECK_FOUND(object, 13); CHECK_NOT_FOUND(object, 42); } { Handle constructor = isolate->string_function(); Handle object = factory->NewJSObject(constructor); Handle str = factory->InternalizeUtf8String("ab"); Handle::cast(object)->set_value(*str); AddElement(object, 13, smi0); JSObject::NormalizeElements(object); CHECK_EQ(SLOW_STRING_WRAPPER_ELEMENTS, object->map().elements_kind()); CHECK_FOUND(object, 0); CHECK_FOUND(object, 1); CHECK_NOT_FOUND(object, 7); CHECK_FOUND(object, 13); CHECK_NOT_FOUND(object, 42); } // TODO(ishell): uncomment once NO_ELEMENTS kind is supported. // { // Handle map = Map::Create(isolate, 0); // map->set_elements_kind(NO_ELEMENTS); // Handle object = factory->NewJSObjectFromMap(map); // CHECK_EQ(NO_ELEMENTS, object->map()->elements_kind()); // // CHECK_NOT_FOUND(object, 0); // CHECK_NOT_FOUND(object, 1); // CHECK_NOT_FOUND(object, 7); // CHECK_NOT_FOUND(object, 13); // CHECK_NOT_FOUND(object, 42); // } #undef CHECK_FOUND #undef CHECK_NOT_FOUND #undef CHECK_ABSENT { Handle handler = factory->NewJSArray(0); Handle function = factory->NewFunctionForTesting(factory->empty_string()); Handle object = factory->NewJSProxy(function, handler); CHECK_EQ(JS_PROXY_TYPE, object->map().instance_type()); ft.CheckTrue(object, smi0, expect_bailout); } { Handle object = isolate->global_object(); CHECK_EQ(JS_GLOBAL_OBJECT_TYPE, object->map().instance_type()); ft.CheckTrue(object, smi0, expect_bailout); } { Handle object = isolate->global_proxy(); CHECK_EQ(JS_GLOBAL_PROXY_TYPE, object->map().instance_type()); ft.CheckTrue(object, smi0, expect_bailout); } } TEST(AllocateJSObjectFromMap) { Isolate* isolate(CcTest::InitIsolateOnce()); Factory* factory = isolate->factory(); const int kNumParams = 3; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); { auto map = m.Parameter(1); auto properties = m.Parameter(2); auto elements = m.Parameter(3); TNode result = m.AllocateJSObjectFromMap(map, properties, elements); CodeStubAssembler::Label done(&m); m.GotoIfNot(m.IsJSArrayMap(map), &done); // JS array verification requires the length field to be set. m.StoreObjectFieldNoWriteBarrier(result, JSArray::kLengthOffset, m.SmiConstant(0)); m.Goto(&done); m.Bind(&done); m.Return(result); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle maps[] = { handle(isolate->object_function()->initial_map(), isolate), handle(isolate->array_function()->initial_map(), isolate), }; { Handle empty_fixed_array = factory->empty_fixed_array(); Handle empty_property_array = factory->empty_property_array(); for (size_t i = 0; i < arraysize(maps); i++) { Handle map = maps[i]; Handle result = Handle::cast( ft.Call(map, empty_fixed_array, empty_fixed_array).ToHandleChecked()); CHECK_EQ(result->map(), *map); CHECK_EQ(result->property_array(), *empty_property_array); CHECK_EQ(result->elements(), *empty_fixed_array); CHECK(result->HasFastProperties()); #ifdef VERIFY_HEAP isolate->heap()->Verify(); #endif } } { // TODO(cbruni): handle in-object properties Handle object = Handle::cast( v8::Utils::OpenHandle(*CompileRun("var object = {a:1,b:2, 1:1, 2:2}; " "object"))); JSObject::NormalizeProperties(isolate, object, KEEP_INOBJECT_PROPERTIES, 0, "Normalize"); Handle properties = V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL ? Handle(object->property_dictionary_swiss(), isolate) : handle(object->property_dictionary(), isolate); Handle result = Handle::cast( ft.Call(handle(object->map(), isolate), properties, handle(object->elements(), isolate)) .ToHandleChecked()); CHECK_EQ(result->map(), object->map()); if (V8_ENABLE_SWISS_NAME_DICTIONARY_BOOL) { CHECK_EQ(result->property_dictionary_swiss(), object->property_dictionary_swiss()); } else { CHECK_EQ(result->property_dictionary(), object->property_dictionary()); } CHECK(!result->HasFastProperties()); #ifdef VERIFY_HEAP isolate->heap()->Verify(); #endif } } namespace { template using CSAAllocator = std::function(CodeStubAssembler&, TNode)> const&; template using Allocator = std::function(Isolate*, int)> const&; // Tests that allocation code emitted by {csa_alloc} yields ordered hash tables // identical to those produced by {alloc}. template void TestDictionaryAllocation(CSAAllocator csa_alloc, Allocator alloc, int max_capacity) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); { auto capacity = m.Parameter(1); TNode result = csa_alloc(m, m.SmiUntag(capacity)); m.Return(result); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); { for (int i = 0; i < max_capacity; i = i * 1.1 + 1) { Handle result = Handle::cast( ft.Call(handle(Smi::FromInt(i), isolate)).ToHandleChecked()); Handle dict = alloc(isolate, i); // Both dictionaries should be memory equal. int size = dict->Size(); CHECK_EQ(0, memcmp(reinterpret_cast(dict->address()), reinterpret_cast(result->address()), size)); } } } } // namespace TEST(AllocateNameDictionary) { auto csa_alloc = [](CodeStubAssembler& m, TNode cap) { return m.AllocateNameDictionary(cap); }; auto alloc = [](Isolate* isolate, int capacity) { return NameDictionary::New(isolate, capacity); }; TestDictionaryAllocation(csa_alloc, alloc, 256); } TEST(AllocateOrderedNameDictionary) { auto csa_alloc = [](CodeStubAssembler& m, TNode cap) { return m.AllocateOrderedNameDictionary(cap); }; auto alloc = [](Isolate* isolate, int capacity) { return OrderedNameDictionary::Allocate(isolate, capacity).ToHandleChecked(); }; TestDictionaryAllocation(csa_alloc, alloc, 256); } TEST(AllocateOrderedHashSet) { // ignoring capacitites, as the API cannot take them auto csa_alloc = [](CodeStubAssembler& m, TNode cap) { return m.AllocateOrderedHashSet(); }; auto alloc = [](Isolate* isolate, int capacity) { return OrderedHashSet::Allocate(isolate, OrderedHashSet::kInitialCapacity) .ToHandleChecked(); }; TestDictionaryAllocation(csa_alloc, alloc, 1); } TEST(AllocateOrderedHashMap) { // ignoring capacities, as the API cannot take them auto csa_alloc = [](CodeStubAssembler& m, TNode cap) { return m.AllocateOrderedHashMap(); }; auto alloc = [](Isolate* isolate, int capacity) { return OrderedHashMap::Allocate(isolate, OrderedHashMap::kInitialCapacity) .ToHandleChecked(); }; TestDictionaryAllocation(csa_alloc, alloc, 1); } TEST(PopAndReturnFromJSBuiltinWithStackParameters) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumStackParams = 1; CodeAssemblerTester asm_tester(isolate, kNumStackParams); { CodeStubAssembler m(asm_tester.state()); m.PopAndReturn(m.SmiUntag(m.Parameter(0)), m.SmiConstant(Smi::FromInt(1234))); } // Attempt to generate code must trigger CHECK failure in RawMachineAssebler. // PopAndReturn is not allowed in builtins with JS linkage and declared stack // parameters. asm_tester.GenerateCode(); } TEST(PopAndReturnFromTFCBuiltinWithStackParameters) { Isolate* isolate(CcTest::InitIsolateOnce()); // Setup CSA for creating TFC-style builtin with stack arguments. // For the testing purposes we need any interface descriptor that has at // least one argument passed on stack. using Descriptor = FlatMapIntoArrayDescriptor; Descriptor descriptor; CHECK_LT(0, Descriptor::GetStackParameterCount()); CodeAssemblerTester asm_tester(isolate, Descriptor()); { CodeStubAssembler m(asm_tester.state()); m.PopAndReturn(m.SmiUntag(m.Parameter(0)), m.SmiConstant(Smi::FromInt(1234))); } // Attempt to generate code must trigger CHECK failure in RawMachineAssebler. // PopAndReturn is not allowed in builtins with JS linkage and declared stack // parameters. asm_tester.GenerateCode(); } namespace { TNode MakeConstantNode(CodeStubAssembler& m, Handle value) { if (value->IsSmi()) { return m.SmiConstant(Smi::ToInt(*value)); } return m.HeapConstant(Handle::cast(value)); } // Buids a CSA function that calls |target| function with given arguments // |number_of_iterations| times and checks that the stack pointer values before // the calls and after the calls are the same. // Then this new function is called multiple times. template void CallFunctionWithStackPointerChecks(Isolate* isolate, Handle expected_result, Handle target, Handle receiver, Args... args) { // Setup CSA for creating TFJ-style builtin. using Descriptor = JSTrampolineDescriptor; CodeAssemblerTester asm_tester(isolate, Descriptor()); { CodeStubAssembler m(asm_tester.state()); TNode context = m.Parameter(Descriptor::kContext); #ifdef V8_CC_GNU // GetStackPointer is available only when V8_CC_GNU is defined. const TNode get_stack_ptr = m.ExternalConstant( ExternalReference::Create(reinterpret_cast
