// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_PREPARSER_H #define V8_PREPARSER_H #include "func-name-inferrer.h" #include "hashmap.h" #include "scopes.h" #include "token.h" #include "scanner.h" #include "v8.h" namespace v8 { namespace internal { // Common base class shared between parser and pre-parser. Traits encapsulate // the differences between Parser and PreParser: // - Return types: For example, Parser functions return Expression* and // PreParser functions return PreParserExpression. // - Creating parse tree nodes: Parser generates an AST during the recursive // descent. PreParser doesn't create a tree. Instead, it passes around minimal // data objects (PreParserExpression, PreParserIdentifier etc.) which contain // just enough data for the upper layer functions. PreParserFactory is // responsible for creating these dummy objects. It provides a similar kind of // interface as AstNodeFactory, so ParserBase doesn't need to care which one is // used. // - Miscellanous other tasks interleaved with the recursive descent. For // example, Parser keeps track of which function literals should be marked as // pretenured, and PreParser doesn't care. // The traits are expected to contain the following typedefs: // struct Traits { // // In particular... // struct Type { // // Used by FunctionState and BlockState. // typedef Scope; // typedef GeneratorVariable; // typedef Zone; // // Return types for traversing functions. // typedef Identifier; // typedef Expression; // typedef FunctionLiteral; // typedef ObjectLiteralProperty; // typedef Literal; // typedef ExpressionList; // typedef PropertyList; // // For constructing objects returned by the traversing functions. // typedef Factory; // }; // // ... // }; template class ParserBase : public Traits { public: // Shorten type names defined by Traits. typedef typename Traits::Type::Expression ExpressionT; typedef typename Traits::Type::Identifier IdentifierT; ParserBase(Scanner* scanner, uintptr_t stack_limit, v8::Extension* extension, ParserRecorder* log, typename Traits::Type::Zone* zone, typename Traits::Type::Parser this_object) : Traits(this_object), parenthesized_function_(false), scope_(NULL), function_state_(NULL), extension_(extension), fni_(NULL), log_(log), mode_(PARSE_EAGERLY), // Lazy mode must be set explicitly. scanner_(scanner), stack_limit_(stack_limit), stack_overflow_(false), allow_lazy_(false), allow_natives_syntax_(false), allow_generators_(false), allow_for_of_(false), zone_(zone) { } // Getters that indicate whether certain syntactical constructs are // allowed to be parsed by this instance of the parser. bool allow_lazy() const { return allow_lazy_; } bool allow_natives_syntax() const { return allow_natives_syntax_; } bool allow_generators() const { return allow_generators_; } bool allow_for_of() const { return allow_for_of_; } bool allow_modules() const { return scanner()->HarmonyModules(); } bool allow_harmony_scoping() const { return scanner()->HarmonyScoping(); } bool allow_harmony_numeric_literals() const { return scanner()->HarmonyNumericLiterals(); } // Setters that determine whether certain syntactical constructs are // allowed to be parsed by this instance of the parser. void set_allow_lazy(bool allow) { allow_lazy_ = allow; } void set_allow_natives_syntax(bool allow) { allow_natives_syntax_ = allow; } void set_allow_generators(bool allow) { allow_generators_ = allow; } void set_allow_for_of(bool allow) { allow_for_of_ = allow; } void set_allow_modules(bool allow) { scanner()->SetHarmonyModules(allow); } void set_allow_harmony_scoping(bool allow) { scanner()->SetHarmonyScoping(allow); } void set_allow_harmony_numeric_literals(bool allow) { scanner()->SetHarmonyNumericLiterals(allow); } protected: enum AllowEvalOrArgumentsAsIdentifier { kAllowEvalOrArguments, kDontAllowEvalOrArguments }; enum Mode { PARSE_LAZILY, PARSE_EAGERLY }; // --------------------------------------------------------------------------- // FunctionState and BlockState together implement the parser's scope stack. // The parser's current scope is in scope_. BlockState and FunctionState // constructors push on the scope stack and the destructors pop. They are also // used to hold the parser's per-function and per-block state. class BlockState BASE_EMBEDDED { public: BlockState(typename Traits::Type::Scope** scope_stack, typename Traits::Type::Scope* scope) : scope_stack_(scope_stack), outer_scope_(*scope_stack), scope_(scope) { *scope_stack_ = scope_; } ~BlockState() { *scope_stack_ = outer_scope_; } private: typename Traits::Type::Scope** scope_stack_; typename Traits::Type::Scope* outer_scope_; typename Traits::Type::Scope* scope_; }; class FunctionState BASE_EMBEDDED { public: FunctionState( FunctionState** function_state_stack, typename Traits::Type::Scope** scope_stack, typename Traits::Type::Scope* scope, typename Traits::Type::Zone* zone = NULL); ~FunctionState(); int NextMaterializedLiteralIndex() { return next_materialized_literal_index_++; } int materialized_literal_count() { return next_materialized_literal_index_ - JSFunction::kLiteralsPrefixSize; } int NextHandlerIndex() { return next_handler_index_++; } int handler_count() { return next_handler_index_; } void AddProperty() { expected_property_count_++; } int expected_property_count() { return expected_property_count_; } void set_is_generator(bool is_generator) { is_generator_ = is_generator; } bool is_generator() const { return is_generator_; } void set_generator_object_variable( typename Traits::Type::GeneratorVariable* variable) { ASSERT(variable != NULL); ASSERT(!is_generator()); generator_object_variable_ = variable; is_generator_ = true; } typename Traits::Type::GeneratorVariable* generator_object_variable() const { return generator_object_variable_; } typename Traits::Type::Factory* factory() { return &factory_; } private: // Used to assign an index to each literal that needs materialization in // the function. Includes regexp literals, and boilerplate for object and // array literals. int next_materialized_literal_index_; // Used to assign a per-function index to try and catch handlers. int next_handler_index_; // Properties count estimation. int expected_property_count_; // Whether the function is a generator. bool is_generator_; // For generators, this variable may hold the generator object. It variable // is used by yield expressions and return statements. It is not necessary // for generator functions to have this variable set. Variable* generator_object_variable_; FunctionState** function_state_stack_; FunctionState* outer_function_state_; typename Traits::Type::Scope** scope_stack_; typename Traits::Type::Scope* outer_scope_; int saved_ast_node_id_; // Only used by ParserTraits. typename Traits::Type::Zone* extra_param_; typename Traits::Type::Factory factory_; friend class ParserTraits; }; class ParsingModeScope BASE_EMBEDDED { public: ParsingModeScope(ParserBase* parser, Mode mode) : parser_(parser), old_mode_(parser->mode()) { parser_->mode_ = mode; } ~ParsingModeScope() { parser_->mode_ = old_mode_; } private: ParserBase* parser_; Mode old_mode_; }; Scanner* scanner() const { return scanner_; } int position() { return scanner_->location().beg_pos; } int peek_position() { return scanner_->peek_location().beg_pos; } bool stack_overflow() const { return stack_overflow_; } void set_stack_overflow() { stack_overflow_ = true; } Mode mode() const { return mode_; } typename Traits::Type::Zone* zone() const { return zone_; } INLINE(Token::Value peek()) { if (stack_overflow_) return Token::ILLEGAL; return scanner()->peek(); } INLINE(Token::Value Next()) { if (stack_overflow_) return Token::ILLEGAL; { int marker; if (reinterpret_cast(&marker) < stack_limit_) { // Any further calls to Next or peek will return the illegal token. // The current call must return the next token, which might already // have been peek'ed. stack_overflow_ = true; } } return scanner()->Next(); } void Consume(Token::Value token) { Token::Value next = Next(); USE(next); USE(token); ASSERT(next == token); } bool Check(Token::Value token) { Token::Value next = peek(); if (next == token) { Consume(next); return true; } return false; } void Expect(Token::Value token, bool* ok) { Token::Value next = Next(); if (next != token) { ReportUnexpectedToken(next); *ok = false; } } void ExpectSemicolon(bool* ok) { // Check for automatic semicolon insertion according to // the rules given in ECMA-262, section 7.9, page 21. Token::Value tok = peek(); if (tok == Token::SEMICOLON) { Next(); return; } if (scanner()->HasAnyLineTerminatorBeforeNext() || tok == Token::RBRACE || tok == Token::EOS) { return; } Expect(Token::SEMICOLON, ok); } bool peek_any_identifier() { Token::Value next = peek(); return next == Token::IDENTIFIER || next == Token::FUTURE_RESERVED_WORD || next == Token::FUTURE_STRICT_RESERVED_WORD || next == Token::YIELD; } bool CheckContextualKeyword(Vector keyword) { if (peek() == Token::IDENTIFIER && scanner()->is_next_contextual_keyword(keyword)) { Consume(Token::IDENTIFIER); return true; } return false; } void ExpectContextualKeyword(Vector keyword, bool* ok) { Expect(Token::IDENTIFIER, ok); if (!