// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "ic-inl.h" #include "parser.h" #include "regexp-macro-assembler.h" #include "register-allocator-inl.h" #include "scopes.h" #include "virtual-frame-inl.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // ------------------------------------------------------------------------- // Platform-specific DeferredCode functions. void DeferredCode::SaveRegisters() { for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { int action = registers_[i]; if (action == kPush) { __ push(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore && (action & kSyncedFlag) == 0) { __ movq(Operand(rbp, action), RegisterAllocator::ToRegister(i)); } } } void DeferredCode::RestoreRegisters() { // Restore registers in reverse order due to the stack. for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { int action = registers_[i]; if (action == kPush) { __ pop(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore) { action &= ~kSyncedFlag; __ movq(RegisterAllocator::ToRegister(i), Operand(rbp, action)); } } } // ------------------------------------------------------------------------- // CodeGenState implementation. CodeGenState::CodeGenState(CodeGenerator* owner) : owner_(owner), destination_(NULL), previous_(NULL) { owner_->set_state(this); } CodeGenState::CodeGenState(CodeGenerator* owner, ControlDestination* destination) : owner_(owner), destination_(destination), previous_(owner->state()) { owner_->set_state(this); } CodeGenState::~CodeGenState() { ASSERT(owner_->state() == this); owner_->set_state(previous_); } // ------------------------------------------------------------------------- // Deferred code objects // // These subclasses of DeferredCode add pieces of code to the end of generated // code. They are branched to from the generated code, and // keep some slower code out of the main body of the generated code. // Many of them call a code stub or a runtime function. class DeferredInlineSmiAdd: public DeferredCode { public: DeferredInlineSmiAdd(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAdd"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; // The result of value + src is in dst. It either overflowed or was not // smi tagged. Undo the speculative addition and call the appropriate // specialized stub for add. The result is left in dst. class DeferredInlineSmiAddReversed: public DeferredCode { public: DeferredInlineSmiAddReversed(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAddReversed"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; class DeferredInlineSmiSub: public DeferredCode { public: DeferredInlineSmiSub(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiSub"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; // Call the appropriate binary operation stub to compute src op value // and leave the result in dst. class DeferredInlineSmiOperation: public DeferredCode { public: DeferredInlineSmiOperation(Token::Value op, Register dst, Register src, Smi* value, OverwriteMode overwrite_mode) : op_(op), dst_(dst), src_(src), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register src_; Smi* value_; OverwriteMode overwrite_mode_; }; class FloatingPointHelper : public AllStatic { public: // Code pattern for loading a floating point value. Input value must // be either a smi or a heap number object (fp value). Requirements: // operand on TOS+1. Returns operand as floating point number on FPU // stack. static void LoadFloatOperand(MacroAssembler* masm, Register scratch); // Code pattern for loading a floating point value. Input value must // be either a smi or a heap number object (fp value). Requirements: // operand in src register. Returns operand as floating point number // in XMM register static void LoadFloatOperand(MacroAssembler* masm, Register src, XMMRegister dst); // Code pattern for loading floating point values. Input values must // be either smi or heap number objects (fp values). Requirements: // operand_1 in rdx, operand_2 in rax; Returns operands as // floating point numbers in XMM registers. static void LoadFloatOperands(MacroAssembler* masm, XMMRegister dst1, XMMRegister dst2); // Similar to LoadFloatOperands, assumes that the operands are smis. static void LoadFloatOperandsFromSmis(MacroAssembler* masm, XMMRegister dst1, XMMRegister dst2); // Code pattern for loading floating point values onto the fp stack. // Input values must be either smi or heap number objects (fp values). // Requirements: // Register version: operands in registers lhs and rhs. // Stack version: operands on TOS+1 and TOS+2. // Returns operands as floating point numbers on fp stack. static void LoadFloatOperands(MacroAssembler* masm, Register lhs, Register rhs); // Test if operands are smi or number objects (fp). Requirements: // operand_1 in rax, operand_2 in rdx; falls through on float or smi // operands, jumps to the non_float label otherwise. static void CheckNumberOperands(MacroAssembler* masm, Label* non_float); // Takes the operands in rdx and rax and loads them as integers in rax // and rcx. static void LoadAsIntegers(MacroAssembler* masm, bool use_sse3, Label* operand_conversion_failure); }; // ----------------------------------------------------------------------------- // CodeGenerator implementation. CodeGenerator::CodeGenerator(MacroAssembler* masm) : deferred_(8), masm_(masm), info_(NULL), frame_(NULL), allocator_(NULL), state_(NULL), loop_nesting_(0), function_return_is_shadowed_(false), in_spilled_code_(false) { } void CodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. The inevitable call // will sync frame elements to memory anyway, so we do it eagerly to // allow us to push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT); frame_->EmitPush(rsi); // The context is the first argument. frame_->EmitPush(kScratchRegister); frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0)); Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void CodeGenerator::Generate(CompilationInfo* info) { // Record the position for debugging purposes. CodeForFunctionPosition(info->function()); Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); // Initialize state. info_ = info; ASSERT(allocator_ == NULL); RegisterAllocator register_allocator(this); allocator_ = ®ister_allocator; ASSERT(frame_ == NULL); frame_ = new VirtualFrame(); set_in_spilled_code(false); // Adjust for function-level loop nesting. loop_nesting_ += info->loop_nesting(); JumpTarget::set_compiling_deferred_code(false); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { frame_->SpillAll(); __ int3(); } #endif // New scope to get automatic timing calculation. { // NOLINT HistogramTimerScope codegen_timer(&Counters::code_generation); CodeGenState state(this); // Entry: // Stack: receiver, arguments, return address. // rbp: caller's frame pointer // rsp: stack pointer // rdi: called JS function // rsi: callee's context allocator_->Initialize(); if (info->mode() == CompilationInfo::PRIMARY) { frame_->Enter(); // Allocate space for locals and initialize them. frame_->AllocateStackSlots(); // Allocate the local context if needed. int heap_slots = scope()->num_heap_slots(); if (heap_slots > 0) { Comment cmnt(masm_, "[ allocate local context"); // Allocate local context. // Get outer context and create a new context based on it. frame_->PushFunction(); Result context; if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); context = frame_->CallStub(&stub, 1); } else { context = frame_->CallRuntime(Runtime::kNewContext, 1); } // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and rsi agree. if (FLAG_debug_code) { __ cmpq(context.reg(), rsi); __ Assert(equal, "Runtime::NewContext should end up in rsi"); } } // TODO(1241774): Improve this code: // 1) only needed if we have a context // 2) no need to recompute context ptr every single time // 3) don't copy parameter operand code from SlotOperand! { Comment cmnt2(masm_, "[ copy context parameters into .context"); // Note that iteration order is relevant here! If we have the same // parameter twice (e.g., function (x, y, x)), and that parameter // needs to be copied into the context, it must be the last argument // passed to the parameter that needs to be copied. This is a rare // case so we don't check for it, instead we rely on the copying // order: such a parameter is copied repeatedly into the same // context location and thus the last value is what is seen inside // the function. for (int i = 0; i < scope()->num_parameters(); i++) { Variable* par = scope()->parameter(i); Slot* slot = par->slot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { // The use of SlotOperand below is safe in unspilled code // because the slot is guaranteed to be a context slot. // // There are no parameters in the global scope. ASSERT(!scope()->is_global_scope()); frame_->PushParameterAt(i); Result value = frame_->Pop(); value.ToRegister(); // SlotOperand loads context.reg() with the context object // stored to, used below in RecordWrite. Result context = allocator_->Allocate(); ASSERT(context.is_valid()); __ movq(SlotOperand(slot, context.reg()), value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); frame_->Spill(context.reg()); frame_->Spill(value.reg()); __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); } } } // Store the arguments object. This must happen after context // initialization because the arguments object may be stored in // the context. if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { StoreArgumentsObject(true); } // Initialize ThisFunction reference if present. if (scope()->is_function_scope() && scope()->function() != NULL) { frame_->Push(Factory::the_hole_value()); StoreToSlot(scope()->function()->slot(), NOT_CONST_INIT); } } else { // When used as the secondary compiler for splitting, rbp, rsi, // and rdi have been pushed on the stack. Adjust the virtual // frame to match this state. frame_->Adjust(3); allocator_->Unuse(rdi); // Bind all the bailout labels to the beginning of the function. List* bailouts = info->bailouts(); for (int i = 0; i < bailouts->length(); i++) { __ bind(bailouts->at(i)->label()); } } // Initialize the function return target after the locals are set // up, because it needs the expected frame height from the frame. function_return_.set_direction(JumpTarget::BIDIRECTIONAL); function_return_is_shadowed_ = false; // Generate code to 'execute' declarations and initialize functions // (source elements). In case of an illegal redeclaration we need to // handle that instead of processing the declarations. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ illegal redeclarations"); scope()->VisitIllegalRedeclaration(this); } else { Comment cmnt(masm_, "[ declarations"); ProcessDeclarations(scope()->declarations()); // Bail out if a stack-overflow exception occurred when processing // declarations. if (HasStackOverflow()) return; } if (FLAG_trace) { frame_->CallRuntime(Runtime::kTraceEnter, 0); // Ignore the return value. } CheckStack(); // Compile the body of the function in a vanilla state. Don't // bother compiling all the code if the scope has an illegal // redeclaration. if (!scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ function body"); #ifdef DEBUG bool is_builtin = Bootstrapper::IsActive(); bool should_trace = is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; if (should_trace) { frame_->CallRuntime(Runtime::kDebugTrace, 0); // Ignore the return value. } #endif VisitStatements(info->function()->body()); // Handle the return from the function. if (has_valid_frame()) { // If there is a valid frame, control flow can fall off the end of // the body. In that case there is an implicit return statement. ASSERT(!function_return_is_shadowed_); CodeForReturnPosition(info->function()); frame_->PrepareForReturn(); Result undefined(Factory::undefined_value()); if (function_return_.is_bound()) { function_return_.Jump(&undefined); } else { function_return_.Bind(&undefined); GenerateReturnSequence(&undefined); } } else if (function_return_.is_linked()) { // If the return target has dangling jumps to it, then we have not // yet generated the return sequence. This can happen when (a) // control does not flow off the end of the body so we did not // compile an artificial return statement just above, and (b) there // are return statements in the body but (c) they are all shadowed. Result return_value; function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } // Adjust for function-level loop nesting. loop_nesting_ -= info->loop_nesting(); // Code generation state must be reset. ASSERT(state_ == NULL); ASSERT(loop_nesting() == 0); ASSERT(!function_return_is_shadowed_); function_return_.Unuse(); DeleteFrame(); // Process any deferred code using the register allocator. if (!HasStackOverflow()) { HistogramTimerScope deferred_timer(&Counters::deferred_code_generation); JumpTarget::set_compiling_deferred_code(true); ProcessDeferred(); JumpTarget::set_compiling_deferred_code(false); } // There is no need to delete the register allocator, it is a // stack-allocated local. allocator_ = NULL; } void CodeGenerator::GenerateReturnSequence(Result* return_value) { // The return value is a live (but not currently reference counted) // reference to rax. This is safe because the current frame does not // contain a reference to rax (it is prepared for the return by spilling // all registers). if (FLAG_trace) { frame_->Push(return_value); *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); } return_value->ToRegister(rax); // Add a label for checking the size of the code used for returning. #ifdef DEBUG Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif // Leave the frame and return popping the arguments and the // receiver. frame_->Exit(); masm_->ret((scope()->num_parameters() + 1) * kPointerSize); #ifdef ENABLE_DEBUGGER_SUPPORT // Add padding that will be overwritten by a debugger breakpoint. // frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k" // with length 7 (3 + 1 + 3). const int kPadding = Assembler::kJSReturnSequenceLength - 7; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } // Check that the size of the code used for returning matches what is // expected by the debugger. ASSERT_EQ(Assembler::kJSReturnSequenceLength, masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif DeleteFrame(); } #ifdef DEBUG bool CodeGenerator::HasValidEntryRegisters() { return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0)) && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0)) && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0)) && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0)) && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0)) && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0)) && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0)) && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0)) && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0)) && (allocator()->count(r15) == (frame()->is_used(r15) ? 1 : 0)) && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0)); } #endif class DeferredReferenceGetKeyedValue: public DeferredCode { public: explicit DeferredReferenceGetKeyedValue(Register dst, Register receiver, Register key, bool is_global) : dst_(dst), receiver_(receiver), key_(key), is_global_(is_global) { set_comment("[ DeferredReferenceGetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Register key_; bool is_global_; }; void DeferredReferenceGetKeyedValue::Generate() { __ push(receiver_); // First IC argument. __ push(key_); // Second IC argument. // Calculate the delta from the IC call instruction to the map check // movq instruction in the inlined version. This delta is stored in // a test(rax, delta) instruction after the call so that we can find // it in the IC initialization code and patch the movq instruction. // This means that we cannot allow test instructions after calls to // KeyedLoadIC stubs in other places. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); RelocInfo::Mode mode = is_global_ ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; __ Call(ic, mode); // The delta from the start of the map-compare instruction to the // test instruction. We use masm_-> directly here instead of the __ // macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. // TODO(X64): Consider whether it's worth switching the test to a // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't // be generated normally. masm_->testl(rax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); if (!dst_.is(rax)) __ movq(dst_, rax); __ pop(key_); __ pop(receiver_); } class DeferredReferenceSetKeyedValue: public DeferredCode { public: DeferredReferenceSetKeyedValue(Register value, Register key, Register receiver) : value_(value), key_(key), receiver_(receiver) { set_comment("[ DeferredReferenceSetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Register value_; Register key_; Register receiver_; Label patch_site_; }; void DeferredReferenceSetKeyedValue::Generate() { __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); // Push receiver and key arguments on the stack. __ push(receiver_); __ push(key_); // Move value argument to eax as expected by the IC stub. if (!value_.is(rax)) __ movq(rax, value_); // Call the IC stub. Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // The delta from the start of the map-compare instructions (initial movq) // to the test instruction. We use masm_-> directly here instead of the // __ macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->testl(rax, Immediate(-delta_to_patch_site)); // Restore value (returned from store IC), key and receiver // registers. if (!value_.is(rax)) __ movq(value_, rax); __ pop(key_); __ pop(receiver_); } void CodeGenerator::CallApplyLazy(Expression* applicand, Expression* receiver, VariableProxy* arguments, int position) { // An optimized implementation of expressions of the form // x.apply(y, arguments). // If the arguments object of the scope has not been allocated, // and x.apply is Function.prototype.apply, this optimization // just copies y and the arguments of the current function on the // stack, as receiver and arguments, and calls x. // In the implementation comments, we call x the applicand // and y the receiver. ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); ASSERT(arguments->IsArguments()); // Load applicand.apply onto the stack. This will usually // give us a megamorphic load site. Not super, but it works. Load(applicand); Handle name = Factory::LookupAsciiSymbol("apply"); frame()->Push(name); Result answer = frame()->CallLoadIC(RelocInfo::CODE_TARGET); __ nop(); frame()->Push(&answer); // Load the receiver and the existing arguments object onto the // expression stack. Avoid allocating the arguments object here. Load(receiver); LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); // Emit the source position information after having loaded the // receiver and the arguments. CodeForSourcePosition(position); // Contents of frame at this point: // Frame[0]: arguments object of the current function or the hole. // Frame[1]: receiver // Frame[2]: applicand.apply // Frame[3]: applicand. // Check if the arguments object has been lazily allocated // already. If so, just use that instead of copying the arguments // from the stack. This also deals with cases where a local variable // named 'arguments' has been introduced. frame_->Dup(); Result probe = frame_->Pop(); { VirtualFrame::SpilledScope spilled_scope; Label slow, done; bool try_lazy = true; if (probe.is_constant()) { try_lazy = probe.handle()->IsTheHole(); } else { __ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex); probe.Unuse(); __ j(not_equal, &slow); } if (try_lazy) { Label build_args; // Get rid of the arguments object probe. frame_->Drop(); // Can be called on a spilled frame. // Stack now has 3 elements on it. // Contents of stack at this point: // rsp[0]: receiver // rsp[1]: applicand.apply // rsp[2]: applicand. // Check that the receiver really is a JavaScript object. __ movq(rax, Operand(rsp, 0)); Condition is_smi = masm_->CheckSmi(rax); __ j(is_smi, &build_args); // We allow all JSObjects including JSFunctions. As long as // JS_FUNCTION_TYPE is the last instance type and it is right // after LAST_JS_OBJECT_TYPE, we do not have to check the upper // bound. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &build_args); // Check that applicand.apply is Function.prototype.apply. __ movq(rax, Operand(rsp, kPointerSize)); is_smi = masm_->CheckSmi(rax); __ j(is_smi, &build_args); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &build_args); __ movq(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset)); Handle apply_code(Builtins::builtin(Builtins::FunctionApply)); __ Cmp(FieldOperand(rax, SharedFunctionInfo::kCodeOffset), apply_code); __ j(not_equal, &build_args); // Check that applicand is a function. __ movq(rdi, Operand(rsp, 2 * kPointerSize)); is_smi = masm_->CheckSmi(rdi); __ j(is_smi, &build_args); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &build_args); // Copy the arguments to this function possibly from the // adaptor frame below it. Label invoke, adapted; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adapted); // No arguments adaptor frame. Copy fixed number of arguments. __ movq(rax, Immediate(scope()->num_parameters())); for (int i = 0; i < scope()->num_parameters(); i++) { __ push(frame_->ParameterAt(i)); } __ jmp(&invoke); // Arguments adaptor frame present. Copy arguments from there, but // avoid copying too many arguments to avoid stack overflows. __ bind(&adapted); static const uint32_t kArgumentsLimit = 1 * KB; __ movq(rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiToInteger32(rax, rax); __ movq(rcx, rax); __ cmpq(rax, Immediate(kArgumentsLimit)); __ j(above, &build_args); // Loop through the arguments pushing them onto the execution // stack. We don't inform the virtual frame of the push, so we don't // have to worry about getting rid of the elements from the virtual // frame. Label loop; // rcx is a small non-negative integer, due to the test above. __ testl(rcx, rcx); __ j(zero, &invoke); __ bind(&loop); __ push(Operand(rdx, rcx, times_pointer_size, 1 * kPointerSize)); __ decl(rcx); __ j(not_zero, &loop); // Invoke the function. __ bind(&invoke); ParameterCount actual(rax); __ InvokeFunction(rdi, actual, CALL_FUNCTION); // Drop applicand.apply and applicand from the stack, and push // the result of the function call, but leave the spilled frame // unchanged, with 3 elements, so it is correct when we compile the // slow-case code. __ addq(rsp, Immediate(2 * kPointerSize)); __ push(rax); // Stack now has 1 element: // rsp[0]: result __ jmp(&done); // Slow-case: Allocate the arguments object since we know it isn't // there, and fall-through to the slow-case where we call // applicand.apply. __ bind(&build_args); // Stack now has 3 elements, because we have jumped from where: // rsp[0]: receiver // rsp[1]: applicand.apply // rsp[2]: applicand. // StoreArgumentsObject requires a correct frame, and may modify it. Result arguments_object = StoreArgumentsObject(false); frame_->SpillAll(); arguments_object.ToRegister(); frame_->EmitPush(arguments_object.reg()); arguments_object.Unuse(); // Stack and frame now have 4 elements. __ bind(&slow); } // Generic computation of x.apply(y, args) with no special optimization. // Flip applicand.apply and applicand on the stack, so // applicand looks like the receiver of the applicand.apply call. // Then process it as a normal function call. __ movq(rax, Operand(rsp, 3 * kPointerSize)); __ movq(rbx, Operand(rsp, 2 * kPointerSize)); __ movq(Operand(rsp, 2 * kPointerSize), rax); __ movq(Operand(rsp, 3 * kPointerSize), rbx); CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); Result res = frame_->CallStub(&call_function, 3); // The function and its two arguments have been dropped. frame_->Drop(1); // Drop the receiver as well. res.ToRegister(); frame_->EmitPush(res.reg()); // Stack now has 1 element: // rsp[0]: result if (try_lazy) __ bind(&done); } // End of spilled scope. // Restore the context register after a call. frame_->RestoreContextRegister(); } class DeferredStackCheck: public DeferredCode { public: DeferredStackCheck() { set_comment("[ DeferredStackCheck"); } virtual void Generate(); }; void DeferredStackCheck::Generate() { StackCheckStub stub; __ CallStub(&stub); } void CodeGenerator::CheckStack() { DeferredStackCheck* deferred = new DeferredStackCheck; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); deferred->Branch(below); deferred->BindExit(); } void CodeGenerator::VisitAndSpill(Statement* statement) { // TODO(X64): No architecture specific code. Move to shared location. ASSERT(in_spilled_code()); set_in_spilled_code(false); Visit(statement); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } void CodeGenerator::VisitStatementsAndSpill(ZoneList* statements) { ASSERT(in_spilled_code()); set_in_spilled_code(false); VisitStatements(statements); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } void CodeGenerator::VisitStatements(ZoneList* statements) { ASSERT(!in_spilled_code()); for (int i = 0; has_valid_frame() && i < statements->length(); i++) { Visit(statements->at(i)); } } void CodeGenerator::VisitBlock(Block* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ Block"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); VisitStatements(node->statements()); if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::VisitDeclaration(Declaration* node) { Comment cmnt(masm_, "[ Declaration"); Variable* var = node->proxy()->var(); ASSERT(var != NULL); // must have been resolved Slot* slot = var->slot(); // If it was not possible to allocate the variable at compile time, // we need to "declare" it at runtime to make sure it actually // exists in the local context. if (slot != NULL && slot->type() == Slot::LOOKUP) { // Variables with a "LOOKUP" slot were introduced as non-locals // during variable resolution and must have mode DYNAMIC. ASSERT(var->is_dynamic()); // For now, just do a runtime call. Sync the virtual frame eagerly // so we can simply push the arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); __ movq(kScratchRegister, var->name(), RelocInfo::EMBEDDED_OBJECT); frame_->EmitPush(kScratchRegister); // Declaration nodes are always introduced in one of two modes. ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; frame_->EmitPush(Smi::FromInt(attr)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (node->mode() == Variable::CONST) { frame_->EmitPush(Heap::kTheHoleValueRootIndex); } else if (node->fun() != NULL) { Load(node->fun()); } else { frame_->EmitPush(Smi::FromInt(0)); // no initial value! } Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); // Ignore the return value (declarations are statements). return; } ASSERT(!var->is_global()); // If we have a function or a constant, we need to initialize the variable. Expression* val = NULL; if (node->mode() == Variable::CONST) { val = new Literal(Factory::the_hole_value()); } else { val = node->fun(); // NULL if we don't have a function } if (val != NULL) { { // Set the initial value. Reference target(this, node->proxy()); Load(val); target.SetValue(NOT_CONST_INIT); // The reference is removed from the stack (preserving TOS) when // it goes out of scope. } // Get rid of the assigned value (declarations are statements). frame_->Drop(); } } void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ExpressionStatement"); CodeForStatementPosition(node); Expression* expression = node->expression(); expression->MarkAsStatement(); Load(expression); // Remove the lingering expression result from the top of stack. frame_->Drop(); } void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "// EmptyStatement"); CodeForStatementPosition(node); // nothing to do } void CodeGenerator::VisitIfStatement(IfStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ IfStatement"); // Generate different code depending on which parts of the if statement // are present or not. bool has_then_stm = node->HasThenStatement(); bool has_else_stm = node->HasElseStatement(); CodeForStatementPosition(node); JumpTarget exit; if (has_then_stm && has_else_stm) { JumpTarget then; JumpTarget else_; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Visit(node->else_statement()); // We may have dangling jumps to the then part. if (then.is_linked()) { if (has_valid_frame()) exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then target was bound, so we compile the then part first. Visit(node->then_statement()); if (else_.is_linked()) { if (has_valid_frame()) exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } } else if (has_then_stm) { ASSERT(!has_else_stm); JumpTarget then; ControlDestination dest(&then, &exit, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // then part. if (then.is_linked()) { exit.Unuse(); exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then label was bound. Visit(node->then_statement()); } } else if (has_else_stm) { ASSERT(!has_then_stm); JumpTarget else_; ControlDestination dest(&exit, &else_, false); LoadCondition(node->condition(), &dest, true); if (dest.true_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // else part. if (else_.is_linked()) { exit.Unuse(); exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } else { // The else label was bound. Visit(node->else_statement()); } } else { ASSERT(!has_then_stm && !has_else_stm); // We only care about the condition's side effects (not its value // or control flow effect). LoadCondition is called without // forcing control flow. ControlDestination dest(&exit, &exit, true); LoadCondition(node->condition(), &dest, false); if (!dest.is_used()) { // We got a value on the frame rather than (or in addition to) // control flow. frame_->Drop(); } } if (exit.is_linked()) { exit.Bind(); } } void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ContinueStatement"); CodeForStatementPosition(node); node->target()->continue_target()->Jump(); } void CodeGenerator::VisitBreakStatement(BreakStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ BreakStatement"); CodeForStatementPosition(node); node->target()->break_target()->Jump(); } void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ReturnStatement"); CodeForStatementPosition(node); Load(node->expression()); Result return_value = frame_->Pop(); if (function_return_is_shadowed_) { function_return_.Jump(&return_value); } else { frame_->PrepareForReturn(); if (function_return_.is_bound()) { // If the function return label is already bound we reuse the // code by jumping to the return site. function_return_.Jump(&return_value); } else { function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithEnterStatement"); CodeForStatementPosition(node); Load(node->expression()); Result context; if (node->is_catch_block()) { context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); } else { context = frame_->CallRuntime(Runtime::kPushContext, 1); } // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and rsi agree. if (FLAG_debug_code) { __ cmpq(context.reg(), rsi); __ Assert(equal, "Runtime::NewContext should end up in rsi"); } } void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithExitStatement"); CodeForStatementPosition(node); // Pop context. __ movq(rsi, ContextOperand(rsi, Context::PREVIOUS_INDEX)); // Update context local. frame_->SaveContextRegister(); } void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { // TODO(X64): This code is completely generic and should be moved somewhere // where it can be shared between architectures. ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ SwitchStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); // Compile the switch value. Load(node->tag()); ZoneList* cases = node->cases(); int length = cases->length(); CaseClause* default_clause = NULL; JumpTarget next_test; // Compile the case label expressions and comparisons. Exit early // if a comparison is unconditionally true. The target next_test is // bound before the loop in order to indicate control flow to the // first comparison. next_test.Bind(); for (int i = 0; i < length && !next_test.is_unused(); i++) { CaseClause* clause = cases->at(i); // The default is not a test, but remember it for later. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); // We recycle the same target next_test for each test. Bind it if // the previous test has not done so and then unuse it for the // loop. if (next_test.is_linked()) { next_test.Bind(); } next_test.Unuse(); // Duplicate the switch value. frame_->Dup(); // Compile the label expression. Load(clause->label()); // Compare and branch to the body if true or the next test if // false. Prefer the next test as a fall through. ControlDestination dest(clause->body_target(), &next_test, false); Comparison(node, equal, true, &dest); // If the comparison fell through to the true target, jump to the // actual body. if (dest.true_was_fall_through()) { clause->body_target()->Unuse(); clause->body_target()->Jump(); } } // If there was control flow to a next test from the last one // compiled, compile a jump to the default or break target. if (!next_test.is_unused()) { if (next_test.is_linked()) { next_test.Bind(); } // Drop the switch value. frame_->Drop(); if (default_clause != NULL) { default_clause->body_target()->Jump(); } else { node->break_target()->Jump(); } } // The last instruction emitted was a jump, either to the default // clause or the break target, or else to a case body from the loop // that compiles the tests. ASSERT(!has_valid_frame()); // Compile case bodies as needed. for (int i = 0; i < length; i++) { CaseClause* clause = cases->at(i); // There are two ways to reach the body: from the corresponding // test or as the fall through of the previous body. if (clause->body_target()->is_linked() || has_valid_frame()) { if (clause->body_target()->is_linked()) { if (has_valid_frame()) { // If we have both a jump to the test and a fall through, put // a jump on the fall through path to avoid the dropping of // the switch value on the test path. The exception is the // default which has already had the switch value dropped. if (clause->is_default()) { clause->body_target()->Bind(); } else { JumpTarget body; body.Jump(); clause->body_target()->Bind(); frame_->Drop(); body.Bind(); } } else { // No fall through to worry about. clause->body_target()->Bind(); if (!clause->is_default()) { frame_->Drop(); } } } else { // Otherwise, we have only fall through. ASSERT(has_valid_frame()); } // We are now prepared to compile the body. Comment cmnt(masm_, "[ Case body"); VisitStatements(clause->statements()); } clause->body_target()->Unuse(); } // We may not have a valid frame here so bind the break target only // if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DoWhileStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); JumpTarget body(JumpTarget::BIDIRECTIONAL); IncrementLoopNesting(); ConditionAnalysis info = AnalyzeCondition(node->cond()); // Label the top of the loop for the backward jump if necessary. switch (info) { case ALWAYS_TRUE: // Use the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case ALWAYS_FALSE: // No need to label it. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); break; case DONT_KNOW: // Continue is the test, so use the backward body target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); body.Bind(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Compile the test. switch (info) { case ALWAYS_TRUE: // If control flow can fall off the end of the body, jump back // to the top and bind the break target at the exit. if (has_valid_frame()) { node->continue_target()->Jump(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case ALWAYS_FALSE: // We may have had continues or breaks in the body. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case DONT_KNOW: // We have to compile the test expression if it can be reached by // control flow falling out of the body or via continue. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { Comment cmnt(masm_, "[ DoWhileCondition"); CodeForDoWhileConditionPosition(node); ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; } DecrementLoopNesting(); node->continue_target()->Unuse(); node->break_target()->Unuse(); } void CodeGenerator::VisitWhileStatement(WhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WhileStatement"); CodeForStatementPosition(node); // If the condition is always false and has no side effects, we do not // need to compile anything. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop with the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case DONT_KNOW: { if (test_at_bottom) { // Continue is the test at the bottom, no need to label the test // at the top. The body is a backward target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else { // Label the test at the top as the continue target. The body // is a forward-only target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: // The loop body has been labeled with the continue target. if (has_valid_frame()) { node->continue_target()->Jump(); } break; case DONT_KNOW: if (test_at_bottom) { // If we have chosen to recompile the test at the bottom, // then it is the continue target. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here and thus an invalid fall-through). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } } else { // If we have chosen not to recompile the test at the // bottom, jump back to the one at the top. if (has_valid_frame()) { node->continue_target()->Jump(); } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or there // may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForStatement(ForStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ForStatement"); CodeForStatementPosition(node); // Compile the init expression if present. if (node->init() != NULL) { Visit(node->init()); } // If the condition is always false and has no side effects, we do not // need to compile anything else. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); // Target for backward edge if no test at the bottom, otherwise // unused. JumpTarget loop(JumpTarget::BIDIRECTIONAL); // Target for backward edge if there is a test at the bottom, // otherwise used as target for test at the top. JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop. if (node->next() == NULL) { // Use the continue target if there is no update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // Otherwise use the backward loop target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } break; case DONT_KNOW: { if (test_at_bottom) { // Continue is either the update expression or the test at the // bottom, no need to label the test at the top. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else if (node->next() == NULL) { // We are not recompiling the test at the bottom and there is no // update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // We are not recompiling the test at the bottom and there is an // update expression. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // If there is an update expression, compile it if necessary. if (node->next() != NULL) { if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } // Control can reach the update by falling out of the body or by a // continue. if (has_valid_frame()) { // Record the source position of the statement as this code which // is after the code for the body actually belongs to the loop // statement and not the body. CodeForStatementPosition(node); Visit(node->next()); } } // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } break; case DONT_KNOW: if (test_at_bottom) { if (node->continue_target()->is_linked()) { // We can have dangling jumps to the continue target if there // was no update expression. node->continue_target()->Bind(); } // Control can reach the test at the bottom by falling out of // the body, by a continue in the body, or from the update // expression. if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), &dest, true); } } else { // Otherwise, jump back to the test at the top. if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or there // may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForInStatement(ForInStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ ForInStatement"); CodeForStatementPosition(node); JumpTarget primitive; JumpTarget jsobject; JumpTarget fixed_array; JumpTarget entry(JumpTarget::BIDIRECTIONAL); JumpTarget end_del_check; JumpTarget exit; // Get the object to enumerate over (converted to JSObject). LoadAndSpill(node->enumerable()); // Both SpiderMonkey and kjs ignore null and undefined in contrast // to the specification. 12.6.4 mandates a call to ToObject. frame_->EmitPop(rax); // rax: value to be iterated over __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); exit.Branch(equal); __ CompareRoot(rax, Heap::kNullValueRootIndex); exit.Branch(equal); // Stack layout in body: // [iteration counter (smi)] <- slot 0 // [length of array] <- slot 1 // [FixedArray] <- slot 2 // [Map or 0] <- slot 3 // [Object] <- slot 4 // Check if enumerable is already a JSObject // rax: value to be iterated over Condition is_smi = masm_->CheckSmi(rax); primitive.Branch(is_smi); __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); jsobject.Branch(above_equal); primitive.Bind(); frame_->EmitPush(rax); frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); // function call returns the value in rax, which is where we want it below jsobject.Bind(); // Get the set of properties (as a FixedArray or Map). // rax: value to be iterated over frame_->EmitPush(rax); // Push the object being iterated over. // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. JumpTarget call_runtime; JumpTarget loop(JumpTarget::BIDIRECTIONAL); JumpTarget check_prototype; JumpTarget use_cache; __ movq(rcx, rax); loop.Bind(); // Check that there are no elements. __ movq(rdx, FieldOperand(rcx, JSObject::kElementsOffset)); __ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex); call_runtime.Branch(not_equal); // Check that instance descriptors are not empty so that we can // check for an enum cache. Leave the map in ebx for the subsequent // prototype load. __ movq(rbx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movq(rdx, FieldOperand(rbx, Map::kInstanceDescriptorsOffset)); __ CompareRoot(rdx, Heap::kEmptyDescriptorArrayRootIndex); call_runtime.Branch(equal); // Check that there in an enum cache in the non-empty instance // descriptors. This is the case if the next enumeration index // field does not contain a smi. __ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumerationIndexOffset)); is_smi = masm_->CheckSmi(rdx); call_runtime.Branch(is_smi); // For all objects but the receiver, check that the cache is empty. __ cmpq(rcx, rax); check_prototype.Branch(equal); __ movq(rdx, FieldOperand(rdx, DescriptorArray::kEnumCacheBridgeCacheOffset)); __ CompareRoot(rdx, Heap::kEmptyFixedArrayRootIndex); call_runtime.Branch(not_equal); check_prototype.Bind(); // Load the prototype from the map and loop if non-null. __ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset)); __ CompareRoot(rcx, Heap::kNullValueRootIndex); loop.Branch(not_equal); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset)); use_cache.Jump(); call_runtime.Bind(); // Call the runtime to get the property names for the object. frame_->EmitPush(rax); // push the Object (slot 4) for the runtime call frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a Map, we can do a fast modification check. // Otherwise, we got a FixedArray, and we have to do a slow check. // rax: map or fixed array (result from call to // Runtime::kGetPropertyNamesFast) __ movq(rdx, rax); __ movq(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); __ CompareRoot(rcx, Heap::kMetaMapRootIndex); fixed_array.Branch(not_equal); use_cache.Bind(); // Get enum cache // rax: map (either the result from a call to // Runtime::kGetPropertyNamesFast or has been fetched directly from // the object) __ movq(rcx, rax); __ movq(rcx, FieldOperand(rcx, Map::kInstanceDescriptorsOffset)); // Get the bridge array held in the enumeration index field. __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset)); // Get the cache from the bridge array. __ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset)); frame_->EmitPush(rax); // <- slot 3 frame_->EmitPush(rdx); // <- slot 2 __ movl(rax, FieldOperand(rdx, FixedArray::kLengthOffset)); __ Integer32ToSmi(rax, rax); frame_->EmitPush(rax); // <- slot 1 frame_->EmitPush(Smi::FromInt(0)); // <- slot 0 entry.Jump(); fixed_array.Bind(); // rax: fixed array (result from call to Runtime::kGetPropertyNamesFast) frame_->EmitPush(Smi::FromInt(0)); // <- slot 3 frame_->EmitPush(rax); // <- slot 2 // Push the length of the array and the initial index onto the stack. __ movl(rax, FieldOperand(rax, FixedArray::kLengthOffset)); __ Integer32ToSmi(rax, rax); frame_->EmitPush(rax); // <- slot 1 frame_->EmitPush(Smi::FromInt(0)); // <- slot 0 // Condition. entry.Bind(); // Grab the current frame's height for the break and continue // targets only after all the state is pushed on the frame. node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); __ movq(rax, frame_->ElementAt(0)); // load the current count __ SmiCompare(frame_->ElementAt(1), rax); // compare to the array length node->break_target()->Branch(below_equal); // Get the i'th entry of the array. __ movq(rdx, frame_->ElementAt(2)); SmiIndex index = masm_->SmiToIndex(rbx, rax, kPointerSizeLog2); __ movq(rbx, FieldOperand(rdx, index.reg, index.scale, FixedArray::kHeaderSize)); // Get the expected map from the stack or a zero map in the // permanent slow case rax: current iteration count rbx: i'th entry // of the enum cache __ movq(rdx, frame_->ElementAt(3)); // Check if the expected map still matches that of the enumerable. // If not, we have to filter the key. // rax: current iteration count // rbx: i'th entry of the enum cache // rdx: expected map value __ movq(rcx, frame_->ElementAt(4)); __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ cmpq(rcx, rdx); end_del_check.Branch(equal); // Convert the entry to a string (or null if it isn't a property anymore). frame_->EmitPush(frame_->ElementAt(4)); // push enumerable frame_->EmitPush(rbx); // push entry frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); __ movq(rbx, rax); // If the property has been removed while iterating, we just skip it. __ CompareRoot(rbx, Heap::kNullValueRootIndex); node->continue_target()->Branch(equal); end_del_check.Bind(); // Store the entry in the 'each' expression and take another spin in the // loop. rdx: i'th entry of the enum cache (or string there of) frame_->EmitPush(rbx); { Reference each(this, node->each()); // Loading a reference may leave the frame in an unspilled state. frame_->SpillAll(); if (!each.is_illegal()) { if (each.size() > 0) { frame_->EmitPush(frame_->ElementAt(each.size())); each.SetValue(NOT_CONST_INIT); frame_->Drop(2); // Drop the original and the copy of the element. } else { // If the reference has size zero then we can use the value below // the reference as if it were above the reference, instead of pushing // a new copy of it above the reference. each.SetValue(NOT_CONST_INIT); frame_->Drop(); // Drop the original of the element. } } } // Unloading a reference may leave the frame in an unspilled state. frame_->SpillAll(); // Body. CheckStack(); // TODO(1222600): ignore if body contains calls. VisitAndSpill(node->body()); // Next. Reestablish a spilled frame in case we are coming here via // a continue in the body. node->continue_target()->Bind(); frame_->SpillAll(); frame_->EmitPop(rax); __ SmiAddConstant(rax, rax, Smi::FromInt(1)); frame_->EmitPush(rax); entry.Jump(); // Cleanup. No need to spill because VirtualFrame::Drop is safe for // any frame. node->break_target()->Bind(); frame_->Drop(5); // Exit. exit.Bind(); node->continue_target()->Unuse(); node->break_target()->Unuse(); } void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryCatchStatement"); CodeForStatementPosition(node); JumpTarget try_block; JumpTarget exit; try_block.Call(); // --- Catch block --- frame_->EmitPush(rax); // Store the caught exception in the catch variable. Variable* catch_var = node->catch_var()->var(); ASSERT(catch_var != NULL && catch_var->slot() != NULL); StoreToSlot(catch_var->slot(), NOT_CONST_INIT); // Remove the exception from the stack. frame_->Drop(); VisitStatementsAndSpill(node->catch_block()->statements()); if (has_valid_frame()) { exit.Jump(); } // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_CATCH_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. bool has_unlinks = false; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); has_unlinks = has_unlinks || shadows[i]->is_linked(); } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // Make sure that there's nothing left on the stack above the // handler structure. if (FLAG_debug_code) { __ movq(kScratchRegister, handler_address); __ cmpq(rsp, Operand(kScratchRegister, 0)); __ Assert(equal, "stack pointer should point to top handler"); } // If we can fall off the end of the try block, unlink from try chain. if (has_valid_frame()) { // The next handler address is on top of the frame. Unlink from // the handler list and drop the rest of this handler from the // frame. ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (has_unlinks) { exit.Jump(); } } // Generate unlink code for the (formerly) shadowing targets that // have been jumped to. Deallocate each shadow target. Result return_value; for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // Unlink from try chain; be careful not to destroy the TOS if // there is one. if (i == kReturnShadowIndex) { shadows[i]->Bind(&return_value); return_value.ToRegister(rax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that we // break from (eg, for...in) may have left stuff on the stack. __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); frame_->Forget(frame_->height() - handler_height); ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { if (!function_return_is_shadowed_) frame_->PrepareForReturn(); shadows[i]->other_target()->Jump(&return_value); } else { shadows[i]->other_target()->Jump(); } } } exit.Bind(); } void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryFinallyStatement"); CodeForStatementPosition(node); // State: Used to keep track of reason for entering the finally // block. Should probably be extended to hold information for // break/continue from within the try block. enum { FALLING, THROWING, JUMPING }; JumpTarget try_block; JumpTarget finally_block; try_block.Call(); frame_->EmitPush(rax); // In case of thrown exceptions, this is where we continue. __ Move(rcx, Smi::FromInt(THROWING)); finally_block.Jump(); // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_FINALLY_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. int nof_unlinks = 0; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); if (shadows[i]->is_linked()) nof_unlinks++; } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // If we can fall off the end of the try block, unlink from the try // chain and set the state on the frame to FALLING. if (has_valid_frame()) { // The next handler address is on top of the frame. ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); // Fake a top of stack value (unneeded when FALLING) and set the // state in ecx, then jump around the unlink blocks if any. frame_->EmitPush(Heap::kUndefinedValueRootIndex); __ Move(rcx, Smi::FromInt(FALLING)); if (nof_unlinks > 0) { finally_block.Jump(); } } // Generate code to unlink and set the state for the (formerly) // shadowing targets that have been jumped to. for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // If we have come from the shadowed return, the return value is // on the virtual frame. We must preserve it until it is // pushed. if (i == kReturnShadowIndex) { Result return_value; shadows[i]->Bind(&return_value); return_value.ToRegister(rax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that // we break from (eg, for...in) may have left stuff on the // stack. __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); frame_->Forget(frame_->height() - handler_height); // Unlink this handler and drop it from the frame. ASSERT(StackHandlerConstants::kNextOffset == 0); __ movq(kScratchRegister, handler_address); frame_->EmitPop(Operand(kScratchRegister, 0)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { // If this target shadowed the function return, materialize // the return value on the stack. frame_->EmitPush(rax); } else { // Fake TOS for targets that shadowed breaks and continues. frame_->EmitPush(Heap::kUndefinedValueRootIndex); } __ Move(rcx, Smi::FromInt(JUMPING + i)); if (--nof_unlinks > 0) { // If this is not the last unlink block, jump around the next. finally_block.Jump(); } } } // --- Finally block --- finally_block.Bind(); // Push the state on the stack. frame_->EmitPush(rcx); // We keep two elements on the stack - the (possibly faked) result // and the state - while evaluating the finally block. // // Generate code for the statements in the finally block. VisitStatementsAndSpill(node->finally_block()->statements()); if (has_valid_frame()) { // Restore state and return value or faked TOS. frame_->EmitPop(rcx); frame_->EmitPop(rax); } // Generate code to jump to the right destination for all used // formerly shadowing targets. Deallocate each shadow target. for (int i = 0; i < shadows.length(); i++) { if (has_valid_frame() && shadows[i]->is_bound()) { BreakTarget* original = shadows[i]->other_target(); __ SmiCompare(rcx, Smi::FromInt(JUMPING + i)); if (i == kReturnShadowIndex) { // The return value is (already) in rax. Result return_value = allocator_->Allocate(rax); ASSERT(return_value.is_valid()); if (function_return_is_shadowed_) { original->Branch(equal, &return_value); } else { // Branch around the preparation for return which may emit // code. JumpTarget skip; skip.Branch(not_equal); frame_->PrepareForReturn(); original->Jump(&return_value); skip.Bind(); } } else { original->Branch(equal); } } } if (has_valid_frame()) { // Check if we need to rethrow the exception. JumpTarget exit; __ SmiCompare(rcx, Smi::FromInt(THROWING)); exit.Branch(not_equal); // Rethrow exception. frame_->EmitPush(rax); // undo pop from above frame_->CallRuntime(Runtime::kReThrow, 1); // Done. exit.Bind(); } } void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DebuggerStatement"); CodeForStatementPosition(node); #ifdef ENABLE_DEBUGGER_SUPPORT // Spill everything, even constants, to the frame. frame_->SpillAll(); frame_->DebugBreak(); // Ignore the return value. #endif } void CodeGenerator::InstantiateFunction( Handle function_info) { // The inevitable call will sync frame elements to memory anyway, so // we do it eagerly to allow us to push the arguments directly into // place. frame_->SyncRange(0, frame_->element_count() - 1); // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. if (scope()->is_function_scope() && function_info->num_literals() == 0) { FastNewClosureStub stub; frame_->Push(function_info); Result answer = frame_->CallStub(&stub, 1); frame_->Push(&answer); } else { // Call the runtime to instantiate the function boilerplate // object. frame_->EmitPush(rsi); frame_->EmitPush(function_info); Result result = frame_->CallRuntime(Runtime::kNewClosure, 2); frame_->Push(&result); } } void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function info and instantiate it. Handle function_info = Compiler::BuildFunctionInfo(node, script(), this); // Check for stack-overflow exception. if (HasStackOverflow()) return; InstantiateFunction(function_info); } void CodeGenerator::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* node) { Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); InstantiateFunction(node->shared_function_info()); } void CodeGenerator::VisitConditional(Conditional* node) { Comment cmnt(masm_, "[ Conditional"); JumpTarget then; JumpTarget else_; JumpTarget exit; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Load(node->else_expression()); if (then.is_linked()) { exit.Jump(); then.Bind(); Load(node->then_expression()); } } else { // The then target was bound, so we compile the then part first. Load(node->then_expression()); if (else_.is_linked()) { exit.Jump(); else_.Bind(); Load(node->else_expression()); } } exit.Bind(); } void CodeGenerator::VisitSlot(Slot* node) { Comment cmnt(masm_, "[ Slot"); LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); } void CodeGenerator::VisitVariableProxy(VariableProxy* node) { Comment cmnt(masm_, "[ VariableProxy"); Variable* var = node->var(); Expression* expr = var->rewrite(); if (expr != NULL) { Visit(expr); } else { ASSERT(var->is_global()); Reference ref(this, node); ref.GetValue(); } } void CodeGenerator::VisitLiteral(Literal* node) { Comment cmnt(masm_, "[ Literal"); frame_->Push(node->handle()); } // Materialize the regexp literal 'node' in the literals array // 'literals' of the function. Leave the regexp boilerplate in // 'boilerplate'. class DeferredRegExpLiteral: public DeferredCode { public: DeferredRegExpLiteral(Register boilerplate, Register literals, RegExpLiteral* node) : boilerplate_(boilerplate), literals_(literals), node_(node) { set_comment("[ DeferredRegExpLiteral"); } void Generate(); private: Register boilerplate_; Register literals_; RegExpLiteral* node_; }; void DeferredRegExpLiteral::Generate() { // Since the entry is undefined we call the runtime system to // compute the literal. // Literal array (0). __ push(literals_); // Literal index (1). __ Push(Smi::FromInt(node_->literal_index())); // RegExp pattern (2). __ Push(node_->pattern()); // RegExp flags (3). __ Push(node_->flags()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); if (!boilerplate_.is(rax)) __ movq(boilerplate_, rax); } void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { Comment cmnt(masm_, "[ RegExp Literal"); // Retrieve the literals array and check the allocated entry. Begin // with a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ movq(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Load the literal at the ast saved index. Result boilerplate = allocator_->Allocate(); ASSERT(boilerplate.is_valid()); int literal_offset = FixedArray::kHeaderSize + node->literal_index() * kPointerSize; __ movq(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); // Check whether we need to materialize the RegExp object. If so, // jump to the deferred code passing the literals array. DeferredRegExpLiteral* deferred = new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); __ CompareRoot(boilerplate.reg(), Heap::kUndefinedValueRootIndex); deferred->Branch(equal); deferred->BindExit(); literals.Unuse(); // Push the boilerplate object. frame_->Push(&boilerplate); } void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { Comment cmnt(masm_, "[ ObjectLiteral"); // Load a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ movq(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Literal array. frame_->Push(&literals); // Literal index. frame_->Push(Smi::FromInt(node->literal_index())); // Constant properties. frame_->Push(node->constant_properties()); // Should the object literal have fast elements? frame_->Push(Smi::FromInt(node->fast_elements() ? 1 : 0)); Result clone; if (node->depth() > 1) { clone = frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); } else { clone = frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); } frame_->Push(&clone); for (int i = 0; i < node->properties()->length(); i++) { ObjectLiteral::Property* property = node->properties()->at(i); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: break; case ObjectLiteral::Property::MATERIALIZED_LITERAL: if (CompileTimeValue::IsCompileTimeValue(property->value())) break; // else fall through. case ObjectLiteral::Property::COMPUTED: { Handle key(property->key()->handle()); if (key->IsSymbol()) { // Duplicate the object as the IC receiver. frame_->Dup(); Load(property->value()); frame_->Push(key); Result ignored = frame_->CallStoreIC(); break; } // Fall through } case ObjectLiteral::Property::PROTOTYPE: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3); // Ignore the result. break; } case ObjectLiteral::Property::SETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(1)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } case ObjectLiteral::Property::GETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(0)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } default: UNREACHABLE(); } } } void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { Comment cmnt(masm_, "[ ArrayLiteral"); // Load a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ movq(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); frame_->Push(&literals); frame_->Push(Smi::FromInt(node->literal_index())); frame_->Push(node->constant_elements()); int length = node->values()->length(); Result clone; if (node->depth() > 1) { clone = frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumLength) { clone = frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { FastCloneShallowArrayStub stub(length); clone = frame_->CallStub(&stub, 3); } frame_->Push(&clone); // Generate code to set the elements in the array that are not // literals. for (int i = 0; i < node->values()->length(); i++) { Expression* value = node->values()->at(i); // If value is a literal the property value is already set in the // boilerplate object. if (value->AsLiteral() != NULL) continue; // If value is a materialized literal the property value is already set // in the boilerplate object if it is simple. if (CompileTimeValue::IsCompileTimeValue(value)) continue; // The property must be set by generated code. Load(value); // Get the property value off the stack. Result prop_value = frame_->Pop(); prop_value.ToRegister(); // Fetch the array literal while leaving a copy on the stack and // use it to get the elements array. frame_->Dup(); Result elements = frame_->Pop(); elements.ToRegister(); frame_->Spill(elements.reg()); // Get the elements FixedArray. __ movq(elements.reg(), FieldOperand(elements.reg(), JSObject::kElementsOffset)); // Write to the indexed properties array. int offset = i * kPointerSize + FixedArray::kHeaderSize; __ movq(FieldOperand(elements.reg(), offset), prop_value.reg()); // Update the write barrier for the array address. frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); } } void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { ASSERT(!in_spilled_code()); // Call runtime routine to allocate the catch extension object and // assign the exception value to the catch variable. Comment cmnt(masm_, "[ CatchExtensionObject"); Load(node->key()); Load(node->value()); Result result = frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); frame_->Push(&result); } void CodeGenerator::VisitAssignment(Assignment* node) { Comment cmnt(masm_, "[ Assignment"); { Reference target(this, node->target(), node->is_compound()); if (target.is_illegal()) { // Fool the virtual frame into thinking that we left the assignment's // value on the frame. frame_->Push(Smi::FromInt(0)); return; } Variable* var = node->target()->AsVariableProxy()->AsVariable(); if (node->starts_initialization_block()) { ASSERT(target.type() == Reference::NAMED || target.type() == Reference::KEYED); // Change to slow case in the beginning of an initialization // block to avoid the quadratic behavior of repeatedly adding // fast properties. // The receiver is the argument to the runtime call. It is the // first value pushed when the reference was loaded to the // frame. frame_->PushElementAt(target.size() - 1); Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); } if (node->ends_initialization_block()) { // Add an extra copy of the receiver to the frame, so that it can be // converted back to fast case after the assignment. ASSERT(target.type() == Reference::NAMED || target.type() == Reference::KEYED); if (target.type() == Reference::NAMED) { frame_->Dup(); // Dup target receiver on stack. } else { ASSERT(target.type() == Reference::KEYED); Result temp = frame_->Pop(); frame_->Dup(); frame_->Push(&temp); } } if (node->op() == Token::ASSIGN || node->op() == Token::INIT_VAR || node->op() == Token::INIT_CONST) { Load(node->value()); } else { // Assignment is a compound assignment. Literal* literal = node->value()->AsLiteral(); bool overwrite_value = (node->value()->AsBinaryOperation() != NULL && node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); Variable* right_var = node->value()->AsVariableProxy()->AsVariable(); // There are two cases where the target is not read in the right hand // side, that are easy to test for: the right hand side is a literal, // or the right hand side is a different variable. TakeValue invalidates // the target, with an implicit promise that it will be written to again // before it is read. if (literal != NULL || (right_var != NULL && right_var != var)) { target.TakeValue(); } else { target.GetValue(); } Load(node->value()); GenericBinaryOperation(node->binary_op(), node->type(), overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } if (var != NULL && var->mode() == Variable::CONST && node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) { // Assignment ignored - leave the value on the stack. UnloadReference(&target); } else { CodeForSourcePosition(node->position()); if (node->op() == Token::INIT_CONST) { // Dynamic constant initializations must use the function context // and initialize the actual constant declared. Dynamic variable // initializations are simply assignments and use SetValue. target.SetValue(CONST_INIT); } else { target.SetValue(NOT_CONST_INIT); } if (node->ends_initialization_block()) { ASSERT(target.type() == Reference::UNLOADED); // End of initialization block. Revert to fast case. The // argument to the runtime call is the extra copy of the receiver, // which is below the value of the assignment. // Swap the receiver and the value of the assignment expression. Result lhs = frame_->Pop(); Result receiver = frame_->Pop(); frame_->Push(&lhs); frame_->Push(&receiver); Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); } } } } void CodeGenerator::VisitThrow(Throw* node) { Comment cmnt(masm_, "[ Throw"); Load(node->exception()); Result result = frame_->CallRuntime(Runtime::kThrow, 1); frame_->Push(&result); } void CodeGenerator::VisitProperty(Property* node) { Comment cmnt(masm_, "[ Property"); Reference property(this, node); property.GetValue(); } void CodeGenerator::VisitCall(Call* node) { Comment cmnt(masm_, "[ Call"); ZoneList* args = node->arguments(); // Check if the function is a variable or a property. Expression* function = node->expression(); Variable* var = function->AsVariableProxy()->AsVariable(); Property* property = function->AsProperty(); // ------------------------------------------------------------------------ // Fast-case: Use inline caching. // --- // According to ECMA-262, section 11.2.3, page 44, the function to call // must be resolved after the arguments have been evaluated. The IC code // automatically handles this by loading the arguments before the function // is resolved in cache misses (this also holds for megamorphic calls). // ------------------------------------------------------------------------ if (var != NULL && var->is_possibly_eval()) { // ---------------------------------- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed // ---------------------------------- // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. // Prepare the stack for the call to the resolved function. Load(function); // Allocate a frame slot for the receiver. frame_->Push(Factory::undefined_value()); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Prepare the stack for the call to ResolvePossiblyDirectEval. frame_->PushElementAt(arg_count + 1); if (arg_count > 0) { frame_->PushElementAt(arg_count); } else { frame_->Push(Factory::undefined_value()); } // Push the receiver. frame_->PushParameterAt(-1); // Resolve the call. Result result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); // The runtime call returns a pair of values in rax (function) and // rdx (receiver). Touch up the stack with the right values. Result receiver = allocator_->Allocate(rdx); frame_->SetElementAt(arg_count + 1, &result); frame_->SetElementAt(arg_count, &receiver); receiver.Unuse(); // Call the function. CodeForSourcePosition(node->position()); InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); result = frame_->CallStub(&call_function, arg_count + 1); // Restore the context and overwrite the function on the stack with // the result. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &result); } else if (var != NULL && !var->is_this() && var->is_global()) { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is global // ---------------------------------- // Pass the global object as the receiver and let the IC stub // patch the stack to use the global proxy as 'this' in the // invoked function. LoadGlobal(); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Push the name of the function on the frame. frame_->Push(var->name()); // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, arg_count, loop_nesting()); frame_->RestoreContextRegister(); // Replace the function on the stack with the result. frame_->Push(&result); } else if (var != NULL && var->slot() != NULL && var->slot()->type() == Slot::LOOKUP) { // ---------------------------------- // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj // ---------------------------------- // Load the function from the context. Sync the frame so we can // push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); frame_->EmitPush(var->name()); frame_->CallRuntime(Runtime::kLoadContextSlot, 2); // The runtime call returns a pair of values in rax and rdx. The // looked-up function is in rax and the receiver is in rdx. These // register references are not ref counted here. We spill them // eagerly since they are arguments to an inevitable call (and are // not sharable by the arguments). ASSERT(!allocator()->is_used(rax)); frame_->EmitPush(rax); // Load the receiver. ASSERT(!allocator()->is_used(rdx)); frame_->EmitPush(rdx); // Call the function. CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); } else if (property != NULL) { // Check if the key is a literal string. Literal* literal = property->key()->AsLiteral(); if (literal != NULL && literal->handle()->IsSymbol()) { // ------------------------------------------------------------------ // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' // ------------------------------------------------------------------ Handle name = Handle::cast(literal->handle()); if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && name->IsEqualTo(CStrVector("apply")) && args->length() == 2 && args->at(1)->AsVariableProxy() != NULL && args->at(1)->AsVariableProxy()->IsArguments()) { // Use the optimized Function.prototype.apply that avoids // allocating lazily allocated arguments objects. CallApplyLazy(property->obj(), args->at(0), args->at(1)->AsVariableProxy(), node->position()); } else { // Push the receiver onto the frame. Load(property->obj()); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Push the name of the function onto the frame. frame_->Push(name); // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting()); frame_->RestoreContextRegister(); frame_->Push(&result); } } else { // ------------------------------------------- // JavaScript example: 'array[index](1, 2, 3)' // ------------------------------------------- // Load the function to call from the property through a reference. if (property->is_synthetic()) { Reference ref(this, property, false); ref.GetValue(); // Use global object as receiver. LoadGlobalReceiver(); } else { Reference ref(this, property, false); ASSERT(ref.size() == 2); Result key = frame_->Pop(); frame_->Dup(); // Duplicate the receiver. frame_->Push(&key); ref.GetValue(); // Top of frame contains function to call, with duplicate copy of // receiver below it. Swap them. Result function = frame_->Pop(); Result receiver = frame_->Pop(); frame_->Push(&function); frame_->Push(&receiver); } // Call the function. CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); } } else { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is not global // ---------------------------------- // Load the function. Load(function); // Pass the global proxy as the receiver. LoadGlobalReceiver(); // Call the function. CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); } } void CodeGenerator::VisitCallNew(CallNew* node) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. This is different from ordinary calls, where the // actual function to call is resolved after the arguments have been // evaluated. // Compute function to call and use the global object as the // receiver. There is no need to use the global proxy here because // it will always be replaced with a newly allocated object. Load(node->expression()); LoadGlobal(); // Push the arguments ("left-to-right") on the stack. ZoneList* args = node->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. CodeForSourcePosition(node->position()); Result result = frame_->CallConstructor(arg_count); // Replace the function on the stack with the result. frame_->SetElementAt(0, &result); } void CodeGenerator::VisitCallRuntime(CallRuntime* node) { if (CheckForInlineRuntimeCall(node)) { return; } ZoneList* args = node->arguments(); Comment cmnt(masm_, "[ CallRuntime"); Runtime::Function* function = node->function(); if (function == NULL) { // Push the builtins object found in the current global object. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ movq(temp.reg(), GlobalObject()); __ movq(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); frame_->Push(&temp); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } if (function == NULL) { // Call the JS runtime function. frame_->Push(node->name()); Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting_); frame_->RestoreContextRegister(); frame_->Push(&answer); } else { // Call the C runtime function. Result answer = frame_->CallRuntime(function, arg_count); frame_->Push(&answer); } } void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { Comment cmnt(masm_, "[ UnaryOperation"); Token::Value op = node->op(); if (op == Token::NOT) { // Swap the true and false targets but keep the same actual label // as the fall through. destination()->Invert(); LoadCondition(node->expression(), destination(), true); // Swap the labels back. destination()->Invert(); } else if (op == Token::DELETE) { Property* property = node->expression()->AsProperty(); if (property != NULL) { Load(property->obj()); Load(property->key()); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); if (variable != NULL) { Slot* slot = variable->slot(); if (variable->is_global()) { LoadGlobal(); frame_->Push(variable->name()); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } else if (slot != NULL && slot->type() == Slot::LOOKUP) { // Call the runtime to look up the context holding the named // variable. Sync the virtual frame eagerly so we can push the // arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); frame_->EmitPush(variable->name()); Result context = frame_->CallRuntime(Runtime::kLookupContext, 2); ASSERT(context.is_register()); frame_->EmitPush(context.reg()); context.Unuse(); frame_->EmitPush(variable->name()); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } // Default: Result of deleting non-global, not dynamically // introduced variables is false. frame_->Push(Factory::false_value()); } else { // Default: Result of deleting expressions is true. Load(node->expression()); // may have side-effects frame_->SetElementAt(0, Factory::true_value()); } } else if (op == Token::TYPEOF) { // Special case for loading the typeof expression; see comment on // LoadTypeofExpression(). LoadTypeofExpression(node->expression()); Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); frame_->Push(&answer); } else if (op == Token::VOID) { Expression* expression = node->expression(); if (expression && expression->AsLiteral() && ( expression->AsLiteral()->IsTrue() || expression->AsLiteral()->IsFalse() || expression->AsLiteral()->handle()->IsNumber() || expression->AsLiteral()->handle()->IsString() || expression->AsLiteral()->handle()->IsJSRegExp() || expression->AsLiteral()->IsNull())) { // Omit evaluating the value of the primitive literal. // It will be discarded anyway, and can have no side effect. frame_->Push(Factory::undefined_value()); } else { Load(node->expression()); frame_->SetElementAt(0, Factory::undefined_value()); } } else { bool overwrite = (node->expression()->AsBinaryOperation() != NULL && node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); Load(node->expression()); switch (op) { case Token::NOT: case Token::DELETE: case Token::TYPEOF: UNREACHABLE(); // handled above break; case Token::SUB: { GenericUnaryOpStub stub(Token::SUB, overwrite); Result operand = frame_->Pop(); Result answer = frame_->CallStub(&stub, &operand); frame_->Push(&answer); break; } case Token::BIT_NOT: { // Smi check. JumpTarget smi_label; JumpTarget continue_label; Result operand = frame_->Pop(); operand.ToRegister(); Condition is_smi = masm_->CheckSmi(operand.reg()); smi_label.Branch(is_smi, &operand); GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); Result answer = frame_->CallStub(&stub, &operand); continue_label.Jump(&answer); smi_label.Bind(&answer); answer.ToRegister(); frame_->Spill(answer.reg()); __ SmiNot(answer.reg(), answer.reg()); continue_label.Bind(&answer); frame_->Push(&answer); break; } case Token::ADD: { // Smi check. JumpTarget continue_label; Result operand = frame_->Pop(); operand.ToRegister(); Condition is_smi = masm_->CheckSmi(operand.reg()); continue_label.Branch(is_smi, &operand); frame_->Push(&operand); Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION, 1); continue_label.Bind(&answer); frame_->Push(&answer); break; } default: UNREACHABLE(); } } } // The value in dst was optimistically incremented or decremented. The // result overflowed or was not smi tagged. Undo the operation, call // into the runtime to convert the argument to a number, and call the // specialized add or subtract stub. The result is left in dst. class DeferredPrefixCountOperation: public DeferredCode { public: DeferredPrefixCountOperation(Register dst, bool is_increment) : dst_(dst), is_increment_(is_increment) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; bool is_increment_; }; void DeferredPrefixCountOperation::Generate() { __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ push(rax); __ Push(Smi::FromInt(1)); if (is_increment_) { __ CallRuntime(Runtime::kNumberAdd, 2); } else { __ CallRuntime(Runtime::kNumberSub, 2); } if (!dst_.is(rax)) __ movq(dst_, rax); } // The value in dst was optimistically incremented or decremented. The // result overflowed or was not smi tagged. Undo the operation and call // into the runtime to convert the argument to a number. Update the // original value in old. Call the specialized add or subtract stub. // The result is left in dst. class DeferredPostfixCountOperation: public DeferredCode { public: DeferredPostfixCountOperation(Register dst, Register old, bool is_increment) : dst_(dst), old_(old), is_increment_(is_increment) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; Register old_; bool is_increment_; }; void DeferredPostfixCountOperation::Generate() { __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); // Save the result of ToNumber to use as the old value. __ push(rax); // Call the runtime for the addition or subtraction. __ push(rax); __ Push(Smi::FromInt(1)); if (is_increment_) { __ CallRuntime(Runtime::kNumberAdd, 2); } else { __ CallRuntime(Runtime::kNumberSub, 2); } if (!dst_.is(rax)) __ movq(dst_, rax); __ pop(old_); } void CodeGenerator::VisitCountOperation(CountOperation* node) { Comment cmnt(masm_, "[ CountOperation"); bool is_postfix = node->is_postfix(); bool is_increment = node->op() == Token::INC; Variable* var = node->expression()->AsVariableProxy()->AsVariable(); bool is_const = (var != NULL && var->mode() == Variable::CONST); // Postfix operations need a stack slot under the reference to hold // the old value while the new value is being stored. This is so that // in the case that storing the new value requires a call, the old // value will be in the frame to be spilled. if (is_postfix) frame_->Push(Smi::FromInt(0)); // A constant reference is not saved to, so the reference is not a // compound assignment reference. { Reference target(this, node->expression(), !is_const); if (target.is_illegal()) { // Spoof the virtual frame to have the expected height (one higher // than on entry). if (!is_postfix) frame_->Push(Smi::FromInt(0)); return; } target.TakeValue(); Result new_value = frame_->Pop(); new_value.ToRegister(); Result old_value; // Only allocated in the postfix case. if (is_postfix) { // Allocate a temporary to preserve the old value. old_value = allocator_->Allocate(); ASSERT(old_value.is_valid()); __ movq(old_value.reg(), new_value.reg()); } // Ensure the new value is writable. frame_->Spill(new_value.reg()); DeferredCode* deferred = NULL; if (is_postfix) { deferred = new DeferredPostfixCountOperation(new_value.reg(), old_value.reg(), is_increment); } else { deferred = new DeferredPrefixCountOperation(new_value.reg(), is_increment); } __ JumpIfNotSmi(new_value.reg(), deferred->entry_label()); if (is_increment) { __ SmiAddConstant(kScratchRegister, new_value.reg(), Smi::FromInt(1), deferred->entry_label()); } else { __ SmiSubConstant(kScratchRegister, new_value.reg(), Smi::FromInt(1), deferred->entry_label()); } __ movq(new_value.reg(), kScratchRegister); deferred->BindExit(); // Postfix: store the old value in the allocated slot under the // reference. if (is_postfix) frame_->SetElementAt(target.size(), &old_value); frame_->Push(&new_value); // Non-constant: update the reference. if (!is_const) target.SetValue(NOT_CONST_INIT); } // Postfix: drop the new value and use the old. if (is_postfix) frame_->Drop(); } void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { // TODO(X64): This code was copied verbatim from codegen-ia32. // Either find a reason to change it or move it to a shared location. Comment cmnt(masm_, "[ BinaryOperation"); Token::Value op = node->op(); // According to ECMA-262 section 11.11, page 58, the binary logical // operators must yield the result of one of the two expressions // before any ToBoolean() conversions. This means that the value // produced by a && or || operator is not necessarily a boolean. // NOTE: If the left hand side produces a materialized value (not // control flow), we force the right hand side to do the same. This // is necessary because we assume that if we get control flow on the // last path out of an expression we got it on all paths. if (op == Token::AND) { JumpTarget is_true; ControlDestination dest(&is_true, destination()->false_target(), true); LoadCondition(node->left(), &dest, false); if (dest.false_was_fall_through()) { // The current false target was used as the fall-through. If // there are no dangling jumps to is_true then the left // subexpression was unconditionally false. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_true.is_linked()) { // We need to compile the right subexpression. If the jump to // the current false target was a forward jump then we have a // valid frame, we have just bound the false target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->false_target()->Unuse(); destination()->false_target()->Jump(); } is_true.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have actually just jumped to or bound the current false // target but the current control destination is not marked as // used. destination()->Use(false); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_true // was just bound), so the right is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_true // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'false' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&pop_and_continue, &exit, true); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_true.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } else if (op == Token::OR) { JumpTarget is_false; ControlDestination dest(destination()->true_target(), &is_false, false); LoadCondition(node->left(), &dest, false); if (dest.true_was_fall_through()) { // The current true target was used as the fall-through. If // there are no dangling jumps to is_false then the left // subexpression was unconditionally true. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_false.is_linked()) { // We need to compile the right subexpression. If the jump to // the current true target was a forward jump then we have a // valid frame, we have just bound the true target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->true_target()->Unuse(); destination()->true_target()->Jump(); } is_false.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have just jumped to or bound the current true target but // the current control destination is not marked as used. destination()->Use(true); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_false // was just bound), so the right is free to do so as well. LoadCondition(node->right(), destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_false // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'true' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&exit, &pop_and_continue, false); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_false.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } else { // NOTE: The code below assumes that the slow cases (calls to runtime) // never return a constant/immutable object. OverwriteMode overwrite_mode = NO_OVERWRITE; if (node->left()->AsBinaryOperation() != NULL && node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_LEFT; } else if (node->right()->AsBinaryOperation() != NULL && node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_RIGHT; } Load(node->left()); Load(node->right()); GenericBinaryOperation(node->op(), node->type(), overwrite_mode); } } void CodeGenerator::VisitCompareOperation(CompareOperation* node) { Comment cmnt(masm_, "[ CompareOperation"); // Get the expressions from the node. Expression* left = node->left(); Expression* right = node->right(); Token::Value op = node->op(); // To make typeof testing for natives implemented in JavaScript really // efficient, we generate special code for expressions of the form: // 'typeof == '. UnaryOperation* operation = left->AsUnaryOperation(); if ((op == Token::EQ || op == Token::EQ_STRICT) && (operation != NULL && operation->op() == Token::TYPEOF) && (right->AsLiteral() != NULL && right->AsLiteral()->handle()->IsString())) { Handle check(Handle::cast(right->AsLiteral()->handle())); // Load the operand and move it to a register. LoadTypeofExpression(operation->expression()); Result answer = frame_->Pop(); answer.ToRegister(); if (check->Equals(Heap::number_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->true_target()->Branch(is_smi); frame_->Spill(answer.reg()); __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::string_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); // It can be an undetectable string object. __ movq(kScratchRegister, FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE); answer.Unuse(); destination()->Split(below); // Unsigned byte comparison needed. } else if (check->Equals(Heap::boolean_symbol())) { __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex); destination()->true_target()->Branch(equal); __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::undefined_symbol())) { __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex); destination()->true_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); // It can be an undetectable object. __ movq(kScratchRegister, FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); answer.Unuse(); destination()->Split(not_zero); } else if (check->Equals(Heap::function_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); frame_->Spill(answer.reg()); __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); destination()->true_target()->Branch(equal); // Regular expressions are callable so typeof == 'function'. __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::object_symbol())) { Condition is_smi = masm_->CheckSmi(answer.reg()); destination()->false_target()->Branch(is_smi); __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex); destination()->true_target()->Branch(equal); // Regular expressions are typeof == 'function', not 'object'. __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister); destination()->false_target()->Branch(equal); // It can be an undetectable object. __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE); destination()->false_target()->Branch(below); __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); answer.Unuse(); destination()->Split(below_equal); } else { // Uncommon case: typeof testing against a string literal that is // never returned from the typeof operator. answer.Unuse(); destination()->Goto(false); } return; } Condition cc = no_condition; bool strict = false; switch (op) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: cc = equal; break; case Token::LT: cc = less; break; case Token::GT: cc = greater; break; case Token::LTE: cc = less_equal; break; case Token::GTE: cc = greater_equal; break; case Token::IN: { Load(left); Load(right); Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); frame_->Push(&answer); // push the result return; } case Token::INSTANCEOF: { Load(left); Load(right); InstanceofStub stub; Result answer = frame_->CallStub(&stub, 2); answer.ToRegister(); __ testq(answer.reg(), answer.reg()); answer.Unuse(); destination()->Split(zero); return; } default: UNREACHABLE(); } Load(left); Load(right); Comparison(node, cc, strict, destination()); } void CodeGenerator::VisitThisFunction(ThisFunction* node) { frame_->PushFunction(); } void CodeGenerator::GenerateArguments(ZoneList* args) { ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in rdx and the formal // parameter count in rax. Load(args->at(0)); Result key = frame_->Pop(); // Explicitly create a constant result. Result count(Handle(Smi::FromInt(scope()->num_parameters()))); // Call the shared stub to get to arguments[key]. ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); Result result = frame_->CallStub(&stub, &key, &count); frame_->Push(&result); } void CodeGenerator::GenerateIsArray(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition is_smi = masm_->CheckSmi(value.reg()); destination()->false_target()->Branch(is_smi); // It is a heap object - get map. // Check if the object is a JS array or not. __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister); value.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsRegExp(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition is_smi = masm_->CheckSmi(value.reg()); destination()->false_target()->Branch(is_smi); // It is a heap object - get map. // Check if the object is a regexp. __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister); value.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsObject(ZoneList* args) { // This generates a fast version of: // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); Condition is_smi = masm_->CheckSmi(obj.reg()); destination()->false_target()->Branch(is_smi); __ Move(kScratchRegister, Factory::null_value()); __ cmpq(obj.reg(), kScratchRegister); destination()->true_target()->Branch(equal); __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE); destination()->false_target()->Branch(less); __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); obj.Unuse(); destination()->Split(less_equal); } void CodeGenerator::GenerateIsFunction(ZoneList* args) { // This generates a fast version of: // (%_ClassOf(arg) === 'Function') ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); Condition is_smi = masm_->CheckSmi(obj.reg()); destination()->false_target()->Branch(is_smi); __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); obj.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsUndetectableObject(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result obj = frame_->Pop(); obj.ToRegister(); Condition is_smi = masm_->CheckSmi(obj.reg()); destination()->false_target()->Branch(is_smi); __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); __ movzxbl(kScratchRegister, FieldOperand(kScratchRegister, Map::kBitFieldOffset)); __ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable)); obj.Unuse(); destination()->Split(not_zero); } void CodeGenerator::GenerateIsConstructCall(ZoneList* args) { ASSERT(args->length() == 0); // Get the frame pointer for the calling frame. Result fp = allocator()->Allocate(); __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &check_frame_marker); __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), Smi::FromInt(StackFrame::CONSTRUCT)); fp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateArgumentsLength(ZoneList* args) { ASSERT(args->length() == 0); // ArgumentsAccessStub takes the parameter count as an input argument // in register eax. Create a constant result for it. Result count(Handle(Smi::FromInt(scope()->num_parameters()))); // Call the shared stub to get to the arguments.length. ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH); Result result = frame_->CallStub(&stub, &count); frame_->Push(&result); } void CodeGenerator::GenerateFastCharCodeAt(ZoneList* args) { Comment(masm_, "[ GenerateFastCharCodeAt"); ASSERT(args->length() == 2); Label slow_case; Label end; Label not_a_flat_string; Label try_again_with_new_string; Label ascii_string; Label got_char_code; Load(args->at(0)); Load(args->at(1)); Result index = frame_->Pop(); Result object = frame_->Pop(); // Get register rcx to use as shift amount later. Result shift_amount; if (object.is_register() && object.reg().is(rcx)) { Result fresh = allocator_->Allocate(); shift_amount = object; object = fresh; __ movq(object.reg(), rcx); } if (index.is_register() && index.reg().is(rcx)) { Result fresh = allocator_->Allocate(); shift_amount = index; index = fresh; __ movq(index.reg(), rcx); } // There could be references to ecx in the frame. Allocating will // spill them, otherwise spill explicitly. if (shift_amount.is_valid()) { frame_->Spill(rcx); } else { shift_amount = allocator()->Allocate(rcx); } ASSERT(shift_amount.is_register()); ASSERT(shift_amount.reg().is(rcx)); ASSERT(allocator_->count(rcx) == 1); // We will mutate the index register and possibly the object register. // The case where they are somehow the same register is handled // because we only mutate them in the case where the receiver is a // heap object and the index is not. object.ToRegister(); index.ToRegister(); frame_->Spill(object.reg()); frame_->Spill(index.reg()); // We need a single extra temporary register. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // There is no virtual frame effect from here up to the final result // push. // If the receiver is a smi trigger the slow case. __ JumpIfSmi(object.reg(), &slow_case); // If the index is negative or non-smi trigger the slow case. __ JumpIfNotPositiveSmi(index.reg(), &slow_case); // Untag the index. __ SmiToInteger32(index.reg(), index.reg()); __ bind(&try_again_with_new_string); // Fetch the instance type of the receiver into rcx. __ movq(rcx, FieldOperand(object.reg(), HeapObject::kMapOffset)); __ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the slow case. __ testb(rcx, Immediate(kIsNotStringMask)); __ j(not_zero, &slow_case); // Check for index out of range. __ cmpl(index.reg(), FieldOperand(object.reg(), String::kLengthOffset)); __ j(greater_equal, &slow_case); // Reload the instance type (into the temp register this time).. __ movq(temp.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset)); __ movzxbl(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); // We need special handling for non-flat strings. ASSERT_EQ(0, kSeqStringTag); __ testb(temp.reg(), Immediate(kStringRepresentationMask)); __ j(not_zero, ¬_a_flat_string); // Check for 1-byte or 2-byte string. ASSERT_EQ(0, kTwoByteStringTag); __ testb(temp.reg(), Immediate(kStringEncodingMask)); __ j(not_zero, &ascii_string); // 2-byte string. // Load the 2-byte character code into the temp register. __ movzxwl(temp.reg(), FieldOperand(object.reg(), index.reg(), times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&got_char_code); // ASCII string. __ bind(&ascii_string); // Load the byte into the temp register. __ movzxbl(temp.reg(), FieldOperand(object.reg(), index.reg(), times_1, SeqAsciiString::kHeaderSize)); __ bind(&got_char_code); __ Integer32ToSmi(temp.reg(), temp.reg()); __ jmp(&end); // Handle non-flat strings. __ bind(¬_a_flat_string); __ and_(temp.reg(), Immediate(kStringRepresentationMask)); __ cmpb(temp.reg(), Immediate(kConsStringTag)); __ j(not_equal, &slow_case); // ConsString. // Check that the right hand side is the empty string (ie if this is really a // flat string in a cons string). If that is not the case we would rather go // to the runtime system now, to flatten the string. __ movq(temp.reg(), FieldOperand(object.reg(), ConsString::kSecondOffset)); __ CompareRoot(temp.reg(), Heap::kEmptyStringRootIndex); __ j(not_equal, &slow_case); // Get the first of the two strings. __ movq(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset)); __ jmp(&try_again_with_new_string); __ bind(&slow_case); // Move the undefined value into the result register, which will // trigger the slow case. __ LoadRoot(temp.reg(), Heap::kUndefinedValueRootIndex); __ bind(&end); frame_->Push(&temp); } void CodeGenerator::GenerateCharFromCode(ZoneList* args) { Comment(masm_, "[ GenerateCharFromCode"); ASSERT(args->length() == 1); Load(args->at(0)); Result code = frame_->Pop(); code.ToRegister(); ASSERT(code.is_valid()); Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); JumpTarget slow_case; JumpTarget exit; // Fast case of Heap::LookupSingleCharacterStringFromCode. Condition is_smi = __ CheckSmi(code.reg()); slow_case.Branch(NegateCondition(is_smi), &code, not_taken); __ SmiToInteger32(kScratchRegister, code.reg()); __ cmpl(kScratchRegister, Immediate(String::kMaxAsciiCharCode)); slow_case.Branch(above, &code, not_taken); __ Move(temp.reg(), Factory::single_character_string_cache()); __ movq(temp.reg(), FieldOperand(temp.reg(), kScratchRegister, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(temp.reg(), Heap::kUndefinedValueRootIndex); slow_case.Branch(equal, &code, not_taken); code.Unuse(); frame_->Push(&temp); exit.Jump(); slow_case.Bind(&code); frame_->Push(&code); Result result = frame_->CallRuntime(Runtime::kCharFromCode, 1); frame_->Push(&result); exit.Bind(); } void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition positive_smi = masm_->CheckPositiveSmi(value.reg()); value.Unuse(); destination()->Split(positive_smi); } // Generates the Math.pow method - currently just calls runtime. void CodeGenerator::GenerateMathPow(ZoneList* args) { ASSERT(args->length() == 2); Load(args->at(0)); Load(args->at(1)); Result res = frame_->CallRuntime(Runtime::kMath_pow, 2); frame_->Push(&res); } // Generates the Math.sqrt method - currently just calls runtime. void CodeGenerator::GenerateMathSqrt(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result res = frame_->CallRuntime(Runtime::kMath_sqrt, 1); frame_->Push(&res); } void CodeGenerator::GenerateIsSmi(ZoneList* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); Condition is_smi = masm_->CheckSmi(value.reg()); value.Unuse(); destination()->Split(is_smi); } void CodeGenerator::GenerateLog(ZoneList* args) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ASSERT_EQ(args->length(), 3); #ifdef ENABLE_LOGGING_AND_PROFILING if (ShouldGenerateLog(args->at(0))) { Load(args->at(1)); Load(args->at(2)); frame_->CallRuntime(Runtime::kLog, 2); } #endif // Finally, we're expected to leave a value on the top of the stack. frame_->Push(Factory::undefined_value()); } void CodeGenerator::GenerateObjectEquals(ZoneList* args) { ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. Load(args->at(0)); Load(args->at(1)); Result right = frame_->Pop(); Result left = frame_->Pop(); right.ToRegister(); left.ToRegister(); __ cmpq(right.reg(), left.reg()); right.Unuse(); left.