(GetStackPointer))); // CSA doesn't have instructions for reading current stack pointer value, // so we use a C function that returns address of its local variable. // This is a good-enough approximation for the stack pointer. MachineType type_intptr = MachineType::IntPtr(); TNode stack_pointer0 = m.UncheckedCast(m.CallCFunction(get_stack_ptr, type_intptr)); #endif // CSA::CallCFunction() aligns stack pointer before the call, so off-by one // errors will not be detected. In order to handle this we do the calls in a // loop in order to exaggerate the effect of potentially broken stack // pointer so that the GetStackPointer function will be able to notice it. m.BuildFastLoop( m.IntPtrConstant(0), m.IntPtrConstant(153), [&](TNode index) { TNode result = m.Call(context, MakeConstantNode(m, target), MakeConstantNode(m, receiver), MakeConstantNode(m, args)...); CSA_CHECK( &m, m.TaggedEqual(result, MakeConstantNode(m, expected_result))); }, 1, CodeStubAssembler::IndexAdvanceMode::kPost); #ifdef V8_CC_GNU TNode stack_pointer1 = m.UncheckedCast(m.CallCFunction(get_stack_ptr, type_intptr)); CSA_CHECK(&m, m.WordEqual(stack_pointer0, stack_pointer1)); #endif m.Return(m.SmiConstant(42)); } FunctionTester ft(asm_tester.GenerateCode(), 1); // Include receiver. Handle result; for (int test_count = 0; test_count < 100; ++test_count) { result = ft.Call().ToHandleChecked(); CHECK_EQ(Smi::FromInt(42), *result); } } } // namespace TEST(PopAndReturnConstant) { Isolate* isolate(CcTest::InitIsolateOnce()); // Setup CSA for creating TFJ-style builtin. using Descriptor = JSTrampolineDescriptor; CodeAssemblerTester asm_tester(isolate, Descriptor()); const int kNumParams = 4; // Not including receiver { CodeStubAssembler m(asm_tester.state()); TNode argc = m.UncheckedParameter(Descriptor::kActualArgumentsCount); CSA_CHECK(&m, m.Word32Equal(argc, m.Int32Constant(kNumParams))); m.PopAndReturn(m.IntPtrConstant(kNumParams + 1), // Include receiver. m.SmiConstant(1234)); } FunctionTester ft(asm_tester.GenerateCode(), 0); ft.function->shared().DontAdaptArguments(); // Now call this function multiple time also checking that the stack pointer // didn't change after the calls. Handle receiver = isolate->factory()->undefined_value(); Handle expected_result(Smi::FromInt(1234), isolate); CallFunctionWithStackPointerChecks(isolate, expected_result, ft.function, receiver, // Pass kNumParams arguments. Handle(Smi::FromInt(1), isolate), Handle(Smi::FromInt(2), isolate), Handle(Smi::FromInt(3), isolate), Handle(Smi::FromInt(4), isolate)); } TEST(PopAndReturnVariable) { Isolate* isolate(CcTest::InitIsolateOnce()); // Setup CSA for creating TFJ-style builtin. using Descriptor = JSTrampolineDescriptor; CodeAssemblerTester asm_tester(isolate, Descriptor()); const int kNumParams = 4; // Not including receiver { CodeStubAssembler m(asm_tester.state()); TNode argc = m.UncheckedParameter(Descriptor::kActualArgumentsCount); CSA_CHECK(&m, m.Word32Equal(argc, m.Int32Constant(kNumParams))); TNode argc_with_receiver = m.Int32Add(argc, m.Int32Constant(1)); m.PopAndReturn(m.ChangeInt32ToIntPtr(argc_with_receiver), m.SmiConstant(1234)); } FunctionTester ft(asm_tester.GenerateCode(), 0); ft.function->shared().DontAdaptArguments(); // Now call this function multiple time also checking that the stack pointer // didn't change after the calls. Handle receiver = isolate->factory()->undefined_value(); Handle expected_result(Smi::FromInt(1234), isolate); CallFunctionWithStackPointerChecks(isolate, expected_result, ft.function, receiver, // Pass kNumParams arguments. Handle(Smi::FromInt(1), isolate), Handle(Smi::FromInt(2), isolate), Handle(Smi::FromInt(3), isolate), Handle(Smi::FromInt(4), isolate)); } TEST(OneToTwoByteStringCopy) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. StringBuiltinsAssembler m(asm_tester.state()); m.CopyStringCharacters(m.Parameter(1), m.Parameter(2), m.IntPtrConstant(0), m.IntPtrConstant(0), m.IntPtrConstant(5), String::ONE_BYTE_ENCODING, String::TWO_BYTE_ENCODING); m.Return(m.SmiConstant(Smi::FromInt(0))); Handle string1 = isolate->factory()->InternalizeUtf8String("abcde"); base::uc16 array[] = {1000, 1001, 1002, 1003, 1004}; Handle string2 = isolate->factory() ->NewStringFromTwoByte(base::ArrayVector(array)) .ToHandleChecked(); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); ft.Call(string1, string2); DisallowGarbageCollection no_gc; CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[0], Handle::cast(string2)->GetChars(no_gc)[0]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[1], Handle::cast(string2)->GetChars(no_gc)[1]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[2], Handle::cast(string2)->GetChars(no_gc)[2]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[3], Handle::cast(string2)->GetChars(no_gc)[3]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[4], Handle::cast(string2)->GetChars(no_gc)[4]); } TEST(OneToOneByteStringCopy) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. StringBuiltinsAssembler m(asm_tester.state()); m.CopyStringCharacters(m.Parameter(1), m.Parameter(2), m.IntPtrConstant(0), m.IntPtrConstant(0), m.IntPtrConstant(5), String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING); m.Return(m.SmiConstant(Smi::FromInt(0))); Handle string1 = isolate->factory()->InternalizeUtf8String("abcde"); uint8_t array[] = {100, 101, 102, 103, 104}; Handle string2 = isolate->factory() ->NewStringFromOneByte(base::ArrayVector(array)) .ToHandleChecked(); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); ft.Call(string1, string2); DisallowGarbageCollection no_gc; CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[0], Handle::cast(string2)->GetChars(no_gc)[0]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[1], Handle::cast(string2)->GetChars(no_gc)[1]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[2], Handle::cast(string2)->GetChars(no_gc)[2]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[3], Handle::cast(string2)->GetChars(no_gc)[3]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[4], Handle::cast(string2)->GetChars(no_gc)[4]); } TEST(OneToOneByteStringCopyNonZeroStart) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. StringBuiltinsAssembler m(asm_tester.state()); m.CopyStringCharacters(m.Parameter(1), m.Parameter(2), m.IntPtrConstant(0), m.IntPtrConstant(3), m.IntPtrConstant(2), String::ONE_BYTE_ENCODING, String::ONE_BYTE_ENCODING); m.Return(m.SmiConstant(Smi::FromInt(0))); Handle string1 = isolate->factory()->InternalizeUtf8String("abcde"); uint8_t array[] = {100, 101, 102, 103, 104}; Handle string2 = isolate->factory() ->NewStringFromOneByte(base::ArrayVector(array)) .ToHandleChecked(); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); ft.Call(string1, string2); DisallowGarbageCollection no_gc; CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[0], Handle::cast(string2)->GetChars(no_gc)[3]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[1], Handle::cast(string2)->GetChars(no_gc)[4]); CHECK_EQ(100, Handle::cast(string2)->GetChars(no_gc)[0]); CHECK_EQ(101, Handle::cast(string2)->GetChars(no_gc)[1]); CHECK_EQ(102, Handle::cast(string2)->GetChars(no_gc)[2]); } TEST(TwoToTwoByteStringCopy) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. StringBuiltinsAssembler m(asm_tester.state()); m.CopyStringCharacters(m.Parameter(1), m.Parameter(2), m.IntPtrConstant(0), m.IntPtrConstant(0), m.IntPtrConstant(5), String::TWO_BYTE_ENCODING, String::TWO_BYTE_ENCODING); m.Return(m.SmiConstant(Smi::FromInt(0))); base::uc16 array1[] = {2000, 2001, 2002, 2003, 2004}; Handle string1 = isolate->factory() ->NewStringFromTwoByte(base::ArrayVector(array1)) .ToHandleChecked(); base::uc16 array2[] = {1000, 1001, 1002, 1003, 1004}; Handle string2 = isolate->factory() ->NewStringFromTwoByte(base::ArrayVector(array2)) .ToHandleChecked(); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); ft.Call(string1, string2); DisallowGarbageCollection no_gc; CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[0], Handle::cast(string2)->GetChars(no_gc)[0]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[1], Handle::cast(string2)->GetChars(no_gc)[1]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[2], Handle::cast(string2)->GetChars(no_gc)[2]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[3], Handle::cast(string2)->GetChars(no_gc)[3]); CHECK_EQ(Handle::cast(string1)->GetChars(no_gc)[4], Handle::cast(string2)->GetChars(no_gc)[4]); } TEST(Arguments) { Isolate* isolate(CcTest::InitIsolateOnce()); // Setup CSA for creating TFJ-style builtin. using Descriptor = JSTrampolineDescriptor; CodeAssemblerTester asm_tester(isolate, Descriptor()); { CodeStubAssembler m(asm_tester.state()); TNode argc = m.UncheckedParameter(Descriptor::kActualArgumentsCount); CodeStubArguments arguments(&m, argc); CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(0), m.SmiConstant(12))); CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(1), m.SmiConstant(13))); CSA_CHECK(&m, m.TaggedEqual(arguments.AtIndex(2), m.SmiConstant(14))); arguments.PopAndReturn(arguments.GetReceiver()); } FunctionTester ft(asm_tester.GenerateCode(), 0); ft.function->shared().DontAdaptArguments(); Handle result; result = ft.Call(Handle(Smi::FromInt(12), isolate), Handle(Smi::FromInt(13), isolate), Handle(Smi::FromInt(14), isolate)) .ToHandleChecked(); // When calling with undefined object as the receiver, the CallFunction // builtin swaps it to the global proxy object. CHECK_EQ(*isolate->global_proxy(), *result); result = ft.Call(Handle(Smi::FromInt(12), isolate), Handle(Smi::FromInt(13), isolate), Handle(Smi::FromInt(14), isolate), Handle(Smi::FromInt(15), isolate)) .ToHandleChecked(); CHECK_EQ(*isolate->global_proxy(), *result); result = ft.Call(Handle(Smi::FromInt(12), isolate), Handle(Smi::FromInt(13), isolate), Handle(Smi::FromInt(14), isolate), Handle(Smi::FromInt(15), isolate), Handle(Smi::FromInt(16), isolate), Handle(Smi::FromInt(17), isolate), Handle(Smi::FromInt(18), isolate), Handle(Smi::FromInt(19), isolate)) .ToHandleChecked(); CHECK_EQ(*isolate->global_proxy(), *result); } TEST(ArgumentsForEach) { Isolate* isolate(CcTest::InitIsolateOnce()); // Setup CSA for creating TFJ-style builtin. using Descriptor = JSTrampolineDescriptor; CodeAssemblerTester asm_tester(isolate, Descriptor()); { CodeStubAssembler m(asm_tester.state()); TNode argc = m.UncheckedParameter(Descriptor::kActualArgumentsCount); CodeStubArguments arguments(&m, argc); TVariable sum(&m); CodeAssemblerVariableList list({&sum}, m.zone()); sum = m.SmiConstant(0); arguments.ForEach(list, [&](TNode arg) { sum = m.SmiAdd(sum.value(), m.CAST(arg)); }); arguments.PopAndReturn(sum.value()); } FunctionTester ft(asm_tester.GenerateCode(), 0); ft.function->shared().DontAdaptArguments(); Handle result; result = ft.Call(Handle(Smi::FromInt(12), isolate), Handle(Smi::FromInt(13), isolate), Handle(Smi::FromInt(14), isolate)) .ToHandleChecked(); CHECK_EQ(Smi::FromInt(12 + 13 + 14), *result); result = ft.Call(Handle(Smi::FromInt(12), isolate), Handle(Smi::FromInt(13), isolate), Handle(Smi::FromInt(14), isolate), Handle(Smi::FromInt(15), isolate)) .ToHandleChecked(); CHECK_EQ(Smi::FromInt(12 + 13 + 14 + 15), *result); result = ft.Call(Handle(Smi::FromInt(12), isolate), Handle(Smi::FromInt(13), isolate), Handle(Smi::FromInt(14), isolate), Handle(Smi::FromInt(15), isolate), Handle(Smi::FromInt(16), isolate), Handle(Smi::FromInt(17), isolate), Handle(Smi::FromInt(18), isolate), Handle(Smi::FromInt(19), isolate)) .ToHandleChecked(); CHECK_EQ(Smi::FromInt(12 + 13 + 14 + 15 + 16 + 17 + 18 + 19), *result); } TEST(IsDebugActive) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); Label if_active(&m), if_not_active(&m); m.Branch(m.IsDebugActive(), &if_active, &if_not_active); m.BIND(&if_active); m.Return(m.TrueConstant()); m.BIND(&if_not_active); m.Return(m.FalseConstant()); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); CHECK(!isolate->debug()->is_active()); Handle result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result); bool* debug_is_active = reinterpret_cast( ExternalReference::debug_is_active_address(isolate).address()); // Cheat to enable debug (TODO: do this properly). *debug_is_active = true; result = ft.Call().ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result); // Reset debug mode. *debug_is_active = false; } // Ensure that the kShortBuiltinCallsOldSpaceSizeThreshold constant can be used // for detecting whether the machine has >= 4GB of physical memory by checking // the max old space size. TEST(ShortBuiltinCallsThreshold) { if (!V8_SHORT_BUILTIN_CALLS_BOOL) return; const uint64_t kPhysicalMemoryThreshold = size_t{4} * GB; size_t heap_size, old, young; // If the physical memory is < kPhysicalMemoryThreshold then the old space // size must be below the kShortBuiltinCallsOldSpaceThreshold. heap_size = Heap::HeapSizeFromPhysicalMemory(kPhysicalMemoryThreshold - MB); i::Heap::GenerationSizesFromHeapSize(heap_size, &young, &old); CHECK_LT(old, kShortBuiltinCallsOldSpaceSizeThreshold); // If the physical memory is >= kPhysicalMemoryThreshold then the old space // size must be below the kShortBuiltinCallsOldSpaceThreshold. heap_size = Heap::HeapSizeFromPhysicalMemory(kPhysicalMemoryThreshold); i::Heap::GenerationSizesFromHeapSize(heap_size, &young, &old); CHECK_GE(old, kShortBuiltinCallsOldSpaceSizeThreshold); heap_size = Heap::HeapSizeFromPhysicalMemory(kPhysicalMemoryThreshold + MB); i::Heap::GenerationSizesFromHeapSize(heap_size, &young, &old); CHECK_GE(old, kShortBuiltinCallsOldSpaceSizeThreshold); } TEST(CallBuiltin) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. PromiseBuiltinsAssembler m(asm_tester.state()); { auto receiver = m.Parameter(1); auto name = m.Parameter(2); auto context = m.Parameter(kNumParams + 3); auto value = m.CallBuiltin(Builtin::kGetProperty, context, receiver, name); m.Return(value); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Factory* factory = isolate->factory(); Handle name = factory->InternalizeUtf8String("a"); Handle value(Smi::FromInt(153), isolate); Handle object = factory->NewJSObjectWithNullProto(); JSObject::AddProperty(isolate, object, name, value, NONE); Handle result = ft.Call(object, name).ToHandleChecked(); CHECK_EQ(*value, *result); } TEST(TailCallBuiltin) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. PromiseBuiltinsAssembler m(asm_tester.state()); { auto receiver = m.Parameter(1); auto name = m.Parameter(2); auto context = m.Parameter(kNumParams + 3); m.TailCallBuiltin(Builtin::kGetProperty, context, receiver, name); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Factory* factory = isolate->factory(); Handle name = factory->InternalizeUtf8String("a"); Handle value(Smi::FromInt(153), isolate); Handle object = factory->NewJSObjectWithNullProto(); JSObject::AddProperty(isolate, object, name, value, NONE); Handle result = ft.Call(object, name).ToHandleChecked(); CHECK_EQ(*value, *result); } class AppendJSArrayCodeStubAssembler : public CodeStubAssembler { public: AppendJSArrayCodeStubAssembler(compiler::CodeAssemblerState* state, ElementsKind kind) : CodeStubAssembler(state), kind_(kind) {} void TestAppendJSArrayImpl(Isolate* isolate, CodeAssemblerTester* csa_tester, Handle o1, Handle o2, Handle o3, Handle o4, int initial_size, int result_size) { Handle array = isolate->factory()->NewJSArray( kind_, 2, initial_size, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); Object::SetElement(isolate, array, 0, Handle(Smi::FromInt(1), isolate), kDontThrow) .Check(); Object::SetElement(isolate, array, 1, Handle(Smi::FromInt(2), isolate), kDontThrow) .Check(); CodeStubArguments args(this, IntPtrConstant(kNumParams)); TVariable arg_index(this); Label bailout(this); arg_index = IntPtrConstant(0); TNode length = BuildAppendJSArray(kind_, HeapConstant(array), &args, &arg_index, &bailout); Return(length); BIND(&bailout); Return(SmiTag(IntPtrAdd(arg_index.value(), IntPtrConstant(2)))); FunctionTester ft(csa_tester->GenerateCode(), kNumParams); Handle result = ft.Call(o1, o2, o3, o4).ToHandleChecked(); CHECK_EQ(kind_, array->GetElementsKind()); CHECK_EQ(result_size, Handle::cast(result)->value()); CHECK_EQ(result_size, Smi::ToInt(array->length())); Handle obj = JSObject::GetElement(isolate, array, 2).ToHandleChecked(); Handle undefined_value = Handle(ReadOnlyRoots(isolate).undefined_value(), isolate); CHECK_EQ(result_size < 3 ? *undefined_value : *o1, *obj); obj = JSObject::GetElement(isolate, array, 3).ToHandleChecked(); CHECK_EQ(result_size < 4 ? *undefined_value : *o2, *obj); obj = JSObject::GetElement(isolate, array, 4).ToHandleChecked(); CHECK_EQ(result_size < 5 ? *undefined_value : *o3, *obj); obj = JSObject::GetElement(isolate, array, 5).ToHandleChecked(); CHECK_EQ(result_size < 6 ? *undefined_value : *o4, *obj); } static void TestAppendJSArray(Isolate* isolate, ElementsKind kind, Object o1, Object o2, Object o3, Object o4, int initial_size, int result_size) { CodeAssemblerTester asm_tester(isolate, kNumParams); AppendJSArrayCodeStubAssembler m(asm_tester.state(), kind); m.TestAppendJSArrayImpl( isolate, &asm_tester, Handle(o1, isolate), Handle(o2, isolate), Handle(o3, isolate), Handle(o4, isolate), initial_size, result_size); } private: static const int kNumParams = 4; ElementsKind kind_; }; TEST(BuildAppendJSArrayFastElement) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), Smi::FromInt(5), Smi::FromInt(6), 6, 6); } TEST(BuildAppendJSArrayFastElementGrow) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), Smi::FromInt(5), Smi::FromInt(6), 2, 6); } TEST(BuildAppendJSArrayFastSmiElement) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), Smi::FromInt(5), Smi::FromInt(6), 6, 6); } TEST(BuildAppendJSArrayFastSmiElementGrow) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), Smi::FromInt(5), Smi::FromInt(6), 2, 6); } TEST(BuildAppendJSArrayFastSmiElementObject) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4); } TEST(BuildAppendJSArrayFastSmiElementObjectGrow) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_SMI_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 2, 4); } TEST(BuildAppendJSArrayFastDoubleElements) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), Smi::FromInt(5), Smi::FromInt(6), 6, 6); } TEST(BuildAppendJSArrayFastDoubleElementsGrow) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), Smi::FromInt(5), Smi::FromInt(6), 2, 6); } TEST(BuildAppendJSArrayFastDoubleElementsObject) { Isolate* isolate(CcTest::InitIsolateOnce()); AppendJSArrayCodeStubAssembler::TestAppendJSArray( isolate, PACKED_DOUBLE_ELEMENTS, Smi::FromInt(3), Smi::FromInt(4), ReadOnlyRoots(isolate).undefined_value(), Smi::FromInt(6), 6, 4); } namespace { template void Recompile(Args... args) { Stub stub(args...); stub.DeleteStubFromCacheForTesting(); stub.GetCode(); } } // namespace void CustomPromiseHook(v8::PromiseHookType type, v8::Local promise, v8::Local parentPromise) {} TEST(IsPromiseHookEnabled) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); m.Return( m.SelectBooleanConstant( m.IsIsolatePromiseHookEnabledOrHasAsyncEventDelegate())); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result); isolate->SetPromiseHook(CustomPromiseHook); result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result); isolate->SetPromiseHook(nullptr); result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result); } TEST(NewJSPromise) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); PromiseBuiltinsAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 