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateGetFramePointer(ZoneList* args) { ASSERT(args->length() == 0); // RBP value is aligned, so it should be tagged as a smi (without necesarily // being padded as a smi, so it should not be treated as a smi.). ASSERT(kSmiTag == 0 && kSmiTagSize == 1); Result rbp_as_smi = allocator_->Allocate(); ASSERT(rbp_as_smi.is_valid()); __ movq(rbp_as_smi.reg(), rbp); frame_->Push(&rbp_as_smi); } void CodeGenerator::GenerateRandomPositiveSmi(ZoneList* args) { ASSERT(args->length() == 0); frame_->SpillAll(); __ push(rsi); static const int num_arguments = 0; __ PrepareCallCFunction(num_arguments); // Call V8::RandomPositiveSmi(). __ CallCFunction(ExternalReference::random_positive_smi_function(), num_arguments); __ pop(rsi); Result result = allocator_->Allocate(rax); frame_->Push(&result); } void CodeGenerator::GenerateRegExpExec(ZoneList* args) { ASSERT_EQ(args->length(), 4); // Load the arguments on the stack and call the runtime system. Load(args->at(0)); Load(args->at(1)); Load(args->at(2)); Load(args->at(3)); RegExpExecStub stub; Result result = frame_->CallStub(&stub, 4); frame_->Push(&result); } void CodeGenerator::GenerateNumberToString(ZoneList* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and jump to the runtime. Load(args->at(0)); NumberToStringStub stub; Result result = frame_->CallStub(&stub, 1); frame_->Push(&result); } void CodeGenerator::GenerateMathSin(ZoneList* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and jump to the runtime. Load(args->at(0)); Result answer = frame_->CallRuntime(Runtime::kMath_sin, 1); frame_->Push(&answer); } void CodeGenerator::GenerateMathCos(ZoneList* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and jump to the runtime. Load(args->at(0)); Result answer = frame_->CallRuntime(Runtime::kMath_cos, 1); frame_->Push(&answer); } void CodeGenerator::GenerateStringAdd(ZoneList* args) { ASSERT_EQ(2, args->length()); Load(args->at(0)); Load(args->at(1)); StringAddStub stub(NO_STRING_ADD_FLAGS); Result answer = frame_->CallStub(&stub, 2); frame_->Push(&answer); } void CodeGenerator::GenerateSubString(ZoneList* args) { ASSERT_EQ(3, args->length()); Load(args->at(0)); Load(args->at(1)); Load(args->at(2)); SubStringStub stub; Result answer = frame_->CallStub(&stub, 3); frame_->Push(&answer); } void CodeGenerator::GenerateStringCompare(ZoneList* args) { ASSERT_EQ(2, args->length()); Load(args->at(0)); Load(args->at(1)); StringCompareStub stub; Result answer = frame_->CallStub(&stub, 2); frame_->Push(&answer); } void CodeGenerator::GenerateClassOf(ZoneList* args) { ASSERT(args->length() == 1); JumpTarget leave, null, function, non_function_constructor; Load(args->at(0)); // Load the object. Result obj = frame_->Pop(); obj.ToRegister(); frame_->Spill(obj.reg()); // If the object is a smi, we return null. Condition is_smi = masm_->CheckSmi(obj.reg()); null.Branch(is_smi); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg()); null.Branch(below); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); function.Branch(equal); // Check if the constructor in the map is a function. __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); non_function_constructor.Branch(not_equal); // The obj register now contains the constructor function. Grab the // instance class name from there. __ movq(obj.reg(), FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); __ movq(obj.reg(), FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); frame_->Push(&obj); leave.Jump(); // Functions have class 'Function'. function.Bind(); frame_->Push(Factory::function_class_symbol()); leave.Jump(); // Objects with a non-function constructor have class 'Object'. non_function_constructor.Bind(); frame_->Push(Factory::Object_symbol()); leave.Jump(); // Non-JS objects have class null. null.Bind(); frame_->Push(Factory::null_value()); // All done. leave.Bind(); } void CodeGenerator::GenerateSetValueOf(ZoneList* args) { ASSERT(args->length() == 2); JumpTarget leave; Load(args->at(0)); // Load the object. Load(args->at(1)); // Load the value. Result value = frame_->Pop(); Result object = frame_->Pop(); value.ToRegister(); object.ToRegister(); // if (object->IsSmi()) return value. Condition is_smi = masm_->CheckSmi(object.reg()); leave.Branch(is_smi, &value); // It is a heap object - get its map. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); // if (!object->IsJSValue()) return value. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); leave.Branch(not_equal, &value); // Store the value. __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. Result duplicate_value = allocator_->Allocate(); ASSERT(duplicate_value.is_valid()); __ movq(duplicate_value.reg(), value.reg()); // The object register is also overwritten by the write barrier and // possibly aliased in the frame. frame_->Spill(object.reg()); __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), scratch.reg()); object.Unuse(); scratch.Unuse(); duplicate_value.Unuse(); // Leave. leave.Bind(&value); frame_->Push(&value); } void CodeGenerator::GenerateValueOf(ZoneList* args) { ASSERT(args->length() == 1); JumpTarget leave; Load(args->at(0)); // Load the object. frame_->Dup(); Result object = frame_->Pop(); object.ToRegister(); ASSERT(object.is_valid()); // if (object->IsSmi()) return object. Condition is_smi = masm_->CheckSmi(object.reg()); leave.Branch(is_smi); // It is a heap object - get map. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // if (!object->IsJSValue()) return object. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); leave.Branch(not_equal); __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); object.Unuse(); frame_->SetElementAt(0, &temp); leave.Bind(); } // ----------------------------------------------------------------------------- // CodeGenerator implementation of Expressions void CodeGenerator::LoadAndSpill(Expression* expression) { // TODO(x64): No architecture specific code. Move to shared location. ASSERT(in_spilled_code()); set_in_spilled_code(false); Load(expression); frame_->SpillAll(); set_in_spilled_code(true); } void CodeGenerator::Load(Expression* expr) { #ifdef DEBUG int original_height = frame_->height(); #endif ASSERT(!in_spilled_code()); JumpTarget true_target; JumpTarget false_target; ControlDestination dest(&true_target, &false_target, true); LoadCondition(expr, &dest, false); if (dest.false_was_fall_through()) { // The false target was just bound. JumpTarget loaded; frame_->Push(Factory::false_value()); // There may be dangling jumps to the true target. if (true_target.is_linked()) { loaded.Jump(); true_target.Bind(); frame_->Push(Factory::true_value()); loaded.Bind(); } } else if (dest.is_used()) { // There is true, and possibly false, control flow (with true as // the fall through). JumpTarget loaded; frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); false_target.Bind(); frame_->Push(Factory::false_value()); loaded.Bind(); } } else { // We have a valid value on top of the frame, but we still may // have dangling jumps to the true and false targets from nested // subexpressions (eg, the left subexpressions of the // short-circuited boolean operators). ASSERT(has_valid_frame()); if (true_target.is_linked() || false_target.is_linked()) { JumpTarget loaded; loaded.Jump(); // Don't lose the current TOS. if (true_target.is_linked()) { true_target.Bind(); frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); } } if (false_target.is_linked()) { false_target.Bind(); frame_->Push(Factory::false_value()); } loaded.Bind(); } } ASSERT(has_valid_frame()); ASSERT(frame_->height() == original_height + 1); } // Emit code to load the value of an expression to the top of the // frame. If the expression is boolean-valued it may be compiled (or // partially compiled) into control flow to the control destination. // If force_control is true, control flow is forced. void CodeGenerator::LoadCondition(Expression* x, ControlDestination* dest, bool force_control) { ASSERT(!in_spilled_code()); int original_height = frame_->height(); { CodeGenState new_state(this, dest); Visit(x); // If we hit a stack overflow, we may not have actually visited // the expression. In that case, we ensure that we have a // valid-looking frame state because we will continue to generate // code as we unwind the C++ stack. // // It's possible to have both a stack overflow and a valid frame // state (eg, a subexpression overflowed, visiting it returned // with a dummied frame state, and visiting this expression // returned with a normal-looking state). if (HasStackOverflow() && !dest->is_used() && frame_->height() == original_height) { dest->Goto(true); } } if (force_control && !dest->is_used()) { // Convert the TOS value into flow to the control destination. // TODO(X64): Make control flow to control destinations work. ToBoolean(dest); } ASSERT(!(force_control && !dest->is_used())); ASSERT(dest->is_used() || frame_->height() == original_height + 1); } // ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and // convert it to a boolean in the condition code register or jump to // 'false_target'/'true_target' as appropriate. void CodeGenerator::ToBoolean(ControlDestination* dest) { Comment cmnt(masm_, "[ ToBoolean"); // The value to convert should be popped from the frame. Result value = frame_->Pop(); value.ToRegister(); if (value.is_number()) { Comment cmnt(masm_, "ONLY_NUMBER"); // Fast case if NumberInfo indicates only numbers. if (FLAG_debug_code) { __ AbortIfNotNumber(value.reg(), "ToBoolean operand is not a number."); } // Smi => false iff zero. __ SmiCompare(value.reg(), Smi::FromInt(0)); dest->false_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(value.reg()); dest->true_target()->Branch(is_smi); __ fldz(); __ fld_d(FieldOperand(value.reg(), HeapNumber::kValueOffset)); __ FCmp(); value.Unuse(); dest->Split(not_zero); } else { // Fast case checks. // 'false' => false. __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex); dest->false_target()->Branch(equal); // 'true' => true. __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex); dest->true_target()->Branch(equal); // 'undefined' => false. __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex); dest->false_target()->Branch(equal); // Smi => false iff zero. __ SmiCompare(value.reg(), Smi::FromInt(0)); dest->false_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(value.reg()); dest->true_target()->Branch(is_smi); // Call the stub for all other cases. frame_->Push(&value); // Undo the Pop() from above. ToBooleanStub stub; Result temp = frame_->CallStub(&stub, 1); // Convert the result to a condition code. __ testq(temp.reg(), temp.reg()); temp.Unuse(); dest->Split(not_equal); } } void CodeGenerator::LoadUnsafeSmi(Register target, Handle value) { UNIMPLEMENTED(); // TODO(X64): Implement security policy for loads of smis. } bool CodeGenerator::IsUnsafeSmi(Handle value) { return false; } //------------------------------------------------------------------------------ // CodeGenerator implementation of variables, lookups, and stores. Reference::Reference(CodeGenerator* cgen, Expression* expression, bool persist_after_get) : cgen_(cgen), expression_(expression), type_(ILLEGAL), persist_after_get_(persist_after_get) { cgen->LoadReference(this); } Reference::~Reference() { ASSERT(is_unloaded() || is_illegal()); } void CodeGenerator::LoadReference(Reference* ref) { // References are loaded from both spilled and unspilled code. Set the // state to unspilled to allow that (and explicitly spill after // construction at the construction sites). bool was_in_spilled_code = in_spilled_code_; in_spilled_code_ = false; Comment cmnt(masm_, "[ LoadReference"); Expression* e = ref->expression(); Property* property = e->AsProperty(); Variable* var = e->AsVariableProxy()->AsVariable(); if (property != NULL) { // The expression is either a property or a variable proxy that rewrites // to a property. Load(property->obj()); if (property->key()->IsPropertyName()) { ref->set_type(Reference::NAMED); } else { Load(property->key()); ref->set_type(Reference::KEYED); } } else if (var != NULL) { // The expression is a variable proxy that does not rewrite to a // property. Global variables are treated as named property references. if (var->is_global()) { LoadGlobal(); ref->set_type(Reference::NAMED); } else { ASSERT(var->slot() != NULL); ref->set_type(Reference::SLOT); } } else { // Anything else is a runtime error. Load(e); frame_->CallRuntime(Runtime::kThrowReferenceError, 1); } in_spilled_code_ = was_in_spilled_code; } void CodeGenerator::UnloadReference(Reference* ref) { // Pop a reference from the stack while preserving TOS. Comment cmnt(masm_, "[ UnloadReference"); frame_->Nip(ref->size()); ref->set_unloaded(); } Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { // Currently, this assertion will fail if we try to assign to // a constant variable that is constant because it is read-only // (such as the variable referring to a named function expression). // We need to implement assignments to read-only variables. // Ideally, we should do this during AST generation (by converting // such assignments into expression statements); however, in general // we may not be able to make the decision until past AST generation, // that is when the entire program is known. ASSERT(slot != NULL); int index = slot->index(); switch (slot->type()) { case Slot::PARAMETER: return frame_->ParameterAt(index); case Slot::LOCAL: return frame_->LocalAt(index); case Slot::CONTEXT: { // Follow the context chain if necessary. ASSERT(!tmp.is(rsi)); // do not overwrite context register Register context = rsi; int chain_length = scope()->ContextChainLength(slot->var()->scope()); for (int i = 0; i < chain_length; i++) { // Load the closure. // (All contexts, even 'with' contexts, have a closure, // and it is the same for all contexts inside a function. // There is no need to go to the function context first.) __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); // Load the function context (which is the incoming, outer context). __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); context = tmp; } // We may have a 'with' context now. Get the function context. // (In fact this mov may never be the needed, since the scope analysis // may not permit a direct context access in this case and thus we are // always at a function context. However it is safe to dereference be- // cause the function context of a function context is itself. Before // deleting this mov we should try to create a counter-example first, // though...) __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp, index); } default: UNREACHABLE(); return Operand(rsp, 0); } } Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, Result tmp, JumpTarget* slow) { ASSERT(slot->type() == Slot::CONTEXT); ASSERT(tmp.is_register()); Register context = rsi; for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } } // Check that last extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp.reg(), slot->index()); } void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); JumpTarget slow; JumpTarget done; Result value; // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow); // If there was no control flow to slow, we can exit early. if (!slow.is_linked()) { frame_->Push(&value); return; } done.Jump(&value); } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); // Only generate the fast case for locals that rewrite to slots. // This rules out argument loads. if (potential_slot != NULL) { // Allocate a fresh register to use as a temp in // ContextSlotOperandCheckExtensions and to hold the result // value. value = allocator_->Allocate(); ASSERT(value.is_valid()); __ movq(value.reg(), ContextSlotOperandCheckExtensions(potential_slot, value, &slow)); if (potential_slot->var()->mode() == Variable::CONST) { __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex); done.Branch(not_equal, &value); __ LoadRoot(value.reg(), Heap::kUndefinedValueRootIndex); } // There is always control flow to slow from // ContextSlotOperandCheckExtensions so we have to jump around // it. done.Jump(&value); } } slow.Bind(); // A runtime call is inevitable. We eagerly sync frame elements // to memory so that we can push the arguments directly into place // on top of the frame. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT); frame_->EmitPush(kScratchRegister); if (typeof_state == INSIDE_TYPEOF) { value = frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); } else { value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2); } done.Bind(&value); frame_->Push(&value); } else if (slot->var()->mode() == Variable::CONST) { // Const slots may contain 'the hole' value (the constant hasn't been // initialized yet) which needs to be converted into the 'undefined' // value. // // We currently spill the virtual frame because constants use the // potentially unsafe direct-frame access of SlotOperand. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Load const"); JumpTarget exit; __ movq(rcx, SlotOperand(slot, rcx)); __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); exit.Branch(not_equal); __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex); exit.Bind(); frame_->EmitPush(rcx); } else if (slot->type() == Slot::PARAMETER) { frame_->PushParameterAt(slot->index()); } else if (slot->type() == Slot::LOCAL) { frame_->PushLocalAt(slot->index()); } else { // The other remaining slot types (LOOKUP and GLOBAL) cannot reach // here. // // The use of SlotOperand below is safe for an unspilled frame // because it will always be a context slot. ASSERT(slot->type() == Slot::CONTEXT); Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ movq(temp.reg(), SlotOperand(slot, temp.reg())); frame_->Push(&temp); } } void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, TypeofState state) { LoadFromSlot(slot, state); // Bail out quickly if we're not using lazy arguments allocation. if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; // ... or if the slot isn't a non-parameter arguments slot. if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; // Pop the loaded value from the stack. Result value = frame_->Pop(); // If the loaded value is a constant, we know if the arguments // object has been lazily loaded yet. if (value.is_constant()) { if (value.handle()->IsTheHole()) { Result arguments = StoreArgumentsObject(false); frame_->Push(&arguments); } else { frame_->Push(&value); } return; } // The loaded value is in a register. If it is the sentinel that // indicates that we haven't loaded the arguments object yet, we // need to do it now. JumpTarget exit; __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex); frame_->Push(&value); exit.Branch(not_equal); Result arguments = StoreArgumentsObject(false); frame_->SetElementAt(0, &arguments); exit.Bind(); } void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); // For now, just do a runtime call. Since the call is inevitable, // we eagerly sync the virtual frame so we can directly push the // arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(rsi); frame_->EmitPush(slot->var()->name()); Result value; if (init_state == CONST_INIT) { // Same as the case for a normal store, but ignores attribute // (e.g. READ_ONLY) of context slot so that we can initialize const // properties (introduced via eval("const foo = (some expr);")). Also, // uses the current function context instead of the top context. // // Note that we must declare the foo upon entry of eval(), via a // context slot declaration, but we cannot initialize it at the same // time, because the const declaration may be at the end of the eval // code (sigh...) and the const variable may have been used before // (where its value is 'undefined'). Thus, we can only do the // initialization when we actually encounter the expression and when // the expression operands are defined and valid, and thus we need the // split into 2 operations: declaration of the context slot followed // by initialization. value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); } else { value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3); } // Storing a variable must keep the (new) value on the expression // stack. This is necessary for compiling chained assignment // expressions. frame_->Push(&value); } else { ASSERT(!slot->var()->is_dynamic()); JumpTarget exit; if (init_state == CONST_INIT) { ASSERT(slot->var()->mode() == Variable::CONST); // Only the first const initialization must be executed (the slot // still contains 'the hole' value). When the assignment is executed, // the code is identical to a normal store (see below). // // We spill the frame in the code below because the direct-frame // access of SlotOperand is potentially unsafe with an unspilled // frame. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Init const"); __ movq(rcx, SlotOperand(slot, rcx)); __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); exit.Branch(not_equal); } // We must execute the store. Storing a variable must keep the (new) // value on the stack. This is necessary for compiling assignment // expressions. // // Note: We will reach here even with slot->var()->mode() == // Variable::CONST because of const declarations which will initialize // consts to 'the hole' value and by doing so, end up calling this code. if (slot->type() == Slot::PARAMETER) { frame_->StoreToParameterAt(slot->index()); } else if (slot->type() == Slot::LOCAL) { frame_->StoreToLocalAt(slot->index()); } else { // The other slot types (LOOKUP and GLOBAL) cannot reach here. // // The use of SlotOperand below is safe for an unspilled frame // because the slot is a context slot. ASSERT(slot->type() == Slot::CONTEXT); frame_->Dup(); Result value = frame_->Pop(); value.ToRegister(); Result start = allocator_->Allocate(); ASSERT(start.is_valid()); __ movq(SlotOperand(slot, start.reg()), value.reg()); // RecordWrite may destroy the value registers. // // TODO(204): Avoid actually spilling when the value is not // needed (probably the common case). frame_->Spill(value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); // The results start, value, and temp are unused by going out of // scope. } exit.Bind(); } } Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( Slot* slot, TypeofState typeof_state, JumpTarget* slow) { // Check that no extension objects have been created by calls to // eval from the current scope to the global scope. Register context = rsi; Result tmp = allocator_->Allocate(); ASSERT(tmp.is_valid()); // All non-reserved registers were available. Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } // Load next context in chain. __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. Label next, fast; if (!context.is(tmp.reg())) { __ movq(tmp.reg(), context); } // Load map for comparison into register, outside loop. __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex); __ bind(&next); // Terminate at global context. __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset)); __ j(equal, &fast); // Check that extension is NULL. __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal); // Load next context in chain. __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); __ jmp(&next); __ bind(&fast); } tmp.Unuse(); // All extension objects were empty and it is safe to use a global // load IC call. LoadGlobal(); frame_->Push(slot->var()->name()); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Result answer = frame_->CallLoadIC(mode); // A test rax instruction following the call signals that the inobject // property case was inlined. Ensure that there is not a test rax // instruction here. masm_->nop(); // Discard the global object. The result is in answer. frame_->Drop(); return answer; } void CodeGenerator::LoadGlobal() { if (in_spilled_code()) { frame_->EmitPush(GlobalObject()); } else { Result temp = allocator_->Allocate(); __ movq(temp.reg(), GlobalObject()); frame_->Push(&temp); } } void CodeGenerator::LoadGlobalReceiver() { Result temp = allocator_->Allocate(); Register reg = temp.reg(); __ movq(reg, GlobalObject()); __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); frame_->Push(&temp); } ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; ASSERT(scope()->arguments_shadow() != NULL); // We don't want to do lazy arguments allocation for functions that // have heap-allocated contexts, because it interfers with the // uninitialized const tracking in the context objects. return (scope()->num_heap_slots() > 0) ? EAGER_ARGUMENTS_ALLOCATION : LAZY_ARGUMENTS_ALLOCATION; } Result CodeGenerator::StoreArgumentsObject(bool initial) { ArgumentsAllocationMode mode = ArgumentsMode(); ASSERT(mode != NO_ARGUMENTS_ALLOCATION); Comment cmnt(masm_, "[ store arguments object"); if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { // When using lazy arguments allocation, we store the hole value // as a sentinel indicating that the arguments object hasn't been // allocated yet. frame_->Push(Factory::the_hole_value()); } else { ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); frame_->PushFunction(); frame_->PushReceiverSlotAddress(); frame_->Push(Smi::FromInt(scope()->num_parameters())); Result result = frame_->CallStub(&stub, 3); frame_->Push(&result); } Variable* arguments = scope()->arguments()->var(); Variable* shadow = scope()->arguments_shadow()->var(); ASSERT(arguments != NULL && arguments->slot() != NULL); ASSERT(shadow != NULL && shadow->slot() != NULL); JumpTarget done; bool skip_arguments = false; if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { // We have to skip storing into the arguments slot if it has // already been written to. This can happen if the a function // has a local variable named 'arguments'. LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); Result probe = frame_->Pop(); if (probe.is_constant()) { // We have to skip updating the arguments object if it has been // assigned a proper value. skip_arguments = !probe.handle()->IsTheHole(); } else { __ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex); probe.Unuse(); done.Branch(not_equal); } } if (!skip_arguments) { StoreToSlot(arguments->slot(), NOT_CONST_INIT); if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); } StoreToSlot(shadow->slot(), NOT_CONST_INIT); return frame_->Pop(); } void CodeGenerator::LoadTypeofExpression(Expression* expr) { // Special handling of identifiers as subexpressions of typeof. Variable* variable = expr->AsVariableProxy()->AsVariable(); if (variable != NULL && !variable->is_this() && variable->is_global()) { // For a global variable we build the property reference // . and perform a (regular non-contextual) property // load to make sure we do not get reference errors. Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); Literal key(variable->name()); Property property(&global, &key, RelocInfo::kNoPosition); Reference ref(this, &property); ref.GetValue(); } else if (variable != NULL && variable->slot() != NULL) { // For a variable that rewrites to a slot, we signal it is the immediate // subexpression of a typeof. LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF); } else { // Anything else can be handled normally. Load(expr); } } void CodeGenerator::Comparison(AstNode* node, Condition cc, bool strict, ControlDestination* dest) { // Strict only makes sense for equality comparisons. ASSERT(!strict || cc == equal); Result left_side; Result right_side; // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. if (cc == greater || cc == less_equal) { cc = ReverseCondition(cc); left_side = frame_->Pop(); right_side = frame_->Pop(); } else { right_side = frame_->Pop(); left_side = frame_->Pop(); } ASSERT(cc == less || cc == equal || cc == greater_equal); // If either side is a constant smi, optimize the comparison. bool left_side_constant_smi = left_side.is_constant() && left_side.handle()->IsSmi(); bool right_side_constant_smi = right_side.is_constant() && right_side.handle()->IsSmi(); bool left_side_constant_null = left_side.is_constant() && left_side.handle()->IsNull(); bool right_side_constant_null = right_side.is_constant() && right_side.handle()->IsNull(); if (left_side_constant_smi || right_side_constant_smi) { if (left_side_constant_smi && right_side_constant_smi) { // Trivial case, comparing two constants. int left_value = Smi::cast(*left_side.handle())->value(); int right_value = Smi::cast(*right_side.handle())->value(); switch (cc) { case less: dest->Goto(left_value < right_value); break; case equal: dest->Goto(left_value == right_value); break; case greater_equal: dest->Goto(left_value >= right_value); break; default: UNREACHABLE(); } } else { // Only one side is a constant Smi. // If left side is a constant Smi, reverse the operands. // Since one side is a constant Smi, conversion order does not matter. if (left_side_constant_smi) { Result temp = left_side; left_side = right_side; right_side = temp; cc = ReverseCondition(cc); // This may reintroduce greater or less_equal as the value of cc. // CompareStub and the inline code both support all values of cc. } // Implement comparison against a constant Smi, inlining the case // where both sides are Smis. left_side.ToRegister(); Register left_reg = left_side.reg(); Handle right_val = right_side.handle(); // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_smi; Condition left_is_smi = masm_->CheckSmi(left_side.reg()); is_smi.Branch(left_is_smi); bool is_loop_condition = (node->AsExpression() != NULL) && node->AsExpression()->is_loop_condition(); if (!is_loop_condition && right_val->IsSmi()) { // Right side is a constant smi and left side has been checked // not to be a smi. JumpTarget not_number; __ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset), Factory::heap_number_map()); not_number.Branch(not_equal, &left_side); __ movsd(xmm1, FieldOperand(left_reg, HeapNumber::kValueOffset)); int value = Smi::cast(*right_val)->value(); if (value == 0) { __ xorpd(xmm0, xmm0); } else { Result temp = allocator()->Allocate(); __ movl(temp.reg(), Immediate(value)); __ cvtlsi2sd(xmm0, temp.reg()); temp.Unuse(); } __ ucomisd(xmm1, xmm0); // Jump to builtin for NaN. not_number.Branch(parity_even, &left_side); left_side.Unuse(); Condition double_cc = cc; switch (cc) { case less: double_cc = below; break; case equal: double_cc = equal; break; case less_equal: double_cc = below_equal; break; case greater: double_cc = above; break; case greater_equal: double_cc = above_equal; break; default: UNREACHABLE(); } dest->true_target()->Branch(double_cc); dest->false_target()->Jump(); not_number.Bind(&left_side); } // Setup and call the compare stub. CompareStub stub(cc, strict); Result result = frame_->CallStub(&stub, &left_side, &right_side); result.ToRegister(); __ testq(result.reg(), result.reg()); result.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_smi.Bind(); left_side = Result(left_reg); right_side = Result(right_val); // Test smi equality and comparison by signed int comparison. // Both sides are smis, so we can use an Immediate. __ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle())); left_side.Unuse(); right_side.Unuse(); dest->Split(cc); } } else if (cc == equal && (left_side_constant_null || right_side_constant_null)) { // To make null checks efficient, we check if either the left side or // the right side is the constant 'null'. // If so, we optimize the code by inlining a null check instead of // calling the (very) general runtime routine for checking equality. Result operand = left_side_constant_null ? right_side : left_side; right_side.Unuse(); left_side.Unuse(); operand.ToRegister(); __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex); if (strict) { operand.Unuse(); dest->Split(equal); } else { // The 'null' value is only equal to 'undefined' if using non-strict // comparisons. dest->true_target()->Branch(equal); __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex); dest->true_target()->Branch(equal); Condition is_smi = masm_->CheckSmi(operand.reg()); dest->false_target()->Branch(is_smi); // It can be an undetectable object. // Use a scratch register in preference to spilling operand.reg(). Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ movq(temp.reg(), FieldOperand(operand.reg(), HeapObject::kMapOffset)); __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); temp.Unuse(); operand.Unuse(); dest->Split(not_zero); } } else { // Neither side is a constant Smi or null. // If either side is a non-smi constant, skip the smi check. bool known_non_smi = (left_side.is_constant() && !left_side.handle()->IsSmi()) || (right_side.is_constant() && !right_side.handle()->IsSmi()); left_side.ToRegister(); right_side.ToRegister(); if (known_non_smi) { // When non-smi, call out to the compare stub. CompareStub stub(cc, strict); Result answer = frame_->CallStub(&stub, &left_side, &right_side); // The result is a Smi, which is negative, zero, or positive. __ SmiTest(answer.reg()); // Sets both zero and sign flag. answer.Unuse(); dest->Split(cc); } else { // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_smi; Register left_reg = left_side.reg(); Register right_reg = right_side.reg(); Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg); is_smi.Branch(both_smi); // When non-smi, call out to the compare stub. CompareStub stub(cc, strict); Result answer = frame_->CallStub(&stub, &left_side, &right_side); __ SmiTest(answer.reg()); // Sets both zero and sign flags. answer.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_smi.Bind(); left_side = Result(left_reg); right_side = Result(right_reg); __ SmiCompare(left_side.reg(), right_side.reg()); right_side.Unuse(); left_side.Unuse(); dest->Split(cc); } } } class DeferredInlineBinaryOperation: public DeferredCode { public: DeferredInlineBinaryOperation(Token::Value op, Register dst, Register left, Register right, OverwriteMode mode) : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) { set_comment("[ DeferredInlineBinaryOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register left_; Register right_; OverwriteMode mode_; }; void DeferredInlineBinaryOperation::Generate() { GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, left_, right_); if (!dst_.is(rax)) __ movq(dst_, rax); } void CodeGenerator::GenericBinaryOperation(Token::Value op, StaticType* type, OverwriteMode overwrite_mode) { Comment cmnt(masm_, "[ BinaryOperation"); Comment cmnt_token(masm_, Token::String(op)); if (op == Token::COMMA) { // Simply discard left value. frame_->Nip(1); return; } Result right = frame_->Pop(); Result left = frame_->Pop(); if (op == Token::ADD) { bool left_is_string = left.is_constant() && left.handle()->IsString(); bool right_is_string = right.is_constant() && right.handle()->IsString(); if (left_is_string || right_is_string) { frame_->Push(&left); frame_->Push(&right); Result answer; if (left_is_string) { if (right_is_string) { // TODO(lrn): if both are constant strings // -- do a compile time cons, if allocation during codegen is allowed. answer = frame_->CallRuntime(Runtime::kStringAdd, 2); } else { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2); } } else if (right_is_string) { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2); } frame_->Push(&answer); return; } // Neither operand is known to be a string. } bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); bool right_is_non_smi_constant = right.is_constant() && !right.handle()->IsSmi(); if (left_is_smi_constant && right_is_smi_constant) { // Compute the constant result at compile time, and leave it on the frame. int left_int = Smi::cast(*left.handle())->value(); int right_int = Smi::cast(*right.handle())->value(); if (FoldConstantSmis(op, left_int, right_int)) return; } // Get number type of left and right sub-expressions. NumberInfo operands_type = NumberInfo::Combine(left.number_info(), right.number_info()); Result answer; if (left_is_non_smi_constant || right_is_non_smi_constant) { GenericBinaryOpStub stub(op, overwrite_mode, NO_SMI_CODE_IN_STUB, operands_type); answer = stub.GenerateCall(masm_, frame_, &left, &right); } else if (right_is_smi_constant) { answer = ConstantSmiBinaryOperation(op, &left, right.handle(), type, false, overwrite_mode); } else if (left_is_smi_constant) { answer = ConstantSmiBinaryOperation(op, &right, left.handle(), type, true, overwrite_mode); } else { // Set the flags based on the operation, type and loop nesting level. // Bit operations always assume they likely operate on Smis. Still only // generate the inline Smi check code if this operation is part of a loop. // For all other operations only inline the Smi check code for likely smis // if the operation is part of a loop. if (loop_nesting() > 0 && (Token::IsBitOp(op) || type->IsLikelySmi())) { answer = LikelySmiBinaryOperation(op, &left, &right, overwrite_mode); } else { GenericBinaryOpStub stub(op, overwrite_mode, NO_GENERIC_BINARY_FLAGS, operands_type); answer = stub.GenerateCall(masm_, frame_, &left, &right); } } // Set NumberInfo of result according to the operation performed. // We rely on the fact that smis have a 32 bit payload on x64. ASSERT(kSmiValueSize == 32); NumberInfo result_type = NumberInfo::Unknown(); switch (op) { case Token::COMMA: result_type = right.number_info(); break; case Token::OR: case Token::AND: // Result type can be either of the two input types. result_type = operands_type; break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: // Result is always a smi. result_type = NumberInfo::Smi(); break; case Token::SAR: case Token::SHL: // Result is always a smi. result_type = NumberInfo::Smi(); break; case Token::SHR: // Result of x >>> y is always a smi if y >= 1, otherwise a number. result_type = (right.is_constant() && right.handle()->IsSmi() && Smi::cast(*right.handle())->value() >= 1) ? NumberInfo::Smi() : NumberInfo::Number(); break; case Token::ADD: // Result could be a string or a number. Check types of inputs. result_type = operands_type.IsNumber() ? NumberInfo::Number() : NumberInfo::Unknown(); break; case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: // Result is always a number. result_type = NumberInfo::Number(); break; default: UNREACHABLE(); } answer.set_number_info(result_type); frame_->Push(&answer); } // Emit a LoadIC call to get the value from receiver and leave it in // dst. The receiver register is restored after the call. class DeferredReferenceGetNamedValue: public DeferredCode { public: DeferredReferenceGetNamedValue(Register dst, Register receiver, Handle name) : dst_(dst), receiver_(receiver), name_(name) { set_comment("[ DeferredReferenceGetNamedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Handle name_; }; void DeferredReferenceGetNamedValue::Generate() { __ push(receiver_); __ Move(rcx, name_); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // The call must be followed by a test rax instruction to indicate // that the inobject property case was inlined. // // Store the delta to the map check instruction here in the test // instruction. Use masm_-> instead of the __ macro since the // latter can't return a value. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->testl(rax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::named_load_inline_miss, 1); if (!dst_.is(rax)) __ movq(dst_, rax); __ pop(receiver_); } void DeferredInlineSmiAdd::Generate() { GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(rax)) __ movq(dst_, rax); } void DeferredInlineSmiAddReversed::Generate() { GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, value_, dst_); if (!dst_.is(rax)) __ movq(dst_, rax); } void DeferredInlineSmiSub::Generate() { GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(rax)) __ movq(dst_, rax); } void DeferredInlineSmiOperation::Generate() { // For mod we don't generate all the Smi code inline. GenericBinaryOpStub stub( op_, overwrite_mode_, (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, src_, value_); if (!dst_.is(rax)) __ movq(dst_, rax); } Result CodeGenerator::ConstantSmiBinaryOperation(Token::Value op, Result* operand, Handle value, StaticType* type, bool reversed, OverwriteMode overwrite_mode) { // NOTE: This is an attempt to inline (a bit) more of the code for // some possible smi operations (like + and -) when (at least) one // of the operands is a constant smi. // Consumes the argument "operand". // TODO(199): Optimize some special cases of operations involving a // smi literal (multiply by 2, shift by 0, etc.). if (IsUnsafeSmi(value)) { Result unsafe_operand(value); if (reversed) { return LikelySmiBinaryOperation(op, &unsafe_operand, operand, overwrite_mode); } else { return LikelySmiBinaryOperation(op, operand, &unsafe_operand, overwrite_mode); } } // Get the literal value. Smi* smi_value = Smi::cast(*value); int int_value = smi_value->value(); Result answer; switch (op) { case Token::ADD: { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = NULL; if (reversed) { deferred = new DeferredInlineSmiAddReversed(operand->reg(), smi_value, overwrite_mode); } else { deferred = new DeferredInlineSmiAdd(operand->reg(), smi_value, overwrite_mode); } __ JumpIfNotSmi(operand->reg(), deferred->entry_label()); __ SmiAddConstant(operand->reg(), operand->reg(), smi_value, deferred->entry_label()); deferred->BindExit(); answer = *operand; break; } case Token::SUB: { if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(), smi_value, overwrite_mode); __ JumpIfNotSmi(operand->reg(), deferred->entry_label()); // A smi currently fits in a 32-bit Immediate. __ SmiSubConstant(operand->reg(), operand->reg(), smi_value, deferred->entry_label()); deferred->BindExit(); answer = *operand; } break; } case Token::SAR: if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ JumpIfNotSmi(operand->reg(), deferred->entry_label()); __ SmiShiftArithmeticRightConstant(operand->reg(), operand->reg(), shift_value); deferred->BindExit(); answer = *operand; } break; case Token::SHR: if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); __ JumpIfNotSmi(operand->reg(), deferred->entry_label()); __ SmiShiftLogicalRightConstant(answer.reg(), operand->reg(), shift_value, deferred->entry_label()); deferred->BindExit(); operand->Unuse(); } break; case Token::SHL: if (reversed) { Result constant_operand(value); answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); if (shift_value == 0) { // Spill operand so it can be overwritten in the slow case. frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ JumpIfNotSmi(operand->reg(), deferred->entry_label()); deferred->BindExit(); answer = *operand; } else { // Use a fresh temporary for nonzero shift values. answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); __ JumpIfNotSmi(operand->reg(), deferred->entry_label()); __ SmiShiftLeftConstant(answer.reg(), operand->reg(), shift_value, deferred->entry_label()); deferred->BindExit(); operand->Unuse(); } } break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: { operand->ToRegister(); frame_->Spill(operand->reg()); if (reversed) { // Bit operations with a constant smi are commutative. // We can swap left and right operands with no problem. // Swap left and right overwrite modes. 0->0, 1->2, 2->1. overwrite_mode = static_cast((2 * overwrite_mode) % 3); } DeferredCode* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ JumpIfNotSmi(operand->reg(), deferred->entry_label()); if (op == Token::BIT_AND) { __ SmiAndConstant(operand->reg(), operand->reg(), smi_value); } else if (op == Token::BIT_XOR) { if (int_value != 0) { __ SmiXorConstant(operand->reg(), operand->reg(), smi_value); } } else { ASSERT(op == Token::BIT_OR); if (int_value != 0) { __ SmiOrConstant(operand->reg(), operand->reg(), smi_value); } } deferred->BindExit(); answer = *operand; break; } // Generate inline code for mod of powers of 2 and negative powers of 2. case Token::MOD: if (!reversed && int_value != 0 && (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); // Check for negative or non-Smi left hand side. __ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label()); if (int_value < 0) int_value = -int_value; if (int_value == 1) { __ Move(operand->reg(), Smi::FromInt(0)); } else { __ SmiAndConstant(operand->reg(), operand->reg(), Smi::FromInt(int_value - 1)); } deferred->BindExit(); answer = *operand; break; // This break only applies if we generated code for MOD. } // Fall through if we did not find a power of 2 on the right hand side! // The next case must be the default. default: { Result constant_operand(value); if (reversed) { answer = LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { answer = LikelySmiBinaryOperation(op, operand, &constant_operand, overwrite_mode); } break; } } ASSERT(answer.is_valid()); return answer; } Result CodeGenerator::LikelySmiBinaryOperation(Token::Value op, Result* left, Result* right, OverwriteMode overwrite_mode) { Result answer; // Special handling of div and mod because they use fixed registers. if (op == Token::DIV || op == Token::MOD) { // We need rax as the quotient register, rdx as the remainder // register, neither left nor right in rax or rdx, and left copied // to rax. Result quotient; Result remainder; bool left_is_in_rax = false; // Step 1: get rax for quotient. if ((left->is_register() && left->reg().is(rax)) || (right->is_register() && right->reg().is(rax))) { // One or both is in rax. Use a fresh non-rdx register for // them. Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (fresh.reg().is(rdx)) { remainder = fresh; fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); } if (left->is_register() && left->reg().is(rax)) { quotient = *left; *left = fresh; left_is_in_rax = true; } if (right->is_register() && right->reg().is(rax)) { quotient = *right; *right = fresh; } __ movq(fresh.reg(), rax); } else { // Neither left nor right is in rax. quotient = allocator_->Allocate(rax); } ASSERT(quotient.is_register() && quotient.reg().is(rax)); ASSERT(!(left->is_register() && left->reg().is(rax))); ASSERT(!(right->is_register() && right->reg().is(rax))); // Step 2: get rdx for remainder if necessary. if (!remainder.is_valid()) { if ((left->is_register() && left->reg().is(rdx)) || (right->is_register() && right->reg().is(rdx))) { Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (left->is_register() && left->reg().is(rdx)) { remainder = *left; *left = fresh; } if (right->is_register() && right->reg().is(rdx)) { remainder = *right; *right = fresh; } __ movq(fresh.reg(), rdx); } else { // Neither left nor right is in rdx. remainder = allocator_->Allocate(rdx); } } ASSERT(remainder.is_register() && remainder.reg().is(rdx)); ASSERT(!(left->is_register() && left->reg().is(rdx))); ASSERT(!(right->is_register() && right->reg().is(rdx))); left->ToRegister(); right->ToRegister(); frame_->Spill(rax); frame_->Spill(rdx); // Check that left and right are smi tagged. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, (op == Token::DIV) ? rax : rdx, left->reg(), right->reg(), overwrite_mode); __ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label()); if (op == Token::DIV) { __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label()); deferred->BindExit(); left->Unuse(); right->Unuse(); answer = quotient; } else { ASSERT(op == Token::MOD); __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label()); deferred->BindExit(); left->Unuse(); right->Unuse(); answer = remainder; } ASSERT(answer.is_valid()); return answer; } // Special handling of shift operations because they use fixed // registers. if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { // Move left out of rcx if necessary. if (left->is_register() && left->reg().is(rcx)) { *left = allocator_->Allocate(); ASSERT(left->is_valid()); __ movq(left->reg(), rcx); } right->ToRegister(rcx); left->ToRegister(); ASSERT(left->is_register() && !left->reg().is(rcx)); ASSERT(right->is_register() && right->reg().is(rcx)); // We will modify right, it must be spilled. frame_->Spill(rcx); // Use a fresh answer register to avoid spilling the left operand. answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Check that both operands are smis using the answer register as a // temporary. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), rcx, overwrite_mode); __ movq(answer.reg(), left->reg()); __ or_(answer.reg(), rcx); __ JumpIfNotSmi(answer.reg(), deferred->entry_label()); // Perform the operation. switch (op) { case Token::SAR: __ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx); break; case Token::SHR: { __ SmiShiftLogicalRight(answer.reg(), left->reg(), rcx, deferred->entry_label()); break; } case Token::SHL: { __ SmiShiftLeft(answer.reg(), left->reg(), rcx, deferred->entry_label()); break; } default: UNREACHABLE(); } deferred->BindExit(); left->Unuse(); right->Unuse(); ASSERT(answer.is_valid()); return answer; } // Handle the other binary operations. left->ToRegister(); right->ToRegister(); // A newly allocated register answer is used to hold the answer. The // registers containing left and right are not modified so they don't // need to be spilled in the fast case. answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Perform the smi tag check. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), right->reg(), overwrite_mode); __ JumpIfNotBothSmi(left->reg(), right->reg(), deferred->entry_label()); switch (op) { case Token::ADD: __ SmiAdd(answer.reg(), left->reg(), right->reg(), deferred->entry_label()); break; case Token::SUB: __ SmiSub(answer.reg(), left->reg(), right->reg(), deferred->entry_label()); break; case Token::MUL: { __ SmiMul(answer.reg(), left->reg(), right->reg(), deferred->entry_label()); break; } case Token::BIT_OR: __ SmiOr(answer.reg(), left->reg(), right->reg()); break; case Token::BIT_AND: __ SmiAnd(answer.reg(), left->reg(), right->reg()); break; case Token::BIT_XOR: __ SmiXor(answer.reg(), left->reg(), right->reg()); break; default: UNREACHABLE(); break; } deferred->BindExit(); left->Unuse(); right->Unuse(); ASSERT(answer.is_valid()); return answer; } Result CodeGenerator::EmitKeyedLoad(bool is_global) { Comment cmnt(masm_, "[ Load from keyed Property"); // Inline array load code if inside of a loop. We do not know // the receiver map yet, so we initially generate the code with // a check against an invalid map. In the inline cache code, we // patch the map check if appropriate. if (loop_nesting() > 0) { Comment cmnt(masm_, "[ Inlined load from keyed Property"); Result key = frame_->Pop(); Result receiver = frame_->Pop(); key.ToRegister(); receiver.ToRegister(); // Use a fresh temporary to load the elements without destroying // the receiver which is needed for the deferred slow case. Result elements = allocator()->Allocate(); ASSERT(elements.is_valid()); // Use a fresh temporary for the index and later the loaded // value. Result index = allocator()->Allocate(); ASSERT(index.is_valid()); DeferredReferenceGetKeyedValue* deferred = new DeferredReferenceGetKeyedValue(index.reg(), receiver.reg(), key.reg(), is_global); // Check that the receiver is not a smi (only needed if this // is not a load from the global context) and that it has the // expected map. if (!is_global) { __ JumpIfSmi(receiver.reg(), deferred->entry_label()); } // Initially, use an invalid map. The map is patched in the IC // initialization code. __ bind(deferred->patch_site()); // Use masm-> here instead of the double underscore macro since extra // coverage code can interfere with the patching. Do not use // root array to load null_value, since it must be patched with // the expected receiver map. masm_->movq(kScratchRegister, Factory::null_value(), RelocInfo::EMBEDDED_OBJECT); masm_->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset), kScratchRegister); deferred->Branch(not_equal); // Check that the key is a non-negative smi. __ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label()); // Get the elements array from the receiver and check that it // is not a dictionary. __ movq(elements.reg(), FieldOperand(receiver.reg(), JSObject::kElementsOffset)); __ Cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset), Factory::fixed_array_map()); deferred->Branch(not_equal); // Shift the key to get the actual index value and check that // it is within bounds. __ SmiToInteger32(index.reg(), key.reg()); __ cmpl(index.reg(), FieldOperand(elements.reg(), FixedArray::kLengthOffset)); deferred->Branch(above_equal); // The index register holds the un-smi-tagged key. It has been // zero-extended to 64-bits, so it can be used directly as index in the // operand below. // Load and check that the result is not the hole. We could // reuse the index or elements register for the value. // // TODO(206): Consider whether it makes sense to try some // heuristic about which register to reuse. For example, if // one is rax, the we can reuse that one because the value // coming from the deferred code will be in rax. Result value = index; __ movq(value.reg(), Operand(elements.reg(), index.reg(), times_pointer_size, FixedArray::kHeaderSize - kHeapObjectTag)); elements.Unuse(); index.Unuse(); __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex); deferred->Branch(equal); __ IncrementCounter(&Counters::keyed_load_inline, 1); deferred->BindExit(); // Restore the receiver and key to the frame and push the // result on top of it. frame_->Push(&receiver); frame_->Push(&key); return value; } else { Comment cmnt(masm_, "[ Load from keyed Property"); RelocInfo::Mode mode = is_global ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; Result answer = frame_->CallKeyedLoadIC(mode); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed load. The explicit nop instruction is here because // the push that follows might be peep-hole optimized away. __ nop(); return answer; } } #undef __ #define __ ACCESS_MASM(masm) Handle Reference::GetName() { ASSERT(type_ == NAMED); Property* property = expression_->AsProperty(); if (property == NULL) { // Global variable reference treated as a named property reference. VariableProxy* proxy = expression_->AsVariableProxy(); ASSERT(proxy->AsVariable() != NULL); ASSERT(proxy->AsVariable()->is_global()); return proxy->name(); } else { Literal* raw_name = property->key()->AsLiteral(); ASSERT(raw_name != NULL); return Handle(String::cast(*raw_name->handle())); } } void Reference::GetValue() { ASSERT(!cgen_->in_spilled_code()); ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); // Record the source position for the property load. Property* property = expression_->AsProperty(); if (property != NULL) { cgen_->CodeForSourcePosition(property->position()); } switch (type_) { case SLOT: { Comment cmnt(masm, "[ Load from Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); break; } case NAMED: { Variable* var = expression_->AsVariableProxy()->AsVariable(); bool is_global = var != NULL; ASSERT(!is_global || var->is_global()); // Do not inline the inobject property case for loads from the global // object. Also do not inline for unoptimized code. This saves time // in the code generator. Unoptimized code is toplevel code or code // that is not in a loop. if (is_global || cgen_->scope()->is_global_scope() || cgen_->loop_nesting() == 0) { Comment cmnt(masm, "[ Load from named Property"); cgen_->frame()->Push(GetName()); RelocInfo::Mode mode = is_global ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; Result answer = cgen_->frame()->CallLoadIC(mode); // A test rax instruction following the call signals that the // inobject property case was inlined. Ensure that there is not // a test rax instruction here. __ nop(); cgen_->frame()->Push(&answer); } else { // Inline the inobject property case. Comment cmnt(masm, "[ Inlined named property load"); Result receiver = cgen_->frame()->Pop(); receiver.ToRegister(); Result value = cgen_->allocator()->Allocate(); ASSERT(value.is_valid()); // Cannot use r12 for receiver, because that changes // the distance between a call and a fixup location, // due to a special encoding of r12 as r/m in a ModR/M byte. if (receiver.reg().is(r12)) { // Swap receiver and value. __ movq(value.reg(), receiver.reg()); Result temp = receiver; receiver = value; value = temp; cgen_->frame()->Spill(value.reg()); // r12 may have been shared. } DeferredReferenceGetNamedValue* deferred = new DeferredReferenceGetNamedValue(value.reg(), receiver.reg(), GetName()); // Check that the receiver is a heap object. __ JumpIfSmi(receiver.reg(), deferred->entry_label()); __ bind(deferred->patch_site()); // This is the map check instruction that will be patched (so we can't // use the double underscore macro that may insert instructions). // Initially use an invalid map to force a failure. masm->Move(kScratchRegister, Factory::null_value()); masm->cmpq(FieldOperand(receiver.reg(), HeapObject::kMapOffset), kScratchRegister); // This branch is always a forwards branch so it's always a fixed // size which allows the assert below to succeed and patching to work. // Don't use deferred->Branch(...), since that might add coverage code. masm->j(not_equal, deferred->entry_label()); // The delta from the patch label to the load offset must be // statically known. ASSERT(masm->SizeOfCodeGeneratedSince(deferred->patch_site()) == LoadIC::kOffsetToLoadInstruction); // The initial (invalid) offset has to be large enough to force // a 32-bit instruction encoding to allow patching with an // arbitrary offset. Use kMaxInt (minus kHeapObjectTag). int offset = kMaxInt; masm->movq(value.reg(), FieldOperand(receiver.reg(), offset)); __ IncrementCounter(&Counters::named_load_inline, 1); deferred->BindExit(); cgen_->frame()->Push(&receiver); cgen_->frame()->Push(&value); } break; } case KEYED: { Comment cmnt(masm, "[ Load from keyed Property"); Variable* var = expression_->AsVariableProxy()->AsVariable(); bool is_global = var != NULL; ASSERT(!is_global || var->is_global()); Result value = cgen_->EmitKeyedLoad(is_global); cgen_->frame()->Push(&value); break; } default: UNREACHABLE(); } if (!persist_after_get_) { cgen_->UnloadReference(this); } } void Reference::TakeValue() { // TODO(X64): This function is completely architecture independent. Move // it somewhere shared. // For non-constant frame-allocated slots, we invalidate the value in the // slot. For all others, we fall back on GetValue. ASSERT(!cgen_->in_spilled_code()); ASSERT(!is_illegal()); if (type_ != SLOT) { GetValue(); return; } Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); if (slot->type() == Slot::LOOKUP || slot->type() == Slot::CONTEXT || slot->var()->mode() == Variable::CONST || slot->is_arguments()) { GetValue(); return; } // Only non-constant, frame-allocated parameters and locals can reach // here. Be careful not to use the optimizations for arguments // object access since it may not have been initialized yet. ASSERT(!slot->is_arguments()); if (slot->type() == Slot::PARAMETER) { cgen_->frame()->TakeParameterAt(slot->index()); } else { ASSERT(slot->type() == Slot::LOCAL); cgen_->frame()->TakeLocalAt(slot->index()); } ASSERT(persist_after_get_); // Do not unload the reference, because it is used in SetValue. } void Reference::SetValue(InitState init_state) { ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); switch (type_) { case SLOT: { Comment cmnt(masm, "[ Store to Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); cgen_->StoreToSlot(slot, init_state); cgen_->UnloadReference(this); break; } case NAMED: { Comment cmnt(masm, "[ Store to named Property"); cgen_->frame()->Push(GetName()); Result answer = cgen_->frame()->CallStoreIC(); cgen_->frame()->Push(&answer); set_unloaded(); break; } case KEYED: { Comment cmnt(masm, "[ Store to keyed Property"); // Generate inlined version of the keyed store if the code is in // a loop and the key is likely to be a smi. Property* property = expression()->AsProperty(); ASSERT(property != NULL); StaticType* key_smi_analysis = property->key()->type(); if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) { Comment cmnt(masm, "[ Inlined store to keyed Property"); // Get the receiver, key and value into registers. Result value = cgen_->frame()->Pop(); Result key = cgen_->frame()->Pop(); Result receiver = cgen_->frame()->Pop(); Result tmp = cgen_->allocator_->Allocate(); ASSERT(tmp.is_valid()); // Determine whether the value is a constant before putting it // in a register. bool value_is_constant = value.is_constant(); // Make sure that value, key and receiver are in registers. value.ToRegister(); key.ToRegister(); receiver.ToRegister(); DeferredReferenceSetKeyedValue* deferred = new DeferredReferenceSetKeyedValue(value.reg(), key.reg(), receiver.reg()); // Check that the value is a smi if it is not a constant. // We can skip the write barrier for smis and constants. if (!value_is_constant) { __ JumpIfNotSmi(value.reg(), deferred->entry_label()); } // Check that the key is a non-negative smi. __ JumpIfNotPositiveSmi(key.reg(), deferred->entry_label()); // Check that the receiver is not a smi. __ JumpIfSmi(receiver.reg(), deferred->entry_label()); // Check that the receiver is a JSArray. __ CmpObjectType(receiver.reg(), JS_ARRAY_TYPE, kScratchRegister); deferred->Branch(not_equal); // Check that the key is within bounds. Both the key and the // length of the JSArray are smis. __ SmiCompare(FieldOperand(receiver.reg(), JSArray::kLengthOffset), key.reg()); deferred->Branch(less_equal); // Get the elements array from the receiver and check that it // is a flat array (not a dictionary). __ movq(tmp.reg(), FieldOperand(receiver.reg(), JSObject::kElementsOffset)); // Bind the deferred code patch site to be able to locate the // fixed array map comparison. When debugging, we patch this // comparison to always fail so that we will hit the IC call // in the deferred code which will allow the debugger to // break for fast case stores. __ bind(deferred->patch_site()); // Avoid using __ to ensure the distance from patch_site // to the map address is always the same. masm->movq(kScratchRegister, Factory::fixed_array_map(), RelocInfo::EMBEDDED_OBJECT); __ cmpq(FieldOperand(tmp.reg(), HeapObject::kMapOffset), kScratchRegister); deferred->Branch(not_equal); // Store the value. SmiIndex index = masm->SmiToIndex(kScratchRegister, key.reg(), kPointerSizeLog2); __ movq(Operand(tmp.reg(), index.reg, index.scale, FixedArray::kHeaderSize - kHeapObjectTag), value.reg()); __ IncrementCounter(&Counters::keyed_store_inline, 1); deferred->BindExit(); cgen_->frame()->Push(&receiver); cgen_->frame()->Push(&key); cgen_->frame()->Push(&value); } else { Result answer = cgen_->frame()->CallKeyedStoreIC(); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed store. masm->nop(); cgen_->frame()->Push(&answer); } cgen_->UnloadReference(this); break; } default: UNREACHABLE(); } } void FastNewClosureStub::Generate(MacroAssembler* masm) { // Create a new closure from the given function info in new // space. Set the context to the current context in rsi. Label gc; __ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT); // Get the function info from the stack. __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Compute the function map in the current global context and set that // as the map of the allocated object. __ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); __ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX))); __ movq(FieldOperand(rax, JSObject::kMapOffset), rcx); // Initialize the rest of the function. We don't have to update the // write barrier because the allocated object is in new space. __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); __ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx); __ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx); __ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx); __ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi); __ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx); // Return and remove the on-stack parameter. __ ret(1 * kPointerSize); // Create a new closure through the slower runtime call. __ bind(&gc); __ pop(rcx); // Temporarily remove return address. __ pop(rdx); __ push(rsi); __ push(rdx); __ push(rcx); // Restore return address. __ TailCallRuntime(Runtime::kNewClosure, 2, 1); } void FastNewContextStub::Generate(MacroAssembler* masm) { // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, rax, rbx, rcx, &gc, TAG_OBJECT); // Get the function from the stack. __ movq(rcx, Operand(rsp, 1 * kPointerSize)); // Setup the object header. __ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex); __ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister); __ movl(FieldOperand(rax, Array::kLengthOffset), Immediate(length)); // Setup the fixed slots. __ xor_(rbx, rbx); // Set to NULL. __ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx); __ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax); __ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx); __ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx); // Copy the global object from the surrounding context. __ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx); // Initialize the rest of the slots to undefined. __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { __ movq(Operand(rax, Context::SlotOffset(i)), rbx); } // Return and remove the on-stack parameter. __ movq(rsi, rax); __ ret(1 * kPointerSize); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kNewContext, 1, 1); } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [rsp + kPointerSize]: constant elements. // [rsp + (2 * kPointerSize)]: literal index. // [rsp + (3 * kPointerSize)]: literals array. // All sizes here are multiples of kPointerSize. int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0; int size = JSArray::kSize + elements_size; // Load boilerplate object into rcx and check if we need to create a // boilerplate. Label slow_case; __ movq(rcx, Operand(rsp, 3 * kPointerSize)); __ movq(rax, Operand(rsp, 2 * kPointerSize)); SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); __ movq(rcx, FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(rcx, Heap::kUndefinedValueRootIndex); __ j(equal, &slow_case); // Allocate both the JS array and the elements array in one big // allocation. This avoids multiple limit checks. __ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT); // Copy the JS array part. for (int i = 0; i < JSArray::kSize; i += kPointerSize) { if ((i != JSArray::kElementsOffset) || (length_ == 0)) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rax, i), rbx); } } if (length_ > 0) { // Get hold of the elements array of the boilerplate and setup the // elements pointer in the resulting object. __ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset)); __ lea(rdx, Operand(rax, JSArray::kSize)); __ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx); // Copy the elements array. for (int i = 0; i < elements_size; i += kPointerSize) { __ movq(rbx, FieldOperand(rcx, i)); __ movq(FieldOperand(rdx, i), rbx); } } // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); } void ToBooleanStub::Generate(MacroAssembler* masm) { Label false_result, true_result, not_string; __ movq(rax, Operand(rsp, 1 * kPointerSize)); // 'null' => false. __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, &false_result); // Get the map and type of the heap object. // We don't use CmpObjectType because we manipulate the type field. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset)); // Undetectable => false. __ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset)); __ and_(rbx, Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, &false_result); // JavaScript object => true. __ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE)); __ j(above_equal, &true_result); // String value => false iff empty. __ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE)); __ j(above_equal, ¬_string); __ movl(rdx, FieldOperand(rax, String::kLengthOffset)); __ testl(rdx, rdx); __ j(zero, &false_result); __ jmp(&true_result); __ bind(¬_string); // HeapNumber => false iff +0, -0, or NaN. // These three cases set C3 when compared to zero in the FPU. __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &true_result); __ fldz(); // Load zero onto fp stack // Load heap-number double value onto fp stack __ fld_d(FieldOperand(rax, HeapNumber::kValueOffset)); __ FCmp(); __ j(zero, &false_result); // Fall through to |true_result|. // Return 1/0 for true/false in rax. __ bind(&true_result); __ movq(rax, Immediate(1)); __ ret(1 * kPointerSize); __ bind(&false_result); __ xor_(rax, rax); __ ret(1 * kPointerSize); } bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { Object* answer_object = Heap::undefined_value(); switch (op) { case Token::ADD: // Use intptr_t to detect overflow of 32-bit int. if (Smi::IsValid(static_cast(left) + right)) { answer_object = Smi::FromInt(left + right); } break; case Token::SUB: // Use intptr_t to detect overflow of 32-bit int. if (Smi::IsValid(static_cast(left) - right)) { answer_object = Smi::FromInt(left - right); } break; case Token::MUL: { double answer = static_cast(left) * right; if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { // If the product is zero and the non-zero factor is negative, // the spec requires us to return floating point negative zero. if (answer != 0 || (left + right) >= 0) { answer_object = Smi::FromInt(static_cast(answer)); } } } break; case Token::DIV: case Token::MOD: break; case Token::BIT_OR: answer_object = Smi::FromInt(left | right); break; case Token::BIT_AND: answer_object = Smi::FromInt(left & right); break; case Token::BIT_XOR: answer_object = Smi::FromInt(left ^ right); break; case Token::SHL: { int shift_amount = right & 0x1F; if (Smi::IsValid(left << shift_amount)) { answer_object = Smi::FromInt(left << shift_amount); } break; } case Token::SHR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; unsigned_left >>= shift_amount; if (unsigned_left <= static_cast(Smi::kMaxValue)) { answer_object = Smi::FromInt(unsigned_left); } break; } case Token::SAR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; if (left < 0) { // Perform arithmetic shift of a negative number by // complementing number, logical shifting, complementing again. unsigned_left = ~unsigned_left; unsigned_left >>= shift_amount; unsigned_left = ~unsigned_left; } else { unsigned_left >>= shift_amount; } ASSERT(Smi::IsValid(static_cast(unsigned_left))); answer_object = Smi::FromInt(static_cast(unsigned_left)); break; } default: UNREACHABLE(); break; } if (answer_object == Heap::undefined_value()) { return false; } frame_->Push(Handle(answer_object)); return true; } // End of CodeGenerator implementation. // Get the integer part of a heap number. Surprisingly, all this bit twiddling // is faster than using the built-in instructions on floating point registers. // Trashes rdi and rbx. Dest is rcx. Source cannot be rcx or one of the // trashed registers. void IntegerConvert(MacroAssembler* masm, Register source, bool use_sse3, Label* conversion_failure) { ASSERT(!source.is(rcx) && !source.is(rdi) && !source.is(rbx)); Label done, right_exponent, normal_exponent; Register scratch = rbx; Register scratch2 = rdi; // Get exponent word. __ movl(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); // Get exponent alone in scratch2. __ movl(scratch2, scratch); __ and_(scratch2, Immediate(HeapNumber::kExponentMask)); if (use_sse3) { CpuFeatures::Scope scope(SSE3); // Check whether the exponent is too big for a 64 bit signed integer. static const uint32_t kTooBigExponent = (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; __ cmpl(scratch2, Immediate(kTooBigExponent)); __ j(greater_equal, conversion_failure); // Load x87 register with heap number. __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); // Reserve space for 64 bit answer. __ subq(rsp, Immediate(sizeof(uint64_t))); // Nolint. // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(rsp, 0)); __ movl(rcx, Operand(rsp, 0)); // Load low word of answer into rcx. __ addq(rsp, Immediate(sizeof(uint64_t))); // Nolint. } else { // Load rcx with zero. We use this either for the final shift or // for the answer. __ xor_(rcx, rcx); // Check whether the exponent matches a 32 bit signed int that cannot be // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the // exponent is 30 (biased). This is the exponent that we are fastest at and // also the highest exponent we can handle here. const uint32_t non_smi_exponent = (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; __ cmpl(scratch2, Immediate(non_smi_exponent)); // If we have a match of the int32-but-not-Smi exponent then skip some // logic. __ j(equal, &right_exponent); // If the exponent is higher than that then go to slow case. This catches // numbers that don't fit in a signed int32, infinities and NaNs. __ j(less, &normal_exponent); { // Handle a big exponent. The only reason we have this code is that the // >>> operator has a tendency to generate numbers with an exponent of 31. const uint32_t big_non_smi_exponent = (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; __ cmpl(scratch2, Immediate(big_non_smi_exponent)); __ j(not_equal, conversion_failure); // We have the big exponent, typically from >>>. This means the number is // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. __ movl(scratch2, scratch); __ and_(scratch2, Immediate(HeapNumber::kMantissaMask)); // Put back the implicit 1. __ or_(scratch2, Immediate(1 << HeapNumber::kExponentShift)); // Shift up the mantissa bits to take up the space the exponent used to // take. We just orred in the implicit bit so that took care of one and // we want to use the full unsigned range so we subtract 1 bit from the // shift distance. const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; __ shl(scratch2, Immediate(big_shift_distance)); // Get the second half of the double. __ movl(rcx, FieldOperand(source, HeapNumber::kMantissaOffset)); // Shift down 21 bits to get the most significant 11 bits or the low // mantissa word. __ shr(rcx, Immediate(32 - big_shift_distance)); __ or_(rcx, scratch2); // We have the answer in rcx, but we may need to negate it. __ testl(scratch, scratch); __ j(positive, &done); __ neg(rcx); __ jmp(&done); } __ bind(&normal_exponent); // Exponent word in scratch, exponent part of exponent word in scratch2. // Zero in rcx. // We know the exponent is smaller than 30 (biased). If it is less than // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie // it rounds to zero. const uint32_t zero_exponent = (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; __ subl(scratch2, Immediate(zero_exponent)); // rcx already has a Smi zero. __ j(less, &done); // We have a shifted exponent between 0 and 30 in scratch2. __ shr(scratch2, Immediate(HeapNumber::kExponentShift)); __ movl(rcx, Immediate(30)); __ subl(rcx, scratch2); __ bind(&right_exponent); // Here rcx is the shift, scratch is the exponent word. // Get the top bits of the mantissa. __ and_(scratch, Immediate(HeapNumber::kMantissaMask)); // Put back the implicit 1. __ or_(scratch, Immediate(1 << HeapNumber::kExponentShift)); // Shift up the mantissa bits to take up the space the exponent used to // take. We have kExponentShift + 1 significant bits int he low end of the // word. Shift them to the top bits. const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; __ shl(scratch, Immediate(shift_distance)); // Get the second half of the double. For some exponents we don't // actually need this because the bits get shifted out again, but // it's probably slower to test than just to do it. __ movl(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); // Shift down 22 bits to get the most significant 10 bits or the low // mantissa word. __ shr(scratch2, Immediate(32 - shift_distance)); __ or_(scratch2, scratch); // Move down according to the exponent. __ shr_cl(scratch2); // Now the unsigned answer is in scratch2. We need to move it to rcx and // we may need to fix the sign. Label negative; __ xor_(rcx, rcx); __ cmpl(rcx, FieldOperand(source, HeapNumber::kExponentOffset)); __ j(greater, &negative); __ movl(rcx, scratch2); __ jmp(&done); __ bind(&negative); __ subl(rcx, scratch2); __ bind(&done); } } void GenericUnaryOpStub::Generate(MacroAssembler* masm) { Label slow, done; if (op_ == Token::SUB) { // Check whether the value is a smi. Label try_float; __ JumpIfNotSmi(rax, &try_float); // Enter runtime system if the value of the smi is zero // to make sure that we switch between 0 and -0. // Also enter it if the value of the smi is Smi::kMinValue. __ SmiNeg(rax, rax, &done); // Either zero or Smi::kMinValue, neither of which become a smi when // negated. __ SmiCompare(rax, Smi::FromInt(0)); __ j(not_equal, &slow); __ Move(rax, Factory::minus_zero_value()); __ jmp(&done); // Try floating point case. __ bind(&try_float); __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &slow); // Operand is a float, negate its value by flipping sign bit. __ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset)); __ movq(kScratchRegister, Immediate(0x01)); __ shl(kScratchRegister, Immediate(63)); __ xor_(rdx, kScratchRegister); // Flip sign. // rdx is value to store. if (overwrite_) { __ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx); } else { __ AllocateHeapNumber(rcx, rbx, &slow); // rcx: allocated 'empty' number __ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx); __ movq(rax, rcx); } } else if (op_ == Token::BIT_NOT) { // Check if the operand is a heap number. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &slow); // Convert the heap number in rax to an untagged integer in rcx. IntegerConvert(masm, rax, CpuFeatures::IsSupported(SSE3), &slow); // Do the bitwise operation and check if the result fits in a smi. Label try_float; __ not_(rcx); // Tag the result as a smi and we're done. ASSERT(kSmiTagSize == 1); __ Integer32ToSmi(rax, rcx); } // Return from the stub. __ bind(&done); __ StubReturn(1); // Handle the slow case by jumping to the JavaScript builtin. __ bind(&slow); __ pop(rcx); // pop return address __ push(rax); __ push(rcx); // push return address switch (op_) { case Token::SUB: __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); break; case Token::BIT_NOT: __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifndef V8_NATIVE_REGEXP __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #else // V8_NATIVE_REGEXP if (!FLAG_regexp_entry_native) { __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); return; } // Stack frame on entry. // esp[0]: return address // esp[8]: last_match_info (expected JSArray) // esp[16]: previous index // esp[24]: subject string // esp[32]: JSRegExp object static const int kLastMatchInfoOffset = 1 * kPointerSize; static const int kPreviousIndexOffset = 2 * kPointerSize; static const int kSubjectOffset = 3 * kPointerSize; static const int kJSRegExpOffset = 4 * kPointerSize; Label runtime; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(); __ movq(kScratchRegister, address_of_regexp_stack_memory_size); __ movq(kScratchRegister, Operand(kScratchRegister, 0)); __ testq(kScratchRegister, kScratchRegister); __ j(zero, &runtime); // Check that the first argument is a JSRegExp object. __ movq(rax, Operand(rsp, kJSRegExpOffset)); __ JumpIfSmi(rax, &runtime); __ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { Condition is_smi = masm->CheckSmi(rcx); __ Check(NegateCondition(is_smi), "Unexpected type for RegExp data, FixedArray expected"); __ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister); __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); } // rcx: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ movq(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset)); __ SmiCompare(rbx, Smi::FromInt(JSRegExp::IRREGEXP)); __ j(not_equal, &runtime); // rcx: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ movq(rdx, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rdx, 1); __ addq(rdx, Immediate(2)); // rdx was number_of_captures * 2. // Check that the static offsets vector buffer is large enough. __ cmpq(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize)); __ j(above, &runtime); // rcx: RegExp data (FixedArray) // rdx: Number of capture registers // Check that the second argument is a string. __ movq(rax, Operand(rsp, kSubjectOffset)); __ JumpIfSmi(rax, &runtime); Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); __ j(NegateCondition(is_string), &runtime); // Get the length of the string to rbx. __ movl(rbx, FieldOperand(rax, String::kLengthOffset)); // rbx: Length of subject string // rcx: RegExp data (FixedArray) // rdx: Number of capture registers // Check that the third argument is a positive smi less than the string // length. A negative value will be greater (usigned comparison). __ movq(rax, Operand(rsp, kPreviousIndexOffset)); __ SmiToInteger32(rax, rax); __ cmpl(rax, rbx); __ j(above, &runtime); // rcx: RegExp data (FixedArray) // rdx: Number of capture registers // Check that the fourth object is a JSArray object. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ JumpIfSmi(rax, &runtime); __ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister); __ j(not_equal, &runtime); // Check that the JSArray is in fast case. __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); __ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset)); __ Cmp(rax, Factory::fixed_array_map()); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. Ensure no overflow in add. ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset); __ movl(rax, FieldOperand(rbx, FixedArray::kLengthOffset)); __ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead)); __ cmpl(rdx, rax); __ j(greater, &runtime); // ecx: RegExp data (FixedArray) // Check the representation and encoding of the subject string. Label seq_string, seq_two_byte_string, check_code; const int kStringRepresentationEncodingMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ andb(rbx, Immediate(kStringRepresentationEncodingMask)); // First check for sequential string. ASSERT_EQ(0, kStringTag); ASSERT_EQ(0, kSeqStringTag); __ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask)); __ j(zero, &seq_string); // Check for flat cons string. // A flat cons string is a cons string where the second part is the empty // string. In that case the subject string is just the first part of the cons // string. Also in this case the first part of the cons string is known to be // a sequential string or an external string. __ movl(rdx, rbx); __ andb(rdx, Immediate(kStringRepresentationMask)); __ cmpb(rdx, Immediate(kConsStringTag)); __ j(not_equal, &runtime); __ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset)); __ Cmp(rdx, Factory::empty_string()); __ j(not_equal, &runtime); __ movq(rax, FieldOperand(rax, ConsString::kFirstOffset)); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); ASSERT_EQ(0, kSeqStringTag); __ testb(rbx, Immediate(kStringRepresentationMask)); __ j(not_zero, &runtime); __ andb(rbx, Immediate(kStringRepresentationEncodingMask)); __ bind(&seq_string); // rax: subject string (sequential either ascii to two byte) // rbx: suject string type & kStringRepresentationEncodingMask // rcx: RegExp data (FixedArray) // Check that the irregexp code has been generated for an ascii string. If // it has, the field contains a code object otherwise it contains the hole. __ cmpb(rbx, Immediate(kStringTag | kSeqStringTag | kTwoByteStringTag)); __ j(equal, &seq_two_byte_string); if (FLAG_debug_code) { __ cmpb(rbx, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); __ Check(equal, "Expected sequential ascii string"); } __ movq(r12, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset)); __ Set(rdi, 1); // Type is ascii. __ jmp(&check_code); __ bind(&seq_two_byte_string); // rax: subject string // rcx: RegExp data (FixedArray) __ movq(r12, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset)); __ Set(rdi, 0); // Type is two byte. __ bind(&check_code); // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // the hole. __ CmpObjectType(r12, CODE_TYPE, kScratchRegister); __ j(not_equal, &runtime); // rax: subject string // rdi: encoding of subject string (1 if ascii, 0 if two_byte); // r12: code // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. __ movq(rbx, Operand(rsp, kPreviousIndexOffset)); __ SmiToInteger64(rbx, rbx); // Previous index from smi. // rax: subject string // rbx: previous index // rdi: encoding of subject string (1 if ascii 0 if two_byte); // r12: code // All checks done. Now push arguments for native regexp code. __ IncrementCounter(&Counters::regexp_entry_native, 1); // rsi is caller save on Windows and used to pass parameter on Linux. __ push(rsi); static const int kRegExpExecuteArguments = 7; __ PrepareCallCFunction(kRegExpExecuteArguments); int argument_slots_on_stack = masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments); // Argument 7: Indicate that this is a direct call from JavaScript. __ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize), Immediate(1)); // Argument 6: Start (high end) of backtracking stack memory area. __ movq(kScratchRegister, address_of_regexp_stack_memory_address); __ movq(r9, Operand(kScratchRegister, 0)); __ movq(kScratchRegister, address_of_regexp_stack_memory_size); __ addq(r9, Operand(kScratchRegister, 0)); // Argument 6 passed in r9 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9); #endif // Argument 5: static offsets vector buffer. __ movq(r8, ExternalReference::address_of_static_offsets_vector()); // Argument 5 passed in r8 on Linux and on the stack on Windows. #ifdef _WIN64 __ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8); #endif // First four arguments are passed in registers on both Linux and Windows. #ifdef _WIN64 Register arg4 = r9; Register arg3 = r8; Register arg2 = rdx; Register arg1 = rcx; #else Register arg4 = rcx; Register arg3 = rdx; Register arg2 = rsi; Register arg1 = rdi; #endif // Keep track on aliasing between argX defined above and the registers used. // rax: subject string // rbx: previous index // rdi: encoding of subject string (1 if ascii 0 if two_byte); // r12: code // Argument 4: End of string data // Argument 3: Start of string data Label setup_two_byte, setup_rest; __ testb(rdi, rdi); __ movl(rdi, FieldOperand(rax, String::kLengthOffset)); __ j(zero, &setup_two_byte); __ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize)); __ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize)); __ jmp(&setup_rest); __ bind(&setup_two_byte); __ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize)); __ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize)); __ bind(&setup_rest); // Argument 2: Previous index. __ movq(arg2, rbx); // Argument 1: Subject string. __ movq(arg1, rax); // Locate the code entry and call it. __ addq(r12, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ CallCFunction(r12, kRegExpExecuteArguments); // rsi is caller save, as it is used to pass parameter. __ pop(rsi); // Check the result. Label success; __ cmpq(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS)); __ j(equal, &success); Label failure; __ cmpq(rax, Immediate(NativeRegExpMacroAssembler::FAILURE)); __ j(equal, &failure); __ cmpq(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION)); // If not exception it can only be retry. Handle that in the runtime system. __ j(not_equal, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592) Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception_address(Top::k_pending_exception_address); __ movq(kScratchRegister, pending_exception_address); __ Cmp(kScratchRegister, Factory::the_hole_value()); __ j(equal, &runtime); __ bind(&failure); // For failure and exception return null. __ Move(rax, Factory::null_value()); __ ret(4 * kPointerSize); // Load RegExp data. __ bind(&success); __ movq(rax, Operand(rsp, kJSRegExpOffset)); __ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset)); __ movq(rdx, FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rdx, 1); __ addq(rdx, Immediate(2)); // rdx was number_of_captures * 2. // rdx: Number of capture registers // Load last_match_info which is still known to be a fast case JSArray. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset)); // rbx: last_match_info backing store (FixedArray) // rdx: number of capture registers // Store the capture count. __ Integer32ToSmi(kScratchRegister, rdx); __ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset), kScratchRegister); // Store last subject and last input. __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax); __ movq(rcx, rbx); __ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi); __ movq(rax, Operand(rsp, kSubjectOffset)); __ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax); __ movq(rcx, rbx); __ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi); // Get the static offsets vector filled by the native regexp code. __ movq(rcx, ExternalReference::address_of_static_offsets_vector()); // rbx: last_match_info backing store (FixedArray) // rcx: offsets vector // rdx: number of capture registers Label next_capture, done; __ movq(rax, Operand(rsp, kPreviousIndexOffset)); // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ bind(&next_capture); __ subq(rdx, Immediate(1)); __ j(negative, &done); // Read the value from the static offsets vector buffer and make it a smi. __ movl(rdi, Operand(rcx, rdx, times_int_size, 0)); __ Integer32ToSmi(rdi, rdi, &runtime); // Store the smi value in the last match info. __ movq(FieldOperand(rbx, rdx, times_pointer_size, RegExpImpl::kFirstCaptureOffset), rdi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ movq(rax, Operand(rsp, kLastMatchInfoOffset)); __ ret(4 * kPointerSize); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #endif // V8_NATIVE_REGEXP } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, bool object_is_smi, Label* not_found) { // Currently only lookup for smis. Check for smi if object is not known to be // a smi. if (!object_is_smi) { __ JumpIfNotSmi(object, not_found); } // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch1; Register scratch = scratch2; // Load the number string cache. __ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. __ movl(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); __ shrl(mask, Immediate(1)); // Divide length by two (length is not a smi). __ subl(mask, Immediate(1)); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value. __ movq(scratch, object); __ SmiToInteger32(scratch, scratch); __ andl(scratch, mask); // Each entry in string cache consists of two pointer sized fields, // but times_twice_pointer_size (multiplication by 16) scale factor // is not supported by addrmode on x64 platform. // So we have to premultiply entry index before lookup __ shl(scratch, Immediate(kPointerSizeLog2 + 1)); // Check if the entry is the smi we are looking for. __ cmpq(object, FieldOperand(number_string_cache, scratch, times_1, FixedArray::kHeaderSize)); __ j(not_equal, not_found); // Get the result from the cache. __ movq(result, FieldOperand(number_string_cache, scratch, times_1, FixedArray::kHeaderSize + kPointerSize)); __ IncrementCounter(&Counters::number_to_string_native, 1); } void NumberToStringStub::Generate(MacroAssembler* masm) { Label runtime; __ movq(rbx, Operand(rsp, kPointerSize)); // Generate code to lookup number in the number string cache. GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime); __ ret(1 * kPointerSize); __ bind(&runtime); // Handle number to string in the runtime system if not found in the cache. __ TailCallRuntime(Runtime::kNumberToString, 1, 1); } void CompareStub::Generate(MacroAssembler* masm) { Label call_builtin, done; // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. if (cc_ == equal) { // Both strict and non-strict. Label slow; // Fallthrough label. // Equality is almost reflexive (everything but NaN), so start by testing // for "identity and not NaN". { Label not_identical; __ cmpq(rax, rdx); __ j(not_equal, ¬_identical); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. if (never_nan_nan_) { __ xor_(rax, rax); __ ret(0); } else { Label return_equal; Label heap_number; // If it's not a heap number, then return equal. __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(equal, &heap_number); __ bind(&return_equal); __ xor_(rax, rax); __ ret(0); __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if // it's not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // We only allow QNaNs, which have bit 51 set (which also rules out // the value being Infinity). // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., // all bits in the mask are set. We only need to check the word // that contains the exponent and high bit of the mantissa. ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u); __ movl(rdx, FieldOperand(rdx, HeapNumber::kExponentOffset)); __ xorl(rax, rax); __ addl(rdx, rdx); // Shift value and mask so mask applies to top bits. __ cmpl(rdx, Immediate(kQuietNaNHighBitsMask << 1)); __ setcc(above_equal, rax); __ ret(0); } __ bind(¬_identical); } // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. if (strict_) { // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. { Label not_smis; __ SelectNonSmi(rbx, rax, rdx, ¬_smis); // Check if the non-smi operand is a heap number. __ Cmp(FieldOperand(rbx, HeapObject::kMapOffset), Factory::heap_number_map()); // If heap number, handle it in the slow case. __ j(equal, &slow); // Return non-equal. ebx (the lower half of rbx) is not zero. __ movq(rax, rbx); __ ret(0); __ bind(¬_smis); } // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // If the first object is a JS object, we have done pointer comparison. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); Label first_non_object; __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); __ j(below, &first_non_object); // Return non-zero (eax (not rax) is not zero) Label return_not_equal; ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx); __ j(above_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(rcx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. } __ bind(&slow); } // Push arguments below the return address to prepare jump to builtin. __ pop(rcx); __ push(rax); __ push(rdx); __ push(rcx); // Inlined floating point compare. // Call builtin if operands are not floating point or smi. Label check_for_symbols; // Push arguments on stack, for helper functions. FloatingPointHelper::CheckNumberOperands(masm, &check_for_symbols); FloatingPointHelper::LoadFloatOperands(masm, rax, rdx); __ FCmp(); // Jump to builtin for NaN. __ j(parity_even, &call_builtin); // TODO(1243847): Use cmov below once CpuFeatures are properly hooked up. Label below_lbl, above_lbl; // use rdx, rax to convert unsigned to signed comparison __ j(below, &below_lbl); __ j(above, &above_lbl); __ xor_(rax, rax); // equal __ ret(2 * kPointerSize); __ bind(&below_lbl); __ movq(rax, Immediate(-1)); __ ret(2 * kPointerSize); __ bind(&above_lbl); __ movq(rax, Immediate(1)); __ ret(2 * kPointerSize); // rax, rdx were pushed // Fast negative check for symbol-to-symbol equality. __ bind(&check_for_symbols); Label check_for_strings; if (cc_ == equal) { BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister); BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister); // We've already checked for object identity, so if both operands // are symbols they aren't equal. Register eax (not rax) already holds a // non-zero value, which indicates not equal, so just return. __ ret(2 * kPointerSize); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &call_builtin); // Inline comparison of ascii strings. StringCompareStub::GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); #ifdef DEBUG __ Abort("Unexpected fall-through from string comparison"); #endif __ bind(&call_builtin); // must swap argument order __ pop(rcx); __ pop(rdx); __ pop(rax); __ push(rdx); __ push(rax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc_ == equal) { builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; int ncr; // NaN compare result if (cc_ == less || cc_ == less_equal) { ncr = GREATER; } else { ASSERT(cc_ == greater || cc_ == greater_equal); // remaining cases ncr = LESS; } __ Push(Smi::FromInt(ncr)); } // Restore return address on the stack. __ push(rcx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); } void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ JumpIfSmi(object, label); __ movq(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzxbq(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); // Ensure that no non-strings have the symbol bit set. ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); ASSERT(kSymbolTag != 0); __ testb(scratch, Immediate(kIsSymbolMask)); __ j(zero, label); } // Call the function just below TOS on the stack with the given // arguments. The receiver is the TOS. void CodeGenerator::CallWithArguments(ZoneList* args, CallFunctionFlags flags, int position) { // Push the arguments ("left-to-right") on the stack. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Record the position for debugging purposes. CodeForSourcePosition(position); // Use the shared code stub to call the function. InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop, flags); Result answer = frame_->CallStub(&call_function, arg_count + 1); // Restore context and replace function on the stack with the // result of the stub invocation. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &answer); } void InstanceofStub::Generate(MacroAssembler* masm) { // Implements "value instanceof function" operator. // Expected input state: // rsp[0] : return address // rsp[1] : function pointer // rsp[2] : value // Get the object - go slow case if it's a smi. Label slow; __ movq(rax, Operand(rsp, 2 * kPointerSize)); __ JumpIfSmi(rax, &slow); // Check that the left hand is a JS object. Leave its map in rax. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); __ j(below, &slow); __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); __ j(above, &slow); // Get the prototype of the function. __ movq(rdx, Operand(rsp, 1 * kPointerSize)); __ TryGetFunctionPrototype(rdx, rbx, &slow); // Check that the function prototype is a JS object. __ JumpIfSmi(rbx, &slow); __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); __ j(below, &slow); __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); __ j(above, &slow); // Register mapping: rax is object map and rbx is function prototype. __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); // Loop through the prototype chain looking for the function prototype. Label loop, is_instance, is_not_instance; __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); __ bind(&loop); __ cmpq(rcx, rbx); __ j(equal, &is_instance); __ cmpq(rcx, kScratchRegister); __ j(equal, &is_not_instance); __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); __ xorl(rax, rax); __ ret(2 * kPointerSize); __ bind(&is_not_instance); __ movl(rax, Immediate(1)); __ ret(2 * kPointerSize); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { // rsp[0] : return address // rsp[8] : number of parameters // rsp[16] : receiver displacement // rsp[24] : function // The displacement is used for skipping the return address and the // frame pointer on the stack. It is the offset of the last // parameter (if any) relative to the frame pointer. static const int kDisplacement = 2 * kPointerSize; // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor_frame); // Get the length from the frame. __ movq(rcx, Operand(rsp, 1 * kPointerSize)); __ jmp(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ movq(rcx, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ movq(Operand(rsp, 1 * kPointerSize), rcx); // Do not clobber the length index for the indexing operation since // it is used compute the size for allocation later. SmiIndex index = masm->SmiToIndex(rbx, rcx, kPointerSizeLog2); __ lea(rdx, Operand(rdx, index.reg, index.scale, kDisplacement)); __ movq(Operand(rsp, 2 * kPointerSize), rdx); // Try the new space allocation. Start out with computing the size of // the arguments object and the elements array. Label add_arguments_object; __ bind(&try_allocate); __ testq(rcx, rcx); __ j(zero, &add_arguments_object); index = masm->SmiToIndex(rcx, rcx, kPointerSizeLog2); __ lea(rcx, Operand(index.reg, index.scale, FixedArray::kHeaderSize)); __ bind(&add_arguments_object); __ addq(rcx, Immediate(Heap::kArgumentsObjectSize)); // Do the allocation of both objects in one go. __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); // Get the arguments boilerplate from the current (global) context. int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); __ movq(rdi, Operand(rdi, offset)); // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ movq(kScratchRegister, FieldOperand(rdi, i)); __ movq(FieldOperand(rax, i), kScratchRegister); } // Setup the callee in-object property. ASSERT(Heap::arguments_callee_index == 0); __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister); // Get the length (smi tagged) and set that as an in-object property too. ASSERT(Heap::arguments_length_index == 1); __ movq(rcx, Operand(rsp, 1 * kPointerSize)); __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx); // If there are no actual arguments, we're done. Label done; __ testq(rcx, rcx); __ j(zero, &done); // Get the parameters pointer from the stack and untag the length. __ movq(rdx, Operand(rsp, 2 * kPointerSize)); __ SmiToInteger32(rcx, rcx); // Setup the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); // Copy the fixed array slots. Label loop; __ bind(&loop); __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); __ addq(rdi, Immediate(kPointerSize)); __ subq(rdx, Immediate(kPointerSize)); __ decq(rcx); __ j(not_zero, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in rdx and the parameter count is in rax. // The displacement is used for skipping the frame pointer on the // stack. It is the offset of the last parameter (if any) relative // to the frame pointer. static const int kDisplacement = 1 * kPointerSize; // Check that the key is a smi. Label slow; __ JumpIfNotSmi(rdx, &slow); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(equal, &adaptor); // Check index against formal parameters count limit passed in // through register rax. Use unsigned comparison to get negative // check for free. __ cmpq(rdx, rax); __ j(above_equal, &slow); // Read the argument from the stack and return it. SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); __ Ret(); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmpq(rdx, rcx); __ j(above_equal, &slow); // Read the argument from the stack and return it. index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); __ Ret(); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ pop(rbx); // Return address. __ push(rdx); __ push(rbx); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) { // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); // Arguments adaptor case: Read the arguments length from the // adaptor frame and return it. // Otherwise nothing to do: The number of formal parameters has already been // passed in register eax by calling function. Just return it. __ cmovq(equal, rax, Operand(rdx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ ret(0); } void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { // Check that stack should contain next handler, frame pointer, state and // return address in that order. ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize, StackHandlerConstants::kStateOffset); ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize, StackHandlerConstants::kPCOffset); ExternalReference handler_address(Top::k_handler_address); __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); // get next in chain __ pop(rcx); __ movq(Operand(kScratchRegister, 0), rcx); __ pop(rbp); // pop frame pointer __ pop(rdx); // remove state // Before returning we restore the context from the frame pointer if not NULL. // The frame pointer is NULL in the exception handler of a JS entry frame. __ xor_(rsi, rsi); // tentatively set context pointer to NULL Label skip; __ cmpq(rbp, Immediate(0)); __ j(equal, &skip); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&skip); __ ret(0); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope) { // rax: result parameter for PerformGC, if any. // rbx: pointer to C function (C callee-saved). // rbp: frame pointer (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r15: pointer to the first argument (C callee-saved). // This pointer is reused in LeaveExitFrame(), so it is stored in a // callee-saved register. // Simple results returned in rax (both AMD64 and Win64 calling conventions). // Complex results must be written to address passed as first argument. // AMD64 calling convention: a struct of two pointers in rax+rdx if (do_gc) { // Pass failure code returned from last attempt as first argument to GC. #ifdef _WIN64 __ movq(rcx, rax); #else // ! defined(_WIN64) __ movq(rdi, rax); #endif __ movq(kScratchRegister, FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); __ call(kScratchRegister); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(); if (always_allocate_scope) { __ movq(kScratchRegister, scope_depth); __ incl(Operand(kScratchRegister, 0)); } // Call C function. #ifdef _WIN64 // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9 // Store Arguments object on stack, below the 4 WIN64 ABI parameter slots. __ movq(Operand(rsp, 4 * kPointerSize), r14); // argc. __ movq(Operand(rsp, 5 * kPointerSize), r15); // argv. if (result_size_ < 2) { // Pass a pointer to the Arguments object as the first argument. // Return result in single register (rax). __ lea(rcx, Operand(rsp, 4 * kPointerSize)); } else { ASSERT_EQ(2, result_size_); // Pass a pointer to the result location as the first argument. __ lea(rcx, Operand(rsp, 6 * kPointerSize)); // Pass a pointer to the Arguments object as the second argument. __ lea(rdx, Operand(rsp, 4 * kPointerSize)); } #else // ! defined(_WIN64) // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9. __ movq(rdi, r14); // argc. __ movq(rsi, r15); // argv. #endif __ call(rbx); // Result is in rax - do not destroy this register! if (always_allocate_scope) { __ movq(kScratchRegister, scope_depth); __ decl(Operand(kScratchRegister, 0)); } // Check for failure result. Label failure_returned; ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); #ifdef _WIN64 // If return value is on the stack, pop it to registers. if (result_size_ > 1) { ASSERT_EQ(2, result_size_); // Read result values stored on stack. Result is stored // above the four argument mirror slots and the two // Arguments object slots. __ movq(rax, Operand(rsp, 6 * kPointerSize)); __ movq(rdx, Operand(rsp, 7 * kPointerSize)); } #endif __ lea(rcx, Operand(rax, 1)); // Lower 2 bits of rcx are 0 iff rax has failure tag. __ testl(rcx, Immediate(kFailureTagMask)); __ j(zero, &failure_returned); // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(mode_, result_size_); __ ret(0); // Handling of failure. __ bind(&failure_returned); Label retry; // If the returned exception is RETRY_AFTER_GC continue at retry label ASSERT(Failure::RETRY_AFTER_GC == 0); __ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ j(zero, &retry); // Special handling of out of memory exceptions. __ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE); __ cmpq(rax, kScratchRegister); __ j(equal, throw_out_of_memory_exception); // Retrieve the pending exception and clear the variable. ExternalReference pending_exception_address(Top::k_pending_exception_address); __ movq(kScratchRegister, pending_exception_address); __ movq(rax, Operand(kScratchRegister, 0)); __ movq(rdx, ExternalReference::the_hole_value_location()); __ movq(rdx, Operand(rdx, 0)); __ movq(Operand(kScratchRegister, 0), rdx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ CompareRoot(rax, Heap::kTerminationExceptionRootIndex); __ j(equal, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); // Retry. __ bind(&retry); } void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, UncatchableExceptionType type) { // Fetch top stack handler. ExternalReference handler_address(Top::k_handler_address); __ movq(kScratchRegister, handler_address); __ movq(rsp, Operand(kScratchRegister, 0)); // Unwind the handlers until the ENTRY handler is found. Label loop, done; __ bind(&loop); // Load the type of the current stack handler. const int kStateOffset = StackHandlerConstants::kStateOffset; __ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY)); __ j(equal, &done); // Fetch the next handler in the list. const int kNextOffset = StackHandlerConstants::kNextOffset; __ movq(rsp, Operand(rsp, kNextOffset)); __ jmp(&loop); __ bind(&done); // Set the top handler address to next handler past the current ENTRY handler. __ movq(kScratchRegister, handler_address); __ pop(Operand(kScratchRegister, 0)); if (type == OUT_OF_MEMORY) { // Set external caught exception to false. ExternalReference external_caught(Top::k_external_caught_exception_address); __ movq(rax, Immediate(false)); __ store_rax(external_caught); // Set pending exception and rax to out of memory exception. ExternalReference pending_exception(Top::k_pending_exception_address); __ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE); __ store_rax(pending_exception); } // Clear the context pointer. __ xor_(rsi, rsi); // Restore registers from handler. ASSERT_EQ(StackHandlerConstants::kNextOffset + kPointerSize, StackHandlerConstants::kFPOffset); __ pop(rbp); // FP ASSERT_EQ(StackHandlerConstants::kFPOffset + kPointerSize, StackHandlerConstants::kStateOffset); __ pop(rdx); // State ASSERT_EQ(StackHandlerConstants::kStateOffset + kPointerSize, StackHandlerConstants::kPCOffset); __ ret(0); } void CallFunctionStub::Generate(MacroAssembler* masm) { Label slow; // If the receiver might be a value (string, number or boolean) check for this // and box it if it is. if (ReceiverMightBeValue()) { // Get the receiver from the stack. // +1 ~ return address Label receiver_is_value, receiver_is_js_object; __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); // Check if receiver is a smi (which is a number value). __ JumpIfSmi(rax, &receiver_is_value); // Check if the receiver is a valid JS object. __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); __ j(above_equal, &receiver_is_js_object); // Call the runtime to box the value. __ bind(&receiver_is_value); __ EnterInternalFrame(); __ push(rax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ LeaveInternalFrame(); __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); __ bind(&receiver_is_js_object); } // Get the function to call from the stack. // +2 ~ receiver, return address __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); // Check that the function really is a JavaScript function. __ JumpIfSmi(rdi, &slow); // Goto slow case if we do not have a function. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(not_equal, &slow); // Fast-case: Just invoke the function. ParameterCount actual(argc_); __ InvokeFunction(rdi, actual, JUMP_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); __ Set(rax, argc_); __ Set(rbx, 0); __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); Handle adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); __ Jump(adaptor, RelocInfo::CODE_TARGET); } void CEntryStub::Generate(MacroAssembler* masm) { // rax: number of arguments including receiver // rbx: pointer to C function (C callee-saved) // rbp: frame pointer of calling JS frame (restored after C call) // rsp: stack pointer (restored after C call) // rsi: current context (restored) // NOTE: Invocations of builtins may return failure objects // instead of a proper result. The builtin entry handles // this by performing a garbage collection and retrying the // builtin once. // Enter the exit frame that transitions from JavaScript to C++. __ EnterExitFrame(mode_, result_size_); // rax: Holds the context at this point, but should not be used. // On entry to code generated by GenerateCore, it must hold // a failure result if the collect_garbage argument to GenerateCore // is true. This failure result can be the result of code // generated by a previous call to GenerateCore. The value // of rax is then passed to Runtime::PerformGC. // rbx: pointer to builtin function (C callee-saved). // rbp: frame pointer of exit frame (restored after C call). // rsp: stack pointer (restored after C call). // r14: number of arguments including receiver (C callee-saved). // r15: argv pointer (C callee-saved). Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ movq(rax, failure, RelocInfo::NONE); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); GenerateThrowUncatchable(masm, OUT_OF_MEMORY); __ bind(&throw_termination_exception); GenerateThrowUncatchable(masm, TERMINATION); __ bind(&throw_normal_exception); GenerateThrowTOS(masm); } void ApiGetterEntryStub::Generate(MacroAssembler* masm) { UNREACHABLE(); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, exit; #ifdef ENABLE_LOGGING_AND_PROFILING Label not_outermost_js, not_outermost_js_2; #endif // Setup frame. __ push(rbp); __ movq(rbp, rsp); // Push the stack frame type marker twice. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; __ Push(Smi::FromInt(marker)); // context slot __ Push(Smi::FromInt(marker)); // function slot // Save callee-saved registers (X64 calling conventions). __ push(r12); __ push(r13); __ push(r14); __ push(r15); __ push(rdi); __ push(rsi); __ push(rbx); // TODO(X64): Push XMM6-XMM15 (low 64 bits) as well, or make them // callee-save in JS code as well. // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Top::k_c_entry_fp_address); __ load_rax(c_entry_fp); __ push(rax); #ifdef ENABLE_LOGGING_AND_PROFILING // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Top::k_js_entry_sp_address); __ load_rax(js_entry_sp); __ testq(rax, rax); __ j(not_zero, ¬_outermost_js); __ movq(rax, rbp); __ store_rax(js_entry_sp); __ bind(¬_outermost_js); #endif // Call a faked try-block that does the invoke. __ call(&invoke); // Caught exception: Store result (exception) in the pending // exception field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Top::k_pending_exception_address); __ store_rax(pending_exception); __ movq(rax, Failure::Exception(), RelocInfo::NONE); __ jmp(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); // Clear any pending exceptions. __ load_rax(ExternalReference::the_hole_value_location()); __ store_rax(pending_exception); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline // builtin and pop the faked function when we return. We load the address // from an external reference instead of inlining the call target address // directly in the code, because the builtin stubs may not have been // generated yet at the time this code is generated. if (is_construct) { ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); __ load_rax(construct_entry); } else { ExternalReference entry(Builtins::JSEntryTrampoline); __ load_rax(entry); } __ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize)); __ call(kScratchRegister); // Unlink this frame from the handler chain. __ movq(kScratchRegister, ExternalReference(Top::k_handler_address)); __ pop(Operand(kScratchRegister, 0)); // Pop next_sp. __ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize)); #ifdef ENABLE_LOGGING_AND_PROFILING // If current EBP value is the same as js_entry_sp value, it means that // the current function is the outermost. __ movq(kScratchRegister, js_entry_sp); __ cmpq(rbp, Operand(kScratchRegister, 0)); __ j(not_equal, ¬_outermost_js_2); __ movq(Operand(kScratchRegister, 0), Immediate(0)); __ bind(¬_outermost_js_2); #endif // Restore the top frame descriptor from the stack. __ bind(&exit); __ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address)); __ pop(Operand(kScratchRegister, 0)); // Restore callee-saved registers (X64 conventions). __ pop(rbx); __ pop(rsi); __ pop(rdi); __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ addq(rsp, Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(rbp); __ ret(0); } // ----------------------------------------------------------------------------- // Implementation of stubs. // Stub classes have public member named masm, not masm_. void StackCheckStub::Generate(MacroAssembler* masm) { // Because builtins always remove the receiver from the stack, we // have to fake one to avoid underflowing the stack. The receiver // must be inserted below the return address on the stack so we // temporarily store that in a register. __ pop(rax); __ Push(Smi::FromInt(0)); __ push(rax); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kStackGuard, 1, 1); } void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, Register number) { Label load_smi, done; __ JumpIfSmi(number, &load_smi); __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi); __ SmiToInteger32(number, number); __ push(number); __ fild_s(Operand(rsp, 0)); __ pop(number); __ bind(&done); } void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, Register src, XMMRegister dst) { Label load_smi, done; __ JumpIfSmi(src, &load_smi); __ movsd(dst, FieldOperand(src, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi); __ SmiToInteger32(src, src); __ cvtlsi2sd(dst, src); __ bind(&done); } void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, XMMRegister dst1, XMMRegister dst2) { __ movq(kScratchRegister, rdx); LoadFloatOperand(masm, kScratchRegister, dst1); __ movq(kScratchRegister, rax); LoadFloatOperand(masm, kScratchRegister, dst2); } void FloatingPointHelper::LoadFloatOperandsFromSmis(MacroAssembler* masm, XMMRegister dst1, XMMRegister dst2) { __ SmiToInteger32(kScratchRegister, rdx); __ cvtlsi2sd(dst1, kScratchRegister); __ SmiToInteger32(kScratchRegister, rax); __ cvtlsi2sd(dst2, kScratchRegister); } // Input: rdx, rax are the left and right objects of a bit op. // Output: rax, rcx are left and right integers for a bit op. void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, bool use_sse3, Label* conversion_failure) { // Check float operands. Label arg1_is_object, check_undefined_arg1; Label arg2_is_object, check_undefined_arg2; Label load_arg2, done; __ JumpIfNotSmi(rdx, &arg1_is_object); __ SmiToInteger32(rdx, rdx); __ jmp(&load_arg2); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg1); __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(not_equal, conversion_failure); __ movl(rdx, Immediate(0)); __ jmp(&load_arg2); __ bind(&arg1_is_object); __ movq(rbx, FieldOperand(rdx, HeapObject::kMapOffset)); __ CompareRoot(rbx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &check_undefined_arg1); // Get the untagged integer version of the edx heap number in rcx. IntegerConvert(masm, rdx, use_sse3, conversion_failure); __ movl(rdx, rcx); // Here edx has the untagged integer, eax has a Smi or a heap number. __ bind(&load_arg2); // Test if arg2 is a Smi. __ JumpIfNotSmi(rax, &arg2_is_object); __ SmiToInteger32(rax, rax); __ movl(rcx, rax); __ jmp(&done); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg2); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, conversion_failure); __ movl(rcx, Immediate(0)); __ jmp(&done); __ bind(&arg2_is_object); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rbx, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &check_undefined_arg2); // Get the untagged integer version of the eax heap number in ecx. IntegerConvert(masm, rax, use_sse3, conversion_failure); __ bind(&done); __ movl(rax, rdx); } void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, Register lhs, Register rhs) { Label load_smi_lhs, load_smi_rhs, done_load_lhs, done; __ JumpIfSmi(lhs, &load_smi_lhs); __ fld_d(FieldOperand(lhs, HeapNumber::kValueOffset)); __ bind(&done_load_lhs); __ JumpIfSmi(rhs, &load_smi_rhs); __ fld_d(FieldOperand(rhs, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_lhs); __ SmiToInteger64(kScratchRegister, lhs); __ push(kScratchRegister); __ fild_d(Operand(rsp, 0)); __ pop(kScratchRegister); __ jmp(&done_load_lhs); __ bind(&load_smi_rhs); __ SmiToInteger64(kScratchRegister, rhs); __ push(kScratchRegister); __ fild_d(Operand(rsp, 0)); __ pop(kScratchRegister); __ bind(&done); } void FloatingPointHelper::CheckNumberOperands(MacroAssembler* masm, Label* non_float) { Label test_other, done; // Test if both operands are numbers (heap_numbers or smis). // If not, jump to label non_float. __ JumpIfSmi(rdx, &test_other); // argument in rdx is OK __ Cmp(FieldOperand(rdx, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(not_equal, non_float); // The argument in rdx is not a number. __ bind(&test_other); __ JumpIfSmi(rax, &done); // argument in rax is OK __ Cmp(FieldOperand(rax, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(not_equal, non_float); // The argument in rax is not a number. // Fall-through: Both operands are numbers. __ bind(&done); } const char* GenericBinaryOpStub::GetName() { if (name_ != NULL) return name_; const int len = 100; name_ = Bootstrapper::AllocateAutoDeletedArray(len); if (name_ == NULL) return "OOM"; const char* op_name = Token::Name(op_); const char* overwrite_name; switch (mode_) { case NO_OVERWRITE: overwrite_name = "Alloc"; break; case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; default: overwrite_name = "UnknownOverwrite"; break; } OS::SNPrintF(Vector(name_, len), "GenericBinaryOpStub_%s_%s%s_%s%s_%s%s_%s", op_name, overwrite_name, (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", args_in_registers_ ? "RegArgs" : "StackArgs", args_reversed_ ? "_R" : "", use_sse3_ ? "SSE3" : "SSE2", static_operands_type_.ToString(), BinaryOpIC::GetName(runtime_operands_type_)); return name_; } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ push(right); } else { // The calling convention with registers is left in rdx and right in rax. Register left_arg = rdx; Register right_arg = rax; if (!(left.is(left_arg) && right.is(right_arg))) { if (left.is(right_arg) && right.is(left_arg)) { if (IsOperationCommutative()) { SetArgsReversed(); } else { __ xchg(left, right); } } else if (left.is(left_arg)) { __ movq(right_arg, right); } else if (right.is(right_arg)) { __ movq(left_arg, left); } else if (left.is(right_arg)) { if (IsOperationCommutative()) { __ movq(left_arg, right); SetArgsReversed(); } else { // Order of moves important to avoid destroying left argument. __ movq(left_arg, left); __ movq(right_arg, right); } } else if (right.is(left_arg)) { if (IsOperationCommutative()) { __ movq(right_arg, left); SetArgsReversed(); } else { // Order of moves important to avoid destroying right argument. __ movq(right_arg, right); __ movq(left_arg, left); } } else { // Order of moves is not important. __ movq(left_arg, left); __ movq(right_arg, right); } } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Smi* right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ Push(right); } else { // The calling convention with registers is left in rdx and right in rax. Register left_arg = rdx; Register right_arg = rax; if (left.is(left_arg)) { __ Move(right_arg, right); } else if (left.is(right_arg) && IsOperationCommutative()) { __ Move(left_arg, right); SetArgsReversed(); } else { // For non-commutative operations, left and right_arg might be // the same register. Therefore, the order of the moves is // important here in order to not overwrite left before moving // it to left_arg. __ movq(left_arg, left); __ Move(right_arg, right); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Smi* left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ Push(left); __ push(right); } else { // The calling convention with registers is left in rdx and right in rax. Register left_arg = rdx; Register right_arg = rax; if (right.is(right_arg)) { __ Move(left_arg, left); } else if (right.is(left_arg) && IsOperationCommutative()) { __ Move(right_arg, left); SetArgsReversed(); } else { // For non-commutative operations, right and left_arg might be // the same register. Therefore, the order of the moves is // important here in order to not overwrite right before moving // it to right_arg. __ movq(right_arg, right); __ Move(left_arg, left); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, VirtualFrame* frame, Result* left, Result* right) { if (ArgsInRegistersSupported()) { SetArgsInRegisters(); return frame->CallStub(this, left, right); } else { frame->Push(left); frame->Push(right); return frame->CallStub(this, 2); } } void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { // 1. Move arguments into rdx, rax except for DIV and MOD, which need the // dividend in rax and rdx free for the division. Use rax, rbx for those. Comment load_comment(masm, "-- Load arguments"); Register left = rdx; Register right = rax; if (op_ == Token::DIV || op_ == Token::MOD) { left = rax; right = rbx; if (HasArgsInRegisters()) { __ movq(rbx, rax); __ movq(rax, rdx); } } if (!HasArgsInRegisters()) { __ movq(right, Operand(rsp, 1 * kPointerSize)); __ movq(left, Operand(rsp, 2 * kPointerSize)); } // 2. Smi check both operands. Skip the check for OR as it is better combined // with the actual operation. Label not_smis; if (op_ != Token::BIT_OR) { Comment smi_check_comment(masm, "-- Smi check arguments"); __ JumpIfNotBothSmi(left, right, ¬_smis); } // 3. Operands are both smis (except for OR), perform the operation leaving // the result in rax and check the result if necessary. Comment perform_smi(masm, "-- Perform smi operation"); Label use_fp_on_smis; switch (op_) { case Token::ADD: { ASSERT(right.is(rax)); __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. break; } case Token::SUB: { __ SmiSub(left, left, right, &use_fp_on_smis); __ movq(rax, left); break; } case Token::MUL: ASSERT(right.is(rax)); __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. break; case Token::DIV: ASSERT(left.is(rax)); __ SmiDiv(left, left, right, &use_fp_on_smis); break; case Token::MOD: ASSERT(left.is(rax)); __ SmiMod(left, left, right, slow); break; case Token::BIT_OR: ASSERT(right.is(rax)); __ movq(rcx, right); // Save the right operand. __ SmiOr(right, right, left); // BIT_OR is commutative. __ testb(right, Immediate(kSmiTagMask)); __ j(not_zero, ¬_smis); break; case Token::BIT_AND: ASSERT(right.is(rax)); __ SmiAnd(right, right, left); // BIT_AND is commutative. break; case Token::BIT_XOR: ASSERT(right.is(rax)); __ SmiXor(right, right, left); // BIT_XOR is commutative. break; case Token::SHL: case Token::SHR: case Token::SAR: switch (op_) { case Token::SAR: __ SmiShiftArithmeticRight(left, left, right); break; case Token::SHR: __ SmiShiftLogicalRight(left, left, right, slow); break; case Token::SHL: __ SmiShiftLeft(left, left, right, slow); break; default: UNREACHABLE(); } __ movq(rax, left); break; default: UNREACHABLE(); break; } // 4. Emit return of result in rax. GenerateReturn(masm); // 5. For some operations emit inline code to perform floating point // operations on known smis (e.g., if the result of the operation // overflowed the smi range). switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { __ bind(&use_fp_on_smis); if (op_ == Token::DIV) { __ movq(rdx, rax); __ movq(rax, rbx); } // left is rdx, right is rax. __ AllocateHeapNumber(rbx, rcx, slow); FloatingPointHelper::LoadFloatOperandsFromSmis(masm, xmm4, xmm5); switch (op_) { case Token::ADD: __ addsd(xmm4, xmm5); break; case Token::SUB: __ subsd(xmm4, xmm5); break; case Token::MUL: __ mulsd(xmm4, xmm5); break; case Token::DIV: __ divsd(xmm4, xmm5); break; default: UNREACHABLE(); } __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm4); __ movq(rax, rbx); GenerateReturn(masm); } default: break; } // 6. Non-smi operands, fall out to the non-smi code with the operands in // rdx and rax. Comment done_comment(masm, "-- Enter non-smi code"); __ bind(¬_smis); switch (op_) { case Token::DIV: case Token::MOD: // Operands are in rax, rbx at this point. __ movq(rdx, rax); __ movq(rax, rbx); break; case Token::BIT_OR: // Right operand is saved in rcx and rax was destroyed by the smi // operation. __ movq(rax, rcx); break; default: break; } } void GenericBinaryOpStub::Generate(MacroAssembler* masm) { Label call_runtime; if (ShouldGenerateSmiCode()) { GenerateSmiCode(masm, &call_runtime); } else if (op_ != Token::MOD) { if (!HasArgsInRegisters()) { GenerateLoadArguments(masm); } } // Floating point case. if (ShouldGenerateFPCode()) { switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { if (runtime_operands_type_ == BinaryOpIC::DEFAULT && HasSmiCodeInStub()) { // Execution reaches this point when the first non-smi argument occurs // (and only if smi code is generated). This is the right moment to // patch to HEAP_NUMBERS state. The transition is attempted only for // the four basic operations. The stub stays in the DEFAULT state // forever for all other operations (also if smi code is skipped). GenerateTypeTransition(masm); } Label not_floats; // rax: y // rdx: x if (static_operands_type_.IsNumber()) { if (FLAG_debug_code) { // Assert at runtime that inputs are only numbers. __ AbortIfNotNumber(rdx, "GenericBinaryOpStub operand not a number."); __ AbortIfNotNumber(rax, "GenericBinaryOpStub operand not a number."); } } else { FloatingPointHelper::CheckNumberOperands(masm, &call_runtime); } // Fast-case: Both operands are numbers. // xmm4 and xmm5 are volatile XMM registers. FloatingPointHelper::LoadFloatOperands(masm, xmm4, xmm5); switch (op_) { case Token::ADD: __ addsd(xmm4, xmm5); break; case Token::SUB: __ subsd(xmm4, xmm5); break; case Token::MUL: __ mulsd(xmm4, xmm5); break; case Token::DIV: __ divsd(xmm4, xmm5); break; default: UNREACHABLE(); } // Allocate a heap number, if needed. Label skip_allocation; OverwriteMode mode = mode_; if (HasArgsReversed()) { if (mode == OVERWRITE_RIGHT) { mode = OVERWRITE_LEFT; } else if (mode == OVERWRITE_LEFT) { mode = OVERWRITE_RIGHT; } } switch (mode) { case OVERWRITE_LEFT: __ JumpIfNotSmi(rdx, &skip_allocation); __ AllocateHeapNumber(rbx, rcx, &call_runtime); __ movq(rdx, rbx); __ bind(&skip_allocation); __ movq(rax, rdx); break; case OVERWRITE_RIGHT: // If the argument in rax is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(rax, &skip_allocation); // Fall through! case NO_OVERWRITE: // Allocate a heap number for the result. Keep rax and rdx intact // for the possible runtime call. __ AllocateHeapNumber(rbx, rcx, &call_runtime); __ movq(rax, rbx); __ bind(&skip_allocation); break; default: UNREACHABLE(); } __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm4); GenerateReturn(masm); __ bind(¬_floats); if (runtime_operands_type_ == BinaryOpIC::DEFAULT && !HasSmiCodeInStub()) { // Execution reaches this point when the first non-number argument // occurs (and only if smi code is skipped from the stub, otherwise // the patching has already been done earlier in this case branch). // A perfect moment to try patching to STRINGS for ADD operation. if (op_ == Token::ADD) { GenerateTypeTransition(masm); } } break; } case Token::MOD: { // For MOD we go directly to runtime in the non-smi case. break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { Label skip_allocation, non_smi_result; FloatingPointHelper::LoadAsIntegers(masm, use_sse3_, &call_runtime); switch (op_) { case Token::BIT_OR: __ orl(rax, rcx); break; case Token::BIT_AND: __ andl(rax, rcx); break; case Token::BIT_XOR: __ xorl(rax, rcx); break; case Token::SAR: __ sarl_cl(rax); break; case Token::SHL: __ shll_cl(rax); break; case Token::SHR: __ shrl_cl(rax); break; default: UNREACHABLE(); } if (op_ == Token::SHR) { // Check if result is non-negative. This can only happen for a shift // by zero, which also doesn't update the sign flag. __ testl(rax, rax); __ j(negative, &non_smi_result); } __ JumpIfNotValidSmiValue(rax, &non_smi_result); // Tag smi result, if possible, and return. __ Integer32ToSmi(rax, rax); GenerateReturn(masm); // All ops except SHR return a signed int32 that we load in // a HeapNumber. if (op_ != Token::SHR && non_smi_result.is_linked()) { __ bind(&non_smi_result); // Allocate a heap number if needed. __ movsxlq(rbx, rax); // rbx: sign extended 32-bit result switch (mode_) { case OVERWRITE_LEFT: case OVERWRITE_RIGHT: // If the operand was an object, we skip the // allocation of a heap number. __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ? 