2); const TNode promise = m.NewJSPromise(context); m.Return(promise); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK(result->IsJSPromise()); } TEST(NewJSPromise2) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); PromiseBuiltinsAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 2); const TNode promise = m.NewJSPromise(context, v8::Promise::kRejected, m.SmiConstant(1)); m.Return(promise); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK(result->IsJSPromise()); Handle js_promise = Handle::cast(result); CHECK_EQ(v8::Promise::kRejected, js_promise->status()); CHECK_EQ(Smi::FromInt(1), js_promise->result()); CHECK(!js_promise->has_handler()); } TEST(IsSymbol) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); auto symbol = m.Parameter(1); m.Return(m.SelectBooleanConstant(m.IsSymbol(symbol))); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result); result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result); } TEST(IsPrivateSymbol) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); auto symbol = m.Parameter(1); m.Return(m.SelectBooleanConstant(m.IsPrivateSymbol(symbol))); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call(isolate->factory()->NewSymbol()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result); result = ft.Call(isolate->factory()->empty_string()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result); result = ft.Call(isolate->factory()->NewPrivateSymbol()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).true_value(), *result); } TEST(PromiseHasHandler) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); PromiseBuiltinsAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 2); const TNode promise = m.NewJSPromise(context, m.UndefinedConstant()); m.Return(m.SelectBooleanConstant(m.PromiseHasHandler(promise))); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), *result); } TEST(CreatePromiseResolvingFunctionsContext) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. PromiseBuiltinsAssembler m(asm_tester.state()); const auto context = m.Parameter(kNumParams + 3); const TNode native_context = m.LoadNativeContext(context); const TNode promise = m.NewJSPromise(context, m.UndefinedConstant()); const TNode promise_context = m.CreatePromiseResolvingFunctionsContext( context, promise, m.BooleanConstant(false), native_context); m.Return(promise_context); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call().ToHandleChecked(); CHECK(result->IsContext()); Handle context_js = Handle::cast(result); CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo), context_js->scope_info()); CHECK_EQ(*isolate->native_context(), context_js->native_context()); CHECK(context_js->get(PromiseBuiltins::kPromiseSlot).IsJSPromise()); CHECK_EQ(ReadOnlyRoots(isolate).false_value(), context_js->get(PromiseBuiltins::kDebugEventSlot)); } TEST(CreatePromiseResolvingFunctions) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); PromiseBuiltinsAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 2); const TNode native_context = m.LoadNativeContext(context); const TNode promise = m.NewJSPromise(context, m.UndefinedConstant()); PromiseResolvingFunctions funcs = m.CreatePromiseResolvingFunctions( context, promise, m.BooleanConstant(false), native_context); TNode resolve = funcs.resolve; TNode reject = funcs.reject; TNode const kSize = m.IntPtrConstant(2); TNode const arr = m.Cast(m.AllocateFixedArray(PACKED_ELEMENTS, kSize)); m.StoreFixedArrayElement(arr, 0, resolve); m.StoreFixedArrayElement(arr, 1, reject); m.Return(arr); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result_obj = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK(result_obj->IsFixedArray()); Handle result_arr = Handle::cast(result_obj); CHECK(result_arr->get(0).IsJSFunction()); CHECK(result_arr->get(1).IsJSFunction()); } TEST(NewElementsCapacity) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate, 2); CodeStubAssembler m(asm_tester.state()); m.Return(m.SmiTag( m.CalculateNewElementsCapacity(m.SmiUntag(m.Parameter(1))))); FunctionTester ft(asm_tester.GenerateCode(), 1); Handle test_value = Handle(Smi::FromInt(1), isolate); Handle result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); test_value = Handle(Smi::FromInt(1), isolate); result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); test_value = Handle(Smi::FromInt(2), isolate); result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); test_value = Handle(Smi::FromInt(1025), isolate); result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); } TEST(NewElementsCapacitySmi) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate, 2); CodeStubAssembler m(asm_tester.state()); m.Return(m.CalculateNewElementsCapacity(m.UncheckedParameter(1))); FunctionTester ft(asm_tester.GenerateCode(), 1); Handle test_value = Handle(Smi::FromInt(0), isolate); Handle result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); test_value = Handle(Smi::FromInt(1), isolate); result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); test_value = Handle(Smi::FromInt(2), isolate); result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); test_value = Handle(Smi::FromInt(1025), isolate); result_obj = ft.CallChecked(test_value); CHECK_EQ( result_obj->value(), static_cast(JSObject::NewElementsCapacity(test_value->value()))); } TEST(AllocateFunctionWithMapAndContext) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); PromiseBuiltinsAssembler m(asm_tester.state()); const auto context = m.Parameter(kNumParams + 2); const TNode native_context = m.LoadNativeContext(context); const TNode promise = m.NewJSPromise(context, m.UndefinedConstant()); TNode promise_context = m.CreatePromiseResolvingFunctionsContext( context, promise, m.BooleanConstant(false), native_context); TNode resolve_info = m.PromiseCapabilityDefaultResolveSharedFunConstant(); const TNode map = m.LoadContextElement( native_context, Context::STRICT_FUNCTION_WITHOUT_PROTOTYPE_MAP_INDEX); const TNode resolve = m.AllocateFunctionWithMapAndContext( m.CAST(map), m.CAST(resolve_info), promise_context); m.Return(resolve); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result_obj = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK(result_obj->IsJSFunction()); Handle fun = Handle::cast(result_obj); CHECK_EQ(ReadOnlyRoots(isolate).empty_property_array(), fun->property_array()); CHECK_EQ(ReadOnlyRoots(isolate).empty_fixed_array(), fun->elements()); CHECK_EQ(isolate->heap()->many_closures_cell(), fun->raw_feedback_cell()); CHECK(!fun->has_prototype_slot()); CHECK_EQ(*isolate->factory()->promise_capability_default_resolve_shared_fun(), fun->shared()); CHECK_EQ(isolate->factory() ->promise_capability_default_resolve_shared_fun() ->GetCode(), fun->code()); } TEST(CreatePromiseGetCapabilitiesExecutorContext) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); PromiseBuiltinsAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 2); TNode native_context = m.LoadNativeContext(context); TNode capability = m.CreatePromiseCapability( m.UndefinedConstant(), m.UndefinedConstant(), m.UndefinedConstant()); TNode executor_context = m.CreatePromiseCapabilitiesExecutorContext(native_context, capability); m.Return(executor_context); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result_obj = ft.Call(isolate->factory()->undefined_value()).ToHandleChecked(); CHECK(result_obj->IsContext()); Handle context_js = Handle::cast(result_obj); CHECK_EQ(PromiseBuiltins::kCapabilitiesContextLength, context_js->length()); CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo), context_js->scope_info()); CHECK_EQ(*isolate->native_context(), context_js->native_context()); CHECK( context_js->get(PromiseBuiltins::kCapabilitySlot).IsPromiseCapability()); } TEST(NewPromiseCapability) { Isolate* isolate(CcTest::InitIsolateOnce()); { // Builtin Promise const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. PromiseBuiltinsAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 3); const TNode native_context = m.LoadNativeContext(context); const TNode promise_constructor = m.LoadContextElement(native_context, Context::PROMISE_FUNCTION_INDEX); const TNode debug_event = m.TrueConstant(); const TNode capability = m.CallBuiltin(Builtin::kNewPromiseCapability, context, promise_constructor, debug_event); m.Return(capability); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result_obj = ft.Call().ToHandleChecked(); CHECK(result_obj->IsPromiseCapability()); Handle result = Handle::cast(result_obj); CHECK(result->promise().IsJSPromise()); CHECK(result->resolve().IsJSFunction()); CHECK(result->reject().IsJSFunction()); CHECK_EQ( *isolate->factory()->promise_capability_default_reject_shared_fun(), JSFunction::cast(result->reject()).shared()); CHECK_EQ( *isolate->factory()->promise_capability_default_resolve_shared_fun(), JSFunction::cast(result->resolve()).shared()); Handle callbacks[] = { handle(JSFunction::cast(result->resolve()), isolate), handle(JSFunction::cast(result->reject()), isolate)}; for (auto&& callback : callbacks) { Handle