1 * kPointerSize : 2 * kPointerSize)); __ JumpIfNotSmi(rax, &skip_allocation); // Fall through! case NO_OVERWRITE: __ AllocateHeapNumber(rax, rcx, &call_runtime); __ bind(&skip_allocation); break; default: UNREACHABLE(); } // Store the result in the HeapNumber and return. __ movq(Operand(rsp, 1 * kPointerSize), rbx); __ fild_s(Operand(rsp, 1 * kPointerSize)); __ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset)); GenerateReturn(masm); } // SHR should return uint32 - go to runtime for non-smi/negative result. if (op_ == Token::SHR) { __ bind(&non_smi_result); } break; } default: UNREACHABLE(); break; } } // If all else fails, use the runtime system to get the correct // result. If arguments was passed in registers now place them on the // stack in the correct order below the return address. __ bind(&call_runtime); if (HasArgsInRegisters()) { GenerateRegisterArgsPush(masm); } switch (op_) { case Token::ADD: { // Registers containing left and right operands respectively. Register lhs, rhs; if (HasArgsReversed()) { lhs = rax; rhs = rdx; } else { lhs = rdx; rhs = rax; } // Test for string arguments before calling runtime. Label not_strings, both_strings, not_string1, string1, string1_smi2; // If this stub has already generated FP-specific code then the arguments // are already in rdx, rax if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { GenerateLoadArguments(masm); } Condition is_smi; is_smi = masm->CheckSmi(lhs); __ j(is_smi, ¬_string1); __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8); __ j(above_equal, ¬_string1); // First argument is a a string, test second. is_smi = masm->CheckSmi(rhs); __ j(is_smi, &string1_smi2); __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9); __ j(above_equal, &string1); // First and second argument are strings. StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); __ TailCallStub(&string_add_stub); __ bind(&string1_smi2); // First argument is a string, second is a smi. Try to lookup the number // string for the smi in the number string cache. NumberToStringStub::GenerateLookupNumberStringCache( masm, rhs, rbx, rcx, r8, true, &string1); // Replace second argument on stack and tailcall string add stub to make // the result. __ movq(Operand(rsp, 1 * kPointerSize), rbx); __ TailCallStub(&string_add_stub); // Only first argument is a string. __ bind(&string1); __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); // First argument was not a string, test second. __ bind(¬_string1); is_smi = masm->CheckSmi(rhs); __ j(is_smi, ¬_strings); __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs); __ j(above_equal, ¬_strings); // Only second argument is a string. __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); __ bind(¬_strings); // Neither argument is a string. __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; } case Token::SUB: __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } // TODO(kaznacheev) Remove this (along with clearing) if it does not harm // performance. // Generate an unreachable reference to the DEFAULT stub so that it can be // found at the end of this stub when clearing ICs at GC. if (runtime_operands_type_ != BinaryOpIC::DEFAULT) { GenericBinaryOpStub uninit(MinorKey(), BinaryOpIC::DEFAULT); __ TailCallStub(&uninit); } } void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { ASSERT(!HasArgsInRegisters()); __ movq(rax, Operand(rsp, 1 * kPointerSize)); __ movq(rdx, Operand(rsp, 2 * kPointerSize)); } void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { // If arguments are not passed in registers remove them from the stack before // returning. if (!HasArgsInRegisters()) { __ ret(2 * kPointerSize); // Remove both operands } else { __ ret(0); } } void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { ASSERT(HasArgsInRegisters()); __ pop(rcx); if (HasArgsReversed()) { __ push(rax); __ push(rdx); } else { __ push(rdx); __ push(rax); } __ push(rcx); } void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { Label get_result; // Keep a copy of operands on the stack and make sure they are also in // rdx, rax. if (HasArgsInRegisters()) { GenerateRegisterArgsPush(masm); } else { GenerateLoadArguments(masm); } // Internal frame is necessary to handle exceptions properly. __ EnterInternalFrame(); // Push arguments on stack if the stub expects them there. if (!HasArgsInRegisters()) { __ push(rdx); __ push(rax); } // Call the stub proper to get the result in rax. __ call(&get_result); __ LeaveInternalFrame(); // Left and right arguments are already on stack. __ pop(rcx); // Push the operation result. The tail call to BinaryOp_Patch will // return it to the original caller.. __ push(rax); // Push this stub's key. __ movq(rax, Immediate(MinorKey())); __ Integer32ToSmi(rax, rax); __ push(rax); // Although the operation and the type info are encoded into the key, // the encoding is opaque, so push them too. __ movq(rax, Immediate(op_)); __ Integer32ToSmi(rax, rax); __ push(rax); __ movq(rax, Immediate(runtime_operands_type_)); __ Integer32ToSmi(rax, rax); __ push(rax); __ push(rcx); // Perform patching to an appropriate fast case and return the result. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), 6, 1); // The entry point for the result calculation is assumed to be immediately // after this sequence. __ bind(&get_result); } Handle GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { GenericBinaryOpStub stub(key, type_info); return stub.GetCode(); } int CompareStub::MinorKey() { // Encode the three parameters in a unique 16 bit value. To avoid duplicate // stubs the never NaN NaN condition is only taken into account if the // condition is equals. ASSERT(static_cast(cc_) < (1 << 13)); return ConditionField::encode(static_cast(cc_)) | StrictField::encode(strict_) | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) | IncludeNumberCompareField::encode(include_number_compare_); } // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. const char* CompareStub::GetName() { if (name_ != NULL) return name_; const int kMaxNameLength = 100; name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength); if (name_ == NULL) return "OOM"; const char* cc_name; switch (cc_) { case less: cc_name = "LT"; break; case greater: cc_name = "GT"; break; case less_equal: cc_name = "LE"; break; case greater_equal: cc_name = "GE"; break; case equal: cc_name = "EQ"; break; case not_equal: cc_name = "NE"; break; default: cc_name = "UnknownCondition"; break; } const char* strict_name = ""; if (strict_ && (cc_ == equal || cc_ == not_equal)) { strict_name = "_STRICT"; } const char* never_nan_nan_name = ""; if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) { never_nan_nan_name = "_NO_NAN"; } const char* include_number_compare_name = ""; if (!include_number_compare_) { include_number_compare_name = "_NO_NUMBER"; } OS::SNPrintF(Vector(name_, kMaxNameLength), "CompareStub_%s%s%s%s", cc_name, strict_name, never_nan_nan_name, include_number_compare_name); return name_; } void StringAddStub::Generate(MacroAssembler* masm) { Label string_add_runtime; // Load the two arguments. __ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument. __ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument. // Make sure that both arguments are strings if not known in advance. if (string_check_) { Condition is_smi; is_smi = masm->CheckSmi(rax); __ j(is_smi, &string_add_runtime); __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8); __ j(above_equal, &string_add_runtime); // First argument is a a string, test second. is_smi = masm->CheckSmi(rdx); __ j(is_smi, &string_add_runtime); __ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9); __ j(above_equal, &string_add_runtime); } // Both arguments are strings. // rax: first string // rdx: second string // Check if either of the strings are empty. In that case return the other. Label second_not_zero_length, both_not_zero_length; __ movl(rcx, FieldOperand(rdx, String::kLengthOffset)); __ testl(rcx, rcx); __ j(not_zero, &second_not_zero_length); // Second string is empty, result is first string which is already in rax. __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&second_not_zero_length); __ movl(rbx, FieldOperand(rax, String::kLengthOffset)); __ testl(rbx, rbx); __ j(not_zero, &both_not_zero_length); // First string is empty, result is second string which is in rdx. __ movq(rax, rdx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Both strings are non-empty. // rax: first string // rbx: length of first string // rcx: length of second string // rdx: second string // r8: map of first string if string check was performed above // r9: map of second string if string check was performed above Label string_add_flat_result, longer_than_two; __ bind(&both_not_zero_length); // If arguments where known to be strings, maps are not loaded to r8 and r9 // by the code above. if (!string_check_) { __ movq(r8, FieldOperand(rax, HeapObject::kMapOffset)); __ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset)); } // Get the instance types of the two strings as they will be needed soon. __ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset)); __ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); // Look at the length of the result of adding the two strings. __ addl(rbx, rcx); // Use the runtime system when adding two one character strings, as it // contains optimizations for this specific case using the symbol table. __ cmpl(rbx, Immediate(2)); __ j(not_equal, &longer_than_two); // Check that both strings are non-external ascii strings. __ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx, &string_add_runtime); // Get the two characters forming the sub string. __ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize)); __ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize)); // Try to lookup two character string in symbol table. If it is not found // just allocate a new one. Label make_two_character_string, make_flat_ascii_string; GenerateTwoCharacterSymbolTableProbe(masm, rbx, rcx, r14, r12, rdi, r15, &make_two_character_string); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&make_two_character_string); __ Set(rbx, 2); __ jmp(&make_flat_ascii_string); __ bind(&longer_than_two); // Check if resulting string will be flat. __ cmpl(rbx, Immediate(String::kMinNonFlatLength)); __ j(below, &string_add_flat_result); // Handle exceptionally long strings in the runtime system. ASSERT((String::kMaxLength & 0x80000000) == 0); __ cmpl(rbx, Immediate(String::kMaxLength)); __ j(above, &string_add_runtime); // If result is not supposed to be flat, allocate a cons string object. If // both strings are ascii the result is an ascii cons string. // rax: first string // ebx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of second string Label non_ascii, allocated; __ movl(rcx, r8); __ and_(rcx, r9); ASSERT(kStringEncodingMask == kAsciiStringTag); __ testl(rcx, Immediate(kAsciiStringTag)); __ j(zero, &non_ascii); // Allocate an acsii cons string. __ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime); __ bind(&allocated); // Fill the fields of the cons string. __ movl(FieldOperand(rcx, ConsString::kLengthOffset), rbx); __ movl(FieldOperand(rcx, ConsString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax); __ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx); __ movq(rax, rcx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); __ bind(&non_ascii); // Allocate a two byte cons string. __ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime); __ jmp(&allocated); // Handle creating a flat result. First check that both strings are not // external strings. // rax: first string // ebx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of first string __ bind(&string_add_flat_result); __ movl(rcx, r8); __ and_(rcx, Immediate(kStringRepresentationMask)); __ cmpl(rcx, Immediate(kExternalStringTag)); __ j(equal, &string_add_runtime); __ movl(rcx, r9); __ and_(rcx, Immediate(kStringRepresentationMask)); __ cmpl(rcx, Immediate(kExternalStringTag)); __ j(equal, &string_add_runtime); // Now check if both strings are ascii strings. // rax: first string // ebx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of second string Label non_ascii_string_add_flat_result; ASSERT(kStringEncodingMask == kAsciiStringTag); __ testl(r8, Immediate(kAsciiStringTag)); __ j(zero, &non_ascii_string_add_flat_result); __ testl(r9, Immediate(kAsciiStringTag)); __ j(zero, &string_add_runtime); __ bind(&make_flat_ascii_string); // Both strings are ascii strings. As they are short they are both flat. __ AllocateAsciiString(rcx, rbx, rdi, r14, r15, &string_add_runtime); // rcx: result string __ movq(rbx, rcx); // Locate first character of result. __ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // Locate first character of first argument __ movl(rdi, FieldOperand(rax, String::kLengthOffset)); __ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // rax: first char of first argument // rbx: result string // rcx: first character of result // rdx: second string // rdi: length of first argument GenerateCopyCharacters(masm, rcx, rax, rdi, true); // Locate first character of second argument. __ movl(rdi, FieldOperand(rdx, String::kLengthOffset)); __ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // rbx: result string // rcx: next character of result // rdx: first char of second argument // rdi: length of second argument GenerateCopyCharacters(masm, rcx, rdx, rdi, true); __ movq(rax, rbx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Handle creating a flat two byte result. // rax: first string - known to be two byte // rbx: length of resulting flat string // rdx: second string // r8: instance type of first string // r9: instance type of first string __ bind(&non_ascii_string_add_flat_result); __ and_(r9, Immediate(kAsciiStringTag)); __ j(not_zero, &string_add_runtime); // Both strings are two byte strings. As they are short they are both // flat. __ AllocateTwoByteString(rcx, rbx, rdi, r14, r15, &string_add_runtime); // rcx: result string __ movq(rbx, rcx); // Locate first character of result. __ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // Locate first character of first argument. __ movl(rdi, FieldOperand(rax, String::kLengthOffset)); __ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // rax: first char of first argument // rbx: result string // rcx: first character of result // rdx: second argument // rdi: length of first argument GenerateCopyCharacters(masm, rcx, rax, rdi, false); // Locate first character of second argument. __ movl(rdi, FieldOperand(rdx, String::kLengthOffset)); __ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // rbx: result string // rcx: next character of result // rdx: first char of second argument // rdi: length of second argument GenerateCopyCharacters(masm, rcx, rdx, rdi, false); __ movq(rax, rbx); __ IncrementCounter(&Counters::string_add_native, 1); __ ret(2 * kPointerSize); // Just jump to runtime to add the two strings. __ bind(&string_add_runtime); __ TailCallRuntime(Runtime::kStringAdd, 2, 1); } void StringStubBase::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii) { Label loop; __ bind(&loop); // This loop just copies one character at a time, as it is only used for very // short strings. if (ascii) { __ movb(kScratchRegister, Operand(src, 0)); __ movb(Operand(dest, 0), kScratchRegister); __ addq(src, Immediate(1)); __ addq(dest, Immediate(1)); } else { __ movzxwl(kScratchRegister, Operand(src, 0)); __ movw(Operand(dest, 0), kScratchRegister); __ addq(src, Immediate(2)); __ addq(dest, Immediate(2)); } __ subl(count, Immediate(1)); __ j(not_zero, &loop); } void StringStubBase::GenerateCopyCharactersREP(MacroAssembler* masm, Register dest, Register src, Register count, bool ascii) { // Copy characters using rep movs of doublewords. Align destination on 4 byte // boundary before starting rep movs. Copy remaining characters after running // rep movs. ASSERT(dest.is(rdi)); // rep movs destination ASSERT(src.is(rsi)); // rep movs source ASSERT(count.is(rcx)); // rep movs count // Nothing to do for zero characters. Label done; __ testq(count, count); __ j(zero, &done); // Make count the number of bytes to copy. if (!ascii) { ASSERT_EQ(2, sizeof(uc16)); // NOLINT __ addq(count, count); } // Don't enter the rep movs if there are less than 4 bytes to copy. Label last_bytes; __ testq(count, Immediate(~7)); __ j(zero, &last_bytes); // Copy from edi to esi using rep movs instruction. __ movq(kScratchRegister, count); __ sar(count, Immediate(3)); // Number of doublewords to copy. __ repmovsq(); // Find number of bytes left. __ movq(count, kScratchRegister); __ and_(count, Immediate(7)); // Check if there are more bytes to copy. __ bind(&last_bytes); __ testq(count, count); __ j(zero, &done); // Copy remaining characters. Label loop; __ bind(&loop); __ movb(kScratchRegister, Operand(src, 0)); __ movb(Operand(dest, 0), kScratchRegister); __ addq(src, Immediate(1)); __ addq(dest, Immediate(1)); __ subq(count, Immediate(1)); __ j(not_zero, &loop); __ bind(&done); } void StringStubBase::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* not_found) { // Register scratch3 is the general scratch register in this function. Register scratch = scratch3; // Make sure that both characters are not digits as such strings has a // different hash algorithm. Don't try to look for these in the symbol table. Label not_array_index; __ movq(scratch, c1); __ subq(scratch, Immediate(static_cast('0'))); __ cmpq(scratch, Immediate(static_cast('9' - '0'))); __ j(above, ¬_array_index); __ movq(scratch, c2); __ subq(scratch, Immediate(static_cast('0'))); __ cmpq(scratch, Immediate(static_cast('9' - '0'))); __ j(below_equal, not_found); __ bind(¬_array_index); // Calculate the two character string hash. Register hash = scratch1; GenerateHashInit(masm, hash, c1, scratch); GenerateHashAddCharacter(masm, hash, c2, scratch); GenerateHashGetHash(masm, hash, scratch); // Collect the two characters in a register. Register chars = c1; __ shl(c2, Immediate(kBitsPerByte)); __ orl(chars, c2); // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string. // Load the symbol table. Register symbol_table = c2; __ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex); // Calculate capacity mask from the symbol table capacity. Register mask = scratch2; __ movq(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); __ SmiToInteger32(mask, mask); __ decl(mask); Register undefined = scratch4; __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); // Registers // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string (32-bit int) // symbol_table: symbol table // mask: capacity mask (32-bit int) // undefined: undefined value // scratch: - // Perform a number of probes in the symbol table. static const int kProbes = 4; Label found_in_symbol_table; Label next_probe[kProbes]; for (int i = 0; i < kProbes; i++) { // Calculate entry in symbol table. __ movl(scratch, hash); if (i > 0) { __ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i))); } __ andl(scratch, mask); // Load the entry from the symble table. Register candidate = scratch; // Scratch register contains candidate. ASSERT_EQ(1, SymbolTable::kEntrySize); __ movq(candidate, FieldOperand(symbol_table, scratch, times_pointer_size, SymbolTable::kElementsStartOffset)); // If entry is undefined no string with this hash can be found. __ cmpq(candidate, undefined); __ j(equal, not_found); // If length is not 2 the string is not a candidate. __ cmpl(FieldOperand(candidate, String::kLengthOffset), Immediate(2)); __ j(not_equal, &next_probe[i]); // We use kScratchRegister as a temporary register in assumption that // JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly Register temp = kScratchRegister; // Check that the candidate is a non-external ascii string. __ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset)); __ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialAscii( temp, temp, &next_probe[i]); // Check if the two characters match. __ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); __ andl(temp, Immediate(0x0000ffff)); __ cmpl(chars, temp); __ j(equal, &found_in_symbol_table); __ bind(&next_probe[i]); } // No matching 2 character string found by probing. __ jmp(not_found); // Scratch register contains result when we fall through to here. Register result = scratch; __ bind(&found_in_symbol_table); if (!result.is(rax)) { __ movq(rax, result); } } void StringStubBase::GenerateHashInit(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash = character + (character << 10); __ movl(hash, character); __ shll(hash, Immediate(10)); __ addl(hash, character); // hash ^= hash >> 6; __ movl(scratch, hash); __ sarl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringStubBase::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash += character; __ addl(hash, character); // hash += hash << 10; __ movl(scratch, hash); __ shll(scratch, Immediate(10)); __ addl(hash, scratch); // hash ^= hash >> 6; __ movl(scratch, hash); __ sarl(scratch, Immediate(6)); __ xorl(hash, scratch); } void StringStubBase::GenerateHashGetHash(MacroAssembler* masm, Register hash, Register scratch) { // hash += hash << 3; __ movl(scratch, hash); __ shll(scratch, Immediate(3)); __ addl(hash, scratch); // hash ^= hash >> 11; __ movl(scratch, hash); __ sarl(scratch, Immediate(11)); __ xorl(hash, scratch); // hash += hash << 15; __ movl(scratch, hash); __ shll(scratch, Immediate(15)); __ addl(hash, scratch); // if (hash == 0) hash = 27; Label hash_not_zero; __ testl(hash, hash); __ j(not_zero, &hash_not_zero); __ movl(hash, Immediate(27)); __ bind(&hash_not_zero); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0]: return address // rsp[8]: to // rsp[16]: from // rsp[24]: string const int kToOffset = 1 * kPointerSize; const int kFromOffset = kToOffset + kPointerSize; const int kStringOffset = kFromOffset + kPointerSize; const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset; // Make sure first argument is a string. __ movq(rax, Operand(rsp, kStringOffset)); ASSERT_EQ(0, kSmiTag); __ testl(rax, Immediate(kSmiTagMask)); __ j(zero, &runtime); Condition is_string = masm->IsObjectStringType(rax, rbx, rbx); __ j(NegateCondition(is_string), &runtime); // rax: string // rbx: instance type // Calculate length of sub string using the smi values. Label result_longer_than_two; __ movq(rcx, Operand(rsp, kToOffset)); __ movq(rdx, Operand(rsp, kFromOffset)); __ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime); __ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen. __ j(negative, &runtime); // Special handling of sub-strings of length 1 and 2. One character strings // are handled in the runtime system (looked up in the single character // cache). Two character strings are looked for in the symbol cache. __ SmiToInteger32(rcx, rcx); __ cmpl(rcx, Immediate(2)); __ j(greater, &result_longer_than_two); __ j(less, &runtime); // Sub string of length 2 requested. // rax: string // rbx: instance type // rcx: sub string length (value is 2) // rdx: from index (smi) __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime); // Get the two characters forming the sub string. __ SmiToInteger32(rdx, rdx); // From index is no longer smi. __ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize)); __ movzxbq(rcx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1)); // Try to lookup two character string in symbol table. Label make_two_character_string; GenerateTwoCharacterSymbolTableProbe(masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string); __ ret(3 * kPointerSize); __ bind(&make_two_character_string); // Setup registers for allocating the two character string. __ movq(rax, Operand(rsp, kStringOffset)); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ Set(rcx, 2); __ bind(&result_longer_than_two); // rax: string // rbx: instance type // rcx: result string length // Check for flat ascii string Label non_ascii_flat; __ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat); // Allocate the result. __ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime); // rax: result string // rcx: result string length __ movq(rdx, rsi); // esi used by following code. // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize)); // Load string argument and locate character of sub string start. __ movq(rsi, Operand(rsp, kStringOffset)); __ movq(rbx, Operand(rsp, kFromOffset)); { SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1); __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, SeqAsciiString::kHeaderSize - kHeapObjectTag)); } // rax: result string // rcx: result length // rdx: original value of rsi // rdi: first character of result // rsi: character of sub string start GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true); __ movq(rsi, rdx); // Restore rsi. __ IncrementCounter(&Counters::sub_string_native, 1); __ ret(kArgumentsSize); __ bind(&non_ascii_flat); // rax: string // rbx: instance type & kStringRepresentationMask | kStringEncodingMask // rcx: result string length // Check for sequential two byte string __ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag)); __ j(not_equal, &runtime); // Allocate the result. __ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime); // rax: result string // rcx: result string length __ movq(rdx, rsi); // esi used by following code. // Locate first character of result. __ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize)); // Load string argument and locate character of sub string start. __ movq(rsi, Operand(rsp, kStringOffset)); __ movq(rbx, Operand(rsp, kFromOffset)); { SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2); __ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale, SeqAsciiString::kHeaderSize - kHeapObjectTag)); } // rax: result string // rcx: result length // rdx: original value of rsi // rdi: first character of result // rsi: character of sub string start GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false); __ movq(rsi, rdx); // Restore esi. __ IncrementCounter(&Counters::sub_string_native, 1); __ ret(kArgumentsSize); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { // Ensure that you can always subtract a string length from a non-negative // number (e.g. another length). ASSERT(String::kMaxLength < 0x7fffffff); // Find minimum length and length difference. __ movl(scratch1, FieldOperand(left, String::kLengthOffset)); __ movl(scratch4, scratch1); __ subl(scratch4, FieldOperand(right, String::kLengthOffset)); // Register scratch4 now holds left.length - right.length. const Register length_difference = scratch4; Label left_shorter; __ j(less, &left_shorter); // The right string isn't longer that the left one. // Get the right string's length by subtracting the (non-negative) difference // from the left string's length. __ subl(scratch1, length_difference); __ bind(&left_shorter); // Register scratch1 now holds Min(left.length, right.length). const Register min_length = scratch1; Label compare_lengths; // If min-length is zero, go directly to comparing lengths. __ testl(min_length, min_length); __ j(zero, &compare_lengths); // Registers scratch2 and scratch3 are free. Label result_not_equal; Label loop; { // Check characters 0 .. min_length - 1 in a loop. // Use scratch3 as loop index, min_length as limit and scratch2 // for computation. const Register index = scratch3; __ movl(index, Immediate(0)); // Index into strings. __ bind(&loop); // Compare characters. // TODO(lrn): Could we load more than one character at a time? __ movb(scratch2, FieldOperand(left, index, times_1, SeqAsciiString::kHeaderSize)); // Increment index and use -1 modifier on next load to give // the previous load extra time to complete. __ addl(index, Immediate(1)); __ cmpb(scratch2, FieldOperand(right, index, times_1, SeqAsciiString::kHeaderSize - 1)); __ j(not_equal, &result_not_equal); __ cmpl(index, min_length); __ j(not_equal, &loop); } // Completed loop without finding different characters. // Compare lengths (precomputed). __ bind(&compare_lengths); __ testl(length_difference, length_difference); __ j(not_zero, &result_not_equal); // Result is EQUAL. __ Move(rax, Smi::FromInt(EQUAL)); __ ret(2 * kPointerSize); Label result_greater; __ bind(&result_not_equal); // Unequal comparison of left to right, either character or length. __ j(greater, &result_greater); // Result is LESS. __ Move(rax, Smi::FromInt(LESS)); __ ret(2 * kPointerSize); // Result is GREATER. __ bind(&result_greater); __ Move(rax, Smi::FromInt(GREATER)); __ ret(2 * kPointerSize); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // rsp[0]: return address // rsp[8]: right string // rsp[16]: left string __ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left __ movq(rax, Operand(rsp, 1 * kPointerSize)); // right // Check for identity. Label not_same; __ cmpq(rdx, rax); __ j(not_equal, ¬_same); __ Move(rax, Smi::FromInt(EQUAL)); __ IncrementCounter(&Counters::string_compare_native, 1); __ ret(2 * kPointerSize); __ bind(¬_same); // Check that both are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime); // Inline comparison of ascii strings. __ IncrementCounter(&Counters::string_compare_native, 1); GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } #undef __ #define __ masm. #ifdef _WIN64 typedef double (*ModuloFunction)(double, double); // Define custom fmod implementation. ModuloFunction CreateModuloFunction() { size_t actual_size; byte* buffer = static_cast(OS::Allocate(Assembler::kMinimalBufferSize, &actual_size, true)); CHECK(buffer); Assembler masm(buffer, static_cast(actual_size)); // Generated code is put into a fixed, unmovable, buffer, and not into // the V8 heap. We can't, and don't, refer to any relocatable addresses // (e.g. the JavaScript nan-object). // Windows 64 ABI passes double arguments in xmm0, xmm1 and // returns result in xmm0. // Argument backing space is allocated on the stack above // the return address. // Compute x mod y. // Load y and x (use argument backing store as temporary storage). __ movsd(Operand(rsp, kPointerSize * 2), xmm1); __ movsd(Operand(rsp, kPointerSize), xmm0); __ fld_d(Operand(rsp, kPointerSize * 2)); __ fld_d(Operand(rsp, kPointerSize)); // Clear exception flags before operation. { Label no_exceptions; __ fwait(); __ fnstsw_ax(); // Clear if Illegal Operand or Zero Division exceptions are set. __ testb(rax, Immediate(5)); __ j(zero, &no_exceptions); __ fnclex(); __ bind(&no_exceptions); } // Compute st(0) % st(1) { Label partial_remainder_loop; __ bind(&partial_remainder_loop); __ fprem(); __ fwait(); __ fnstsw_ax(); __ testl(rax, Immediate(0x400 /* C2 */)); // If C2 is set, computation only has partial result. Loop to // continue computation. __ j(not_zero, &partial_remainder_loop); } Label valid_result; Label return_result; // If Invalid Operand or Zero Division exceptions are set, // return NaN. __ testb(rax, Immediate(5)); __ j(zero, &valid_result); __ fstp(0); // Drop result in st(0). int64_t kNaNValue = V8_INT64_C(0x7ff8000000000000); __ movq(rcx, kNaNValue, RelocInfo::NONE); __ movq(Operand(rsp, kPointerSize), rcx); __ movsd(xmm0, Operand(rsp, kPointerSize)); __ jmp(&return_result); // If result is valid, return that. __ bind(&valid_result); __ fstp_d(Operand(rsp, kPointerSize)); __ movsd(xmm0, Operand(rsp, kPointerSize)); // Clean up FPU stack and exceptions and return xmm0 __ bind(&return_result); __ fstp(0); // Unload y. Label clear_exceptions; __ testb(rax, Immediate(0x3f /* Any Exception*/)); __ j(not_zero, &clear_exceptions); __ ret(0); __ bind(&clear_exceptions); __ fnclex(); __ ret(0); CodeDesc desc; masm.GetCode(&desc); // Call the function from C++. return FUNCTION_CAST(buffer); } #endif #undef __ } } // namespace v8::internal