context(Context::cast(callback->context()), isolate); CHECK_EQ(isolate->root(RootIndex::kEmptyScopeInfo), context->scope_info()); CHECK_EQ(*isolate->native_context(), context->native_context()); CHECK_EQ(PromiseBuiltins::kPromiseContextLength, context->length()); CHECK_EQ(context->get(PromiseBuiltins::kPromiseSlot), result->promise()); } } { // Custom Promise const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. PromiseBuiltinsAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 3); auto constructor = m.Parameter(1); const TNode debug_event = m.TrueConstant(); const TNode capability = m.CallBuiltin( Builtin::kNewPromiseCapability, context, constructor, debug_event); m.Return(capability); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle constructor_fn = Handle::cast(v8::Utils::OpenHandle(*CompileRun( "(function FakePromise(executor) {" " var self = this;" " function resolve(value) { self.resolvedValue = value; }" " function reject(reason) { self.rejectedReason = reason; }" " executor(resolve, reject);" "})"))); Handle result_obj = ft.Call(constructor_fn).ToHandleChecked(); CHECK(result_obj->IsPromiseCapability()); Handle result = Handle::cast(result_obj); CHECK(result->promise().IsJSObject()); Handle promise(JSObject::cast(result->promise()), isolate); CHECK_EQ(constructor_fn->prototype_or_initial_map(kAcquireLoad), promise->map()); CHECK(result->resolve().IsJSFunction()); CHECK(result->reject().IsJSFunction()); Handle resolved_str = isolate->factory()->NewStringFromAsciiChecked("resolvedStr"); Handle rejected_str = isolate->factory()->NewStringFromAsciiChecked("rejectedStr"); Handle argv1[] = {resolved_str}; Handle ret = Execution::Call(isolate, handle(result->resolve(), isolate), isolate->factory()->undefined_value(), 1, argv1) .ToHandleChecked(); Handle prop1 = JSReceiver::GetProperty(isolate, promise, "resolvedValue") .ToHandleChecked(); CHECK_EQ(*resolved_str, *prop1); Handle argv2[] = {rejected_str}; ret = Execution::Call(isolate, handle(result->reject(), isolate), isolate->factory()->undefined_value(), 1, argv2) .ToHandleChecked(); Handle prop2 = JSReceiver::GetProperty(isolate, promise, "rejectedReason") .ToHandleChecked(); CHECK_EQ(*rejected_str, *prop2); } } TEST(DirectMemoryTest8BitWord32Immediate) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127}; const int element_count = 8; Label bad(&m); TNode buffer_node = m.PointerConstant(buffer); for (size_t i = 0; i < element_count; ++i) { for (size_t j = 0; j < element_count; ++j) { TNode loaded = m.LoadBufferData(buffer_node, static_cast(i)); TNode masked = m.Word32And(loaded, m.Int32Constant(buffer[j])); if ((buffer[j] & buffer[i]) != 0) { m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad); } else { m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad); } } } m.Return(m.SmiConstant(1)); m.BIND(&bad); m.Return(m.SmiConstant(0)); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); CHECK_EQ(1, ft.CallChecked()->value()); } TEST(DirectMemoryTest16BitWord32Immediate) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); int16_t buffer[] = {156, 2234, 4544, 8444, 1723, 3888, 658, 1278}; const int element_count = 8; Label bad(&m); TNode buffer_node = m.PointerConstant(buffer); for (size_t i = 0; i < element_count; ++i) { for (size_t j = 0; j < element_count; ++j) { TNode loaded = m.LoadBufferData( buffer_node, static_cast(i * sizeof(int16_t))); TNode masked = m.Word32And(loaded, m.Int32Constant(buffer[j])); if ((buffer[j] & buffer[i]) != 0) { m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad); } else { m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad); } } } m.Return(m.SmiConstant(1)); m.BIND(&bad); m.Return(m.SmiConstant(0)); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); CHECK_EQ(1, ft.CallChecked()->value()); } TEST(DirectMemoryTest8BitWord32) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); int8_t buffer[] = {1, 2, 4, 8, 17, 33, 65, 127, 67, 38}; const int element_count = 10; Label bad(&m); TNode constants[element_count]; TNode buffer_node = m.PointerConstant(buffer); for (size_t i = 0; i < element_count; ++i) { constants[i] = m.LoadBufferData(buffer_node, static_cast(i)); } for (size_t i = 0; i < element_count; ++i) { for (size_t j = 0; j < element_count; ++j) { TNode loaded = m.LoadBufferData(buffer_node, static_cast(i)); TNode masked = m.Word32And(loaded, constants[j]); if ((buffer[j] & buffer[i]) != 0) { m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad); } else { m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad); } masked = m.Word32And(constants[i], constants[j]); if ((buffer[j] & buffer[i]) != 0) { m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad); } else { m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad); } } } m.Return(m.SmiConstant(1)); m.BIND(&bad); m.Return(m.SmiConstant(0)); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); CHECK_EQ(1, ft.CallChecked()->value()); } TEST(DirectMemoryTest16BitWord32) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 0; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); int16_t buffer[] = {1, 2, 4, 8, 12345, 33, 65, 255, 67, 3823}; const int element_count = 10; Label bad(&m); TNode constants[element_count]; TNode buffer_node1 = m.PointerConstant(buffer); for (size_t i = 0; i < element_count; ++i) { constants[i] = m.LoadBufferData( buffer_node1, static_cast(i * sizeof(int16_t))); } TNode buffer_node2 = m.PointerConstant(buffer); for (size_t i = 0; i < element_count; ++i) { for (size_t j = 0; j < element_count; ++j) { TNode loaded = m.LoadBufferData( buffer_node1, static_cast(i * sizeof(int16_t))); TNode masked = m.Word32And(loaded, constants[j]); if ((buffer[j] & buffer[i]) != 0) { m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad); } else { m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad); } // Force a memory access relative to a high-number register. loaded = m.LoadBufferData(buffer_node2, static_cast(i * sizeof(int16_t))); masked = m.Word32And(loaded, constants[j]); if ((buffer[j] & buffer[i]) != 0) { m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad); } else { m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad); } masked = m.Word32And(constants[i], constants[j]); if ((buffer[j] & buffer[i]) != 0) { m.GotoIf(m.Word32Equal(masked, m.Int32Constant(0)), &bad); } else { m.GotoIf(m.Word32NotEqual(masked, m.Int32Constant(0)), &bad); } } } m.Return(m.SmiConstant(1)); m.BIND(&bad); m.Return(m.SmiConstant(0)); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); CHECK_EQ(1, ft.CallChecked()->value()); } TEST(LoadJSArrayElementsMap) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 3); TNode native_context = m.LoadNativeContext(context); TNode kind = m.SmiToInt32(m.Parameter(1)); m.Return(m.LoadJSArrayElementsMap(kind, native_context)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); for (int kind = 0; kind <= HOLEY_DOUBLE_ELEMENTS; kind++) { Handle csa_result = ft.CallChecked(handle(Smi::FromInt(kind), isolate)); ElementsKind elements_kind = static_cast(kind); Handle result( isolate->native_context()->GetInitialJSArrayMap(elements_kind), isolate); CHECK_EQ(*csa_result, *result); } } TEST(IsWhiteSpaceOrLineTerminator) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { // Returns true if whitespace, false otherwise. CodeStubAssembler m(asm_tester.state()); Label if_true(&m), if_false(&m); m.Branch(m.IsWhiteSpaceOrLineTerminator( m.UncheckedCast(m.SmiToInt32(m.Parameter(1)))), &if_true, &if_false); m.BIND(&if_true); m.Return(m.TrueConstant()); m.BIND(&if_false); m.Return(m.FalseConstant()); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle true_value = ft.true_value(); Handle false_value = ft.false_value(); for (base::uc16 c = 0; c < 0xFFFF; c++) { Handle expected_value = IsWhiteSpaceOrLineTerminator(c) ? true_value : false_value; ft.CheckCall(expected_value, handle(Smi::FromInt(c), isolate)); } } TEST(BranchIfNumberRelationalComparison) { Isolate* isolate(CcTest::InitIsolateOnce()); Factory* f = isolate->factory(); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); Label return_true(&m), return_false(&m); m.BranchIfNumberRelationalComparison( Operation::kGreaterThanOrEqual, m.Parameter(1), m.Parameter(2), &return_true, &return_false); m.BIND(&return_true); m.Return(m.BooleanConstant(true)); m.BIND(&return_false); m.Return(m.BooleanConstant(false)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); ft.CheckTrue(f->NewNumber(0), f->NewNumber(0)); ft.CheckTrue(f->NewNumber(1), f->NewNumber(0)); ft.CheckTrue(f->NewNumber(1), f->NewNumber(1)); ft.CheckFalse(f->NewNumber(0), f->NewNumber(1)); ft.CheckFalse(f->NewNumber(-1), f->NewNumber(0)); ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1)); ft.CheckTrue(f->NewNumber(-1), f->NewNumber(-1.5)); ft.CheckFalse(f->NewNumber(-1.5), f->NewNumber(-1)); ft.CheckTrue(f->NewNumber(-1.5), f->NewNumber(-1.5)); } TEST(IsNumberArrayIndex) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); auto number = m.Parameter(1); m.Return( m.SmiFromInt32(m.UncheckedCast(m.IsNumberArrayIndex(number)))); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); double indices[] = {Smi::kMinValue, -11, -1, 0, 1, 2, Smi::kMaxValue, -11.0, -11.1, -2.0, -1.0, -0.0, 0.0, 0.00001, 0.1, 1, 2, Smi::kMinValue - 1.0, Smi::kMinValue + 1.0, Smi::kMinValue + 1.2, kMaxInt + 1.2, kMaxInt - 10.0, kMaxInt - 1.0, kMaxInt, kMaxInt + 1.0, kMaxInt + 10.0}; for (size_t i = 0; i < arraysize(indices); i++) { Handle index = isolate->factory()->NewNumber(indices[i]); uint32_t array_index; CHECK_EQ(index->ToArrayIndex(&array_index), (ft.CallChecked(index)->value() == 1)); } } TEST(NumberMinMax) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester_min(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester_min.state()); m.Return(m.NumberMin(m.Parameter(1), m.Parameter(2))); } FunctionTester ft_min(asm_tester_min.GenerateCode(), kNumParams); CodeAssemblerTester asm_tester_max(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester_max.state()); m.Return(m.NumberMax(m.Parameter(1), m.Parameter(2))); } FunctionTester ft_max(asm_tester_max.GenerateCode(), kNumParams); // Test smi values. Handle smi_1(Smi::FromInt(1), isolate); Handle smi_2(Smi::FromInt(2), isolate); Handle smi_5(Smi::FromInt(5), isolate); CHECK_EQ(ft_min.CallChecked(smi_1, smi_2)->value(), 1); CHECK_EQ(ft_min.CallChecked(smi_2, smi_1)->value(), 1); CHECK_EQ(ft_max.CallChecked(smi_1, smi_2)->value(), 2); CHECK_EQ(ft_max.CallChecked(smi_2, smi_1)->value(), 2); // Test double values. Handle double_a = isolate->factory()->NewNumber(2.5); Handle double_b = isolate->factory()->NewNumber(3.5); Handle nan = isolate->factory()->NewNumber(std::numeric_limits::quiet_NaN()); Handle infinity = isolate->factory()->NewNumber(V8_INFINITY); CHECK_EQ(ft_min.CallChecked(double_a, double_b)->value(), 2.5); CHECK_EQ(ft_min.CallChecked(double_b, double_a)->value(), 2.5); CHECK_EQ(ft_min.CallChecked(infinity, double_a)->value(), 2.5); CHECK_EQ(ft_min.CallChecked(double_a, infinity)->value(), 2.5); CHECK(std::isnan(ft_min.CallChecked(nan, double_a)->value())); CHECK(std::isnan(ft_min.CallChecked(double_a, nan)->value())); CHECK_EQ(ft_max.CallChecked(double_a, double_b)->value(), 3.5); CHECK_EQ(ft_max.CallChecked(double_b, double_a)->value(), 3.5); CHECK_EQ(ft_max.CallChecked(infinity, double_a)->value(), V8_INFINITY); CHECK_EQ(ft_max.CallChecked(double_a, infinity)->value(), V8_INFINITY); CHECK(std::isnan(ft_max.CallChecked(nan, double_a)->value())); CHECK(std::isnan(ft_max.CallChecked(double_a, nan)->value())); // Mixed smi/double values. CHECK_EQ(ft_max.CallChecked(smi_1, double_b)->value(), 3.5); CHECK_EQ(ft_max.CallChecked(double_b, smi_1)->value(), 3.5); CHECK_EQ(ft_min.CallChecked(smi_5, double_b)->value(), 3.5); CHECK_EQ(ft_min.CallChecked(double_b, smi_5)->value(), 3.5); } TEST(NumberAddSub) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester_add(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester_add.state()); m.Return(m.NumberAdd(m.Parameter(1), m.Parameter(2))); } FunctionTester ft_add(asm_tester_add.GenerateCode(), kNumParams); CodeAssemblerTester asm_tester_sub(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester_sub.state()); m.Return(m.NumberSub(m.Parameter(1), m.Parameter(2))); } FunctionTester ft_sub(asm_tester_sub.GenerateCode(), kNumParams); // Test smi values. Handle smi_1(Smi::FromInt(1), isolate); Handle smi_2(Smi::FromInt(2), isolate); CHECK_EQ(ft_add.CallChecked(smi_1, smi_2)->value(), 3); CHECK_EQ(ft_sub.CallChecked(smi_2, smi_1)->value(), 1); // Test double values. Handle double_a = isolate->factory()->NewNumber(2.5); Handle double_b = isolate->factory()->NewNumber(3.0); CHECK_EQ(ft_add.CallChecked(double_a, double_b)->value(), 5.5); CHECK_EQ(ft_sub.CallChecked(double_a, double_b)->value(), -.5); // Test overflow. Handle smi_max(Smi::FromInt(Smi::kMaxValue), isolate); Handle smi_min(Smi::FromInt(Smi::kMinValue), isolate); CHECK_EQ(ft_add.CallChecked(smi_max, smi_1)->value(), static_cast(Smi::kMaxValue) + 1); CHECK_EQ(ft_sub.CallChecked(smi_min, smi_1)->value(), static_cast(Smi::kMinValue) - 1); // Test mixed smi/double values. CHECK_EQ(ft_add.CallChecked(smi_1, double_a)->value(), 3.5); CHECK_EQ(ft_add.CallChecked(double_a, smi_1)->value(), 3.5); CHECK_EQ(ft_sub.CallChecked(smi_1, double_a)->value(), -1.5); CHECK_EQ(ft_sub.CallChecked(double_a, smi_1)->value(), 1.5); } TEST(CloneEmptyFixedArray) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); m.Return(m.CloneFixedArray(m.Parameter(1))); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->empty_fixed_array()); Handle result_raw = ft.Call(source).ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(0, result.length()); CHECK_EQ(*(isolate->factory()->empty_fixed_array()), result); } TEST(CloneFixedArray) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); m.Return(m.CloneFixedArray(m.Parameter(1))); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); Handle result_raw = ft.Call(source).ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(5, result.length()); CHECK(result.get(0).IsTheHole(isolate)); CHECK_EQ(Smi::cast(result.get(1)).value(), 1234); CHECK(result.get(2).IsTheHole(isolate)); CHECK(result.get(3).IsTheHole(isolate)); CHECK(result.get(4).IsTheHole(isolate)); } TEST(CloneFixedArrayCOW) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); m.Return(m.CloneFixedArray(m.Parameter(1))); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map()); Handle result_raw = ft.Call(source).ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(*source, result); } TEST(ExtractFixedArrayCOWForceCopy) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); CodeStubAssembler::ExtractFixedArrayFlags flags; flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays; base::Optional> constant(m.SmiConstant(0)); m.Return(m.ExtractFixedArray(m.Parameter(1), constant, base::Optional>(base::nullopt), base::Optional>(base::nullopt), flags)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); source->set_map(ReadOnlyRoots(isolate).fixed_cow_array_map()); Handle result_raw = ft.Call(source).ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_NE(*source, result); CHECK_EQ(5, result.length()); CHECK(result.get(0).IsTheHole(isolate)); CHECK_EQ(Smi::cast(result.get(1)).value(), 1234); CHECK(result.get(2).IsTheHole(isolate)); CHECK(result.get(3).IsTheHole(isolate)); CHECK(result.get(4).IsTheHole(isolate)); } TEST(ExtractFixedArraySimple) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 3; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); CodeStubAssembler::ExtractFixedArrayFlags flags; flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays; flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW; base::Optional> p1_untagged(m.SmiUntag(m.Parameter(2))); base::Optional> p2_untagged(m.SmiUntag(m.Parameter(3))); m.Return(m.ExtractFixedArray( m.Parameter(1), p1_untagged, p2_untagged, base::Optional>(base::nullopt), flags)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); Handle result_raw = ft.Call(source, Handle(Smi::FromInt(1), isolate), Handle(Smi::FromInt(2), isolate)) .ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(2, result.length()); CHECK_EQ(Smi::cast(result.get(0)).value(), 1234); CHECK(result.get(1).IsTheHole(isolate)); } TEST(ExtractFixedArraySimpleSmiConstant) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); CodeStubAssembler::ExtractFixedArrayFlags flags; flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays; flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW; base::Optional> constant_1(m.SmiConstant(1)); base::Optional> constant_2(m.SmiConstant(2)); m.Return(m.ExtractFixedArray( m.Parameter(1), constant_1, constant_2, base::Optional>(base::nullopt), flags)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); Handle result_raw = ft.Call(source).ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(2, result.length()); CHECK_EQ(Smi::cast(result.get(0)).value(), 1234); CHECK(result.get(1).IsTheHole(isolate)); } TEST(ExtractFixedArraySimpleIntPtrConstant) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); CodeStubAssembler::ExtractFixedArrayFlags flags; flags |= CodeStubAssembler::ExtractFixedArrayFlag::kAllFixedArrays; flags |= CodeStubAssembler::ExtractFixedArrayFlag::kDontCopyCOW; base::Optional> constant_1(m.IntPtrConstant(1)); base::Optional> constant_2(m.IntPtrConstant(2)); m.Return(m.ExtractFixedArray( m.Parameter(1), constant_1, constant_2, base::Optional>(base::nullopt), flags)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); Handle result_raw = ft.Call(source).ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(2, result.length()); CHECK_EQ(Smi::cast(result.get(0)).value(), 1234); CHECK(result.get(1).IsTheHole(isolate)); } TEST(ExtractFixedArraySimpleIntPtrConstantNoDoubles) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); base::Optional> constant_1(m.IntPtrConstant(1)); base::Optional> constant_2(m.IntPtrConstant(2)); m.Return(m.ExtractFixedArray( m.Parameter(1), constant_1, constant_2, base::Optional>(base::nullopt), CodeStubAssembler::ExtractFixedArrayFlag::kFixedArrays)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); Handle result_raw = ft.Call(source).ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(2, result.length()); CHECK_EQ(Smi::cast(result.get(0)).value(), 1234); CHECK(result.get(1).IsTheHole(isolate)); } TEST(ExtractFixedArraySimpleIntPtrParameters) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 3; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); base::Optional> p1_untagged(m.SmiUntag(m.Parameter(2))); base::Optional> p2_untagged(m.SmiUntag(m.Parameter(3))); m.Return(m.ExtractFixedArray(m.Parameter(1), p1_untagged, p2_untagged)); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle source(isolate->factory()->NewFixedArrayWithHoles(5)); source->set(1, Smi::FromInt(1234)); Handle result_raw = ft.Call(source, Handle(Smi::FromInt(1), isolate), Handle(Smi::FromInt(2), isolate)) .ToHandleChecked(); FixedArray result(FixedArray::cast(*result_raw)); CHECK_EQ(2, result.length()); CHECK_EQ(Smi::cast(result.get(0)).value(), 1234); CHECK(result.get(1).IsTheHole(isolate)); Handle source_double = Handle::cast( isolate->factory()->NewFixedDoubleArray(5)); source_double->set(0, 10); source_double->set(1, 11); source_double->set(2, 12); source_double->set(3, 13); source_double->set(4, 14); Handle double_result_raw = ft.Call(source_double, Handle(Smi::FromInt(1), isolate), Handle(Smi::FromInt(2), isolate)) .ToHandleChecked(); FixedDoubleArray double_result = FixedDoubleArray::cast(*double_result_raw); CHECK_EQ(2, double_result.length()); CHECK_EQ(double_result.get_scalar(0), 11); CHECK_EQ(double_result.get_scalar(1), 12); } TEST(SingleInputPhiElimination) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams); { CodeStubAssembler m(asm_tester.state()); TVariable temp1(&m); TVariable temp2(&m); Label temp_label(&m, {&temp1, &temp2}); Label end_label(&m, {&temp1, &temp2}); temp1 = m.Parameter(1); temp2 = m.Parameter(1); m.Branch(m.TaggedEqual(m.UncheckedParameter(0), m.UncheckedParameter(1)), &end_label, &temp_label); m.BIND(&temp_label); temp1 = m.Parameter(2); temp2 = m.Parameter(2); m.Goto(&end_label); m.BIND(&end_label); m.Return(m.UncheckedCast(temp1.value())); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); // Generating code without an assert is enough to make sure that the // single-input phi is properly eliminated. } TEST(SmallOrderedHashMapAllocate) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); auto capacity = m.Parameter(1); m.Return(m.AllocateSmallOrderedHashMap(m.SmiToIntPtr(capacity))); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Factory* factory = isolate->factory(); int capacity = SmallOrderedHashMap::kMinCapacity; while (capacity <= SmallOrderedHashMap::kMaxCapacity) { Handle expected = factory->NewSmallOrderedHashMap(capacity); Handle result_raw = ft.Call(Handle(Smi::FromInt(capacity), isolate)).ToHandleChecked(); Handle actual = Handle( SmallOrderedHashMap::cast(*result_raw), isolate); CHECK_EQ(capacity, actual->Capacity()); CHECK_EQ(0, actual->NumberOfElements()); CHECK_EQ(0, actual->NumberOfDeletedElements()); CHECK_EQ(capacity / SmallOrderedHashMap::kLoadFactor, actual->NumberOfBuckets()); CHECK_EQ(0, memcmp(reinterpret_cast(expected->address()), reinterpret_cast(actual->address()), SmallOrderedHashMap::SizeFor(capacity))); #ifdef VERIFY_HEAP actual->SmallOrderedHashMapVerify(isolate); #endif capacity = capacity << 1; } #ifdef VERIFY_HEAP isolate->heap()->Verify(); #endif } TEST(SmallOrderedHashSetAllocate) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(asm_tester.state()); auto capacity = m.Parameter(1); m.Return(m.AllocateSmallOrderedHashSet(m.SmiToIntPtr(capacity))); } FunctionTester ft(asm_tester.GenerateCode(), kNumParams); int capacity = SmallOrderedHashSet::kMinCapacity; Factory* factory = isolate->factory(); while (capacity <= SmallOrderedHashSet::kMaxCapacity) { Handle expected = factory->NewSmallOrderedHashSet(capacity); Handle result_raw = ft.Call(Handle(Smi::FromInt(capacity), isolate)).ToHandleChecked(); Handle actual = Handle( SmallOrderedHashSet::cast(*result_raw), isolate); CHECK_EQ(capacity, actual->Capacity()); CHECK_EQ(0, actual->NumberOfElements()); CHECK_EQ(0, actual->NumberOfDeletedElements()); CHECK_EQ(capacity / SmallOrderedHashSet::kLoadFactor, actual->NumberOfBuckets()); CHECK_EQ(0, memcmp(reinterpret_cast(expected->address()), reinterpret_cast(actual->address()), SmallOrderedHashSet::SizeFor(capacity))); #ifdef VERIFY_HEAP actual->SmallOrderedHashSetVerify(isolate); #endif capacity = capacity << 1; } #ifdef VERIFY_HEAP isolate->heap()->Verify(); #endif } TEST(IsDoubleElementsKind) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester ft_tester(isolate, kNumParams + 1); // Include receiver. { CodeStubAssembler m(ft_tester.state()); m.Return(m.SmiFromInt32(m.UncheckedCast( m.IsDoubleElementsKind(m.SmiToInt32(m.Parameter(1)))))); } FunctionTester ft(ft_tester.GenerateCode(), kNumParams); CHECK_EQ( (*Handle::cast( ft.Call(Handle(Smi::FromInt(PACKED_DOUBLE_ELEMENTS), isolate)) .ToHandleChecked())) .value(), 1); CHECK_EQ( (*Handle::cast( ft.Call(Handle(Smi::FromInt(HOLEY_DOUBLE_ELEMENTS), isolate)) .ToHandleChecked())) .value(), 1); CHECK_EQ((*Handle::cast( ft.Call(Handle(Smi::FromInt(HOLEY_ELEMENTS), isolate)) .ToHandleChecked())) .value(), 0); CHECK_EQ((*Handle::cast( ft.Call(Handle(Smi::FromInt(PACKED_ELEMENTS), isolate)) .ToHandleChecked())) .value(), 0); CHECK_EQ((*Handle::cast( ft.Call(Handle(Smi::FromInt(PACKED_SMI_ELEMENTS), isolate)) .ToHandleChecked())) .value(), 0); CHECK_EQ((*Handle::cast( ft.Call(Handle(Smi::FromInt(HOLEY_SMI_ELEMENTS), isolate)) .ToHandleChecked())) .value(), 0); CHECK_EQ((*Handle::cast( ft.Call(Handle(Smi::FromInt(DICTIONARY_ELEMENTS), isolate)) .ToHandleChecked())) .value(), 0); } TEST(TestCallBuiltinInlineTrampoline) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); const int kContextOffset = 3; auto str = m.Parameter(1); auto context = m.Parameter(kNumParams + kContextOffset); TNode index = m.SmiConstant(2); m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtin::kStringRepeat), context, str, index)); AssemblerOptions options = AssemblerOptions::Default(isolate); options.inline_offheap_trampolines = true; options.use_pc_relative_calls_and_jumps = false; options.isolate_independent_code = false; FunctionTester ft(asm_tester.GenerateCode(options), kNumParams); MaybeHandle result = ft.Call(CcTest::MakeString("abcdef")); CHECK(String::Equals(isolate, CcTest::MakeString("abcdefabcdef"), Handle::cast(result.ToHandleChecked()))); } // TODO(v8:9821): Remove the option to disable inlining off-heap trampolines // along with this test. DISABLED_TEST(TestCallBuiltinIndirectLoad) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); const int kContextOffset = 2; auto str = m.Parameter(0); auto context = m.Parameter(kNumParams + kContextOffset); TNode index = m.SmiConstant(2); m.Return(m.CallStub(Builtins::CallableFor(isolate, Builtin::kStringRepeat), context, str, index)); AssemblerOptions options = AssemblerOptions::Default(isolate); options.inline_offheap_trampolines = false; options.use_pc_relative_calls_and_jumps = false; options.isolate_independent_code = true; FunctionTester ft(asm_tester.GenerateCode(options), kNumParams); MaybeHandle result = ft.Call(CcTest::MakeString("abcdef")); CHECK(String::Equals(isolate, CcTest::MakeString("abcdefabcdef"), Handle::cast(result.ToHandleChecked()))); } TEST(InstructionSchedulingCallerSavedRegisters) { // This is a regression test for v8:9775, where TF's instruction scheduler // incorrectly moved pure operations in between a ArchSaveCallerRegisters and // a ArchRestoreCallerRegisters instruction. bool old_turbo_instruction_scheduling = FLAG_turbo_instruction_scheduling; FLAG_turbo_instruction_scheduling = true; Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); { TNode x = m.SmiUntag(m.Parameter(1)); TNode y = m.WordOr(m.WordShr(x, 1), m.IntPtrConstant(1)); TNode isolate_ptr = m.ExternalConstant(ExternalReference::isolate_address(isolate)); m.CallCFunctionWithCallerSavedRegisters( m.ExternalConstant( ExternalReference::smi_lexicographic_compare_function()), MachineType::Int32(), SaveFPRegsMode::kSave, std::make_pair(MachineType::Pointer(), isolate_ptr), std::make_pair(MachineType::TaggedSigned(), m.SmiConstant(0)), std::make_pair(MachineType::TaggedSigned(), m.SmiConstant(0))); m.Return(m.SmiTag(m.Signed(m.WordOr(x, y)))); } AssemblerOptions options = AssemblerOptions::Default(isolate); FunctionTester ft(asm_tester.GenerateCode(options), kNumParams); Handle input = isolate->factory()->NewNumber(8); MaybeHandle result = ft.Call(input); CHECK(result.ToHandleChecked()->IsSmi()); CHECK_EQ(result.ToHandleChecked()->Number(), 13); FLAG_turbo_instruction_scheduling = old_turbo_instruction_scheduling; } #if V8_ENABLE_WEBASSEMBLY TEST(WasmInt32ToHeapNumber) { Isolate* isolate(CcTest::InitIsolateOnce()); int32_t test_values[] = { // Smi values. 1, 0, -1, kSmiMaxValue, kSmiMinValue, // Test integers that can't be Smis (only possible if Smis are 31 bits). #if defined(V8_HOST_ARCH_32_BIT) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH) kSmiMaxValue + 1, kSmiMinValue - 1, #endif }; // FunctionTester can't handle Wasm type arguments, so for each test value, // build a function with the arguments baked in, then generate a no-argument // function to call. const int kNumParams = 1; for (size_t i = 0; i < arraysize(test_values); ++i) { int32_t test_value = test_values[i]; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); const TNode arg = m.Int32Constant(test_value); const TNode call_result = m.CallBuiltin( Builtin::kWasmInt32ToHeapNumber, m.NoContextConstant(), arg); m.Return(call_result); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call().ToHandleChecked(); CHECK(result->IsNumber()); Handle expected(isolate->factory()->NewNumber(test_value)); CHECK(result->StrictEquals(*expected)); } } int32_t NumberToInt32(Handle number) { if (number->IsSmi()) { return Smi::ToInt(*number); } if (number->IsHeapNumber()) { double num = HeapNumber::cast(*number).value(); return DoubleToInt32(num); } UNREACHABLE(); } TEST(WasmTaggedNonSmiToInt32) { Isolate* isolate(CcTest::InitIsolateOnce()); Factory* factory = isolate->factory(); HandleScope scope(isolate); Handle test_values[] = { // No Smis here; the builtin can't handle them correctly. factory->NewNumber(-0.0), factory->NewNumber(1.5), factory->NewNumber(-1.5), factory->NewNumber(2 * static_cast(kSmiMaxValue)), factory->NewNumber(2 * static_cast(kSmiMinValue)), factory->NewNumber(std::numeric_limits::infinity()), factory->NewNumber(-std::numeric_limits::infinity()), factory->NewNumber(-std::numeric_limits::quiet_NaN()), }; const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 3); const auto arg = m.Parameter(1); int32_t result = 0; Node* base = m.IntPtrConstant(reinterpret_cast(&result)); Node* value = m.CallBuiltin(Builtin::kWasmTaggedNonSmiToInt32, context, arg); m.StoreNoWriteBarrier(MachineRepresentation::kWord32, base, value); m.Return(m.UndefinedConstant()); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); for (size_t i = 0; i < arraysize(test_values); ++i) { Handle test_value = test_values[i]; ft.Call(test_value); int32_t expected = NumberToInt32(test_value); CHECK_EQ(result, expected); } } TEST(WasmFloat32ToNumber) { Isolate* isolate(CcTest::InitIsolateOnce()); float test_values[] = { // Smi values. 1, 0, -1, // Max and min Smis can't be represented as floats. // Non-Smi values. -0.0, 1.5, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity(), }; // FunctionTester can't handle Wasm type arguments, so for each test value, // build a function with the arguments baked in, then generate a no-argument // function to call. const int kNumParams = 1; for (size_t i = 0; i < arraysize(test_values); ++i) { double test_value = test_values[i]; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); const TNode arg = m.Float32Constant(test_value); const TNode call_result = m.CallBuiltin( Builtin::kWasmFloat32ToNumber, m.NoContextConstant(), arg); m.Return(call_result); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call().ToHandleChecked(); CHECK(result->IsNumber()); Handle expected(isolate->factory()->NewNumber(test_value)); CHECK(result->StrictEquals(*expected) || (std::isnan(test_value) && std::isnan(result->Number()))); CHECK_EQ(result->IsSmi(), expected->IsSmi()); } } TEST(WasmFloat64ToNumber) { Isolate* isolate(CcTest::InitIsolateOnce()); double test_values[] = { // Smi values. 1, 0, -1, kSmiMaxValue, kSmiMinValue, // Non-Smi values. -0.0, 1.5, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity(), }; // FunctionTester can't handle Wasm type arguments, so for each test value, // build a function with the arguments baked in, then generate a no-argument // function to call. const int kNumParams = 1; for (size_t i = 0; i < arraysize(test_values); ++i) { double test_value = test_values[i]; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); const TNode arg = m.Float64Constant(test_value); const TNode call_result = m.CallBuiltin( Builtin::kWasmFloat64ToNumber, m.NoContextConstant(), arg); m.Return(call_result); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); Handle result = ft.Call().ToHandleChecked(); CHECK(result->IsNumber()); Handle expected(isolate->factory()->NewNumber(test_value)); CHECK(result->StrictEquals(*expected) || (std::isnan(test_value) && std::isnan(result->Number()))); CHECK_EQ(result->IsSmi(), expected->IsSmi()); } } double NumberToFloat64(Handle number) { if (number->IsSmi()) { return Smi::ToInt(*number); } if (number->IsHeapNumber()) { return HeapNumber::cast(*number).value(); } UNREACHABLE(); } TEST(WasmTaggedToFloat64) { Isolate* isolate(CcTest::InitIsolateOnce()); Factory* factory = isolate->factory(); HandleScope scope(isolate); Handle test_values[] = { // Smi values. handle(Smi::FromInt(1), isolate), handle(Smi::FromInt(0), isolate), handle(Smi::FromInt(-1), isolate), handle(Smi::FromInt(kSmiMaxValue), isolate), handle(Smi::FromInt(kSmiMinValue), isolate), // Test some non-Smis. factory->NewNumber(-0.0), factory->NewNumber(1.5), factory->NewNumber(-1.5), // Integer Overflows on platforms with 32 bit Smis. #if defined(V8_HOST_ARCH_32_BIT) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH) factory->NewNumber(2 * kSmiMaxValue), factory->NewNumber(2 * kSmiMinValue), #endif factory->NewNumber(std::numeric_limits::infinity()), factory->NewNumber(-std::numeric_limits::infinity()), factory->NewNumber(-std::numeric_limits::quiet_NaN()), }; const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams + 1); // Include receiver. CodeStubAssembler m(asm_tester.state()); auto context = m.Parameter(kNumParams + 3); const auto arg = m.Parameter(1); double result = 0; Node* base = m.IntPtrConstant(reinterpret_cast(&result)); Node* value = m.CallBuiltin(Builtin::kWasmTaggedToFloat64, context, arg); m.StoreNoWriteBarrier(MachineRepresentation::kFloat64, base, value); m.Return(m.UndefinedConstant()); FunctionTester ft(asm_tester.GenerateCode(), kNumParams); for (size_t i = 0; i < arraysize(test_values); ++i) { Handle test_value = test_values[i]; ft.Call(test_value); double expected = NumberToFloat64(test_value); if (std::isnan(expected)) { CHECK(std::isnan(result)); } else { CHECK_EQ(result, expected); } } } #endif // V8_ENABLE_WEBASSEMBLY TEST(SmiUntagLeftShiftOptimization) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 1; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); { TNode param = m.UncheckedParameter(0); TNode unoptimized = m.IntPtrMul(m.TaggedIndexToIntPtr(param), m.IntPtrConstant(8)); TNode optimized = m.WordShl( m.BitcastTaggedToWordForTagAndSmiBits(param), 3 - kSmiTagSize); m.StaticAssert(m.WordEqual(unoptimized, optimized)); m.Return(m.UndefinedConstant()); } AssemblerOptions options = AssemblerOptions::Default(isolate); FunctionTester ft(asm_tester.GenerateCode(options), kNumParams); } TEST(SmiUntagComparisonOptimization) { Isolate* isolate(CcTest::InitIsolateOnce()); const int kNumParams = 2; CodeAssemblerTester asm_tester(isolate, kNumParams); CodeStubAssembler m(asm_tester.state()); { TNode a = m.UncheckedParameter(0); TNode b = m.UncheckedParameter(1); TNode unoptimized = m.UintPtrLessThan(m.SmiUntag(a), m.SmiUntag(b)); #ifdef V8_COMPRESS_POINTERS TNode optimized = m.Uint32LessThan( m.TruncateIntPtrToInt32(m.BitcastTaggedToWordForTagAndSmiBits(a)), m.TruncateIntPtrToInt32(m.BitcastTaggedToWordForTagAndSmiBits(b))); #else TNode optimized = m.UintPtrLessThan(m.BitcastTaggedToWordForTagAndSmiBits(a), m.BitcastTaggedToWordForTagAndSmiBits(b)); #endif m.StaticAssert(m.Word32Equal(unoptimized, optimized)); m.Return(m.UndefinedConstant()); } AssemblerOptions options = AssemblerOptions::Default(isolate); FunctionTester ft(asm_tester.GenerateCode(options), kNumParams); } TEST(PopCount) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate); CodeStubAssembler m(asm_tester.state()); const std::vector> test_cases = { {0, 0}, {1, 1}, {(1 << 31), 1}, {0b01010101010101010101010101010101, 16}, {0b10101010101010101010101010101010, 16}, {0b11100011100000011100011111000111, 17} // arbitrarily chosen }; for (std::pair test_case : test_cases) { uint32_t value32 = test_case.first; uint64_t value64 = (static_cast(value32) << 32) | value32; int expected_pop32 = test_case.second; int expected_pop64 = 2 * expected_pop32; TNode pop32 = m.PopulationCount32(m.Uint32Constant(value32)); CSA_CHECK(&m, m.Word32Equal(pop32, m.Int32Constant(expected_pop32))); if (m.Is64()) { // TODO(emrich): enable once 64-bit operations are supported on 32-bit // architectures. TNode pop64 = m.PopulationCount64(m.Uint64Constant(value64)); CSA_CHECK(&m, m.Word64Equal(pop64, m.Int64Constant(expected_pop64))); } } m.Return(m.UndefinedConstant()); FunctionTester ft(asm_tester.GenerateCode()); ft.Call(); } TEST(CountTrailingZeros) { Isolate* isolate(CcTest::InitIsolateOnce()); CodeAssemblerTester asm_tester(isolate); CodeStubAssembler m(asm_tester.state()); const std::vector> test_cases = { {1, 0}, {2, 1}, {(0b0101010'0000'0000), 9}, {(1 << 31), 31}, {std::numeric_limits::max(), 0}, }; for (std::pair test_case : test_cases) { uint32_t value32 = test_case.first; uint64_t value64 = static_cast(value32) << 32; int expected_ctz32 = test_case.second; int expected_ctz64 = expected_ctz32 + 32; TNode pop32 = m.CountTrailingZeros32(m.Uint32Constant(value32)); CSA_CHECK(&m, m.Word32Equal(pop32, m.Int32Constant(expected_ctz32))); if (m.Is64()) { // TODO(emrich): enable once 64-bit operations are supported on 32-bit // architectures. TNode pop64_ext = m.CountTrailingZeros64(m.Uint64Constant(value32)); TNode pop64 = m.CountTrailingZeros64(m.Uint64Constant(value64)); CSA_CHECK(&m, m.Word64Equal(pop64_ext, m.Int64Constant(expected_ctz32))); CSA_CHECK(&m, m.Word64Equal(pop64, m.Int64Constant(expected_ctz64))); } } m.Return(m.UndefinedConstant()); FunctionTester ft(asm_tester.GenerateCode()); ft.Call(); } } // namespace compiler } // namespace internal } // namespace v8