*ok) return; if (!scanner()->is_literal_contextual_keyword(keyword)) { ReportUnexpectedToken(scanner()->current_token()); *ok = false; } } // Checks whether an octal literal was last seen between beg_pos and end_pos. // If so, reports an error. Only called for strict mode. void CheckOctalLiteral(int beg_pos, int end_pos, bool* ok) { Scanner::Location octal = scanner()->octal_position(); if (octal.IsValid() && beg_pos <= octal.beg_pos && octal.end_pos <= end_pos) { ReportMessageAt(octal, "strict_octal_literal"); scanner()->clear_octal_position(); *ok = false; } } // Determine precedence of given token. static int Precedence(Token::Value token, bool accept_IN) { if (token == Token::IN && !accept_IN) return 0; // 0 precedence will terminate binary expression parsing return Token::Precedence(token); } typename Traits::Type::Factory* factory() { return function_state_->factory(); } StrictMode strict_mode() { return scope_->strict_mode(); } bool is_generator() const { return function_state_->is_generator(); } // Report syntax errors. void ReportMessage(const char* message, Vector args, bool is_reference_error = false) { Scanner::Location source_location = scanner()->location(); Traits::ReportMessageAt(source_location, message, args, is_reference_error); } void ReportMessageAt(Scanner::Location location, const char* message, bool is_reference_error = false) { Traits::ReportMessageAt(location, message, Vector::empty(), is_reference_error); } void ReportUnexpectedToken(Token::Value token); // Recursive descent functions: // Parses an identifier that is valid for the current scope, in particular it // fails on strict mode future reserved keywords in a strict scope. If // allow_eval_or_arguments is kAllowEvalOrArguments, we allow "eval" or // "arguments" as identifier even in strict mode (this is needed in cases like // "var foo = eval;"). IdentifierT ParseIdentifier( AllowEvalOrArgumentsAsIdentifier, bool* ok); // Parses an identifier or a strict mode future reserved word, and indicate // whether it is strict mode future reserved. IdentifierT ParseIdentifierOrStrictReservedWord( bool* is_strict_reserved, bool* ok); IdentifierT ParseIdentifierName(bool* ok); // Parses an identifier and determines whether or not it is 'get' or 'set'. IdentifierT ParseIdentifierNameOrGetOrSet(bool* is_get, bool* is_set, bool* ok); ExpressionT ParseRegExpLiteral(bool seen_equal, bool* ok); ExpressionT ParsePrimaryExpression(bool* ok); ExpressionT ParseExpression(bool accept_IN, bool* ok); ExpressionT ParseArrayLiteral(bool* ok); ExpressionT ParseObjectLiteral(bool* ok); typename Traits::Type::ExpressionList ParseArguments(bool* ok); ExpressionT ParseAssignmentExpression(bool accept_IN, bool* ok); ExpressionT ParseYieldExpression(bool* ok); ExpressionT ParseConditionalExpression(bool accept_IN, bool* ok); ExpressionT ParseBinaryExpression(int prec, bool accept_IN, bool* ok); ExpressionT ParseUnaryExpression(bool* ok); ExpressionT ParsePostfixExpression(bool* ok); ExpressionT ParseLeftHandSideExpression(bool* ok); ExpressionT ParseMemberWithNewPrefixesExpression(bool* ok); ExpressionT ParseMemberExpression(bool* ok); ExpressionT ParseMemberExpressionContinuation(ExpressionT expression, bool* ok); // Checks if the expression is a valid reference expression (e.g., on the // left-hand side of assignments). Although ruled out by ECMA as early errors, // we allow calls for web compatibility and rewrite them to a runtime throw. ExpressionT CheckAndRewriteReferenceExpression( ExpressionT expression, Scanner::Location location, const char* message, bool* ok); // Used to detect duplicates in object literals. Each of the values // kGetterProperty, kSetterProperty and kValueProperty represents // a type of object literal property. When parsing a property, its // type value is stored in the DuplicateFinder for the property name. // Values are chosen so that having intersection bits means the there is // an incompatibility. // I.e., you can add a getter to a property that already has a setter, since // kGetterProperty and kSetterProperty doesn't intersect, but not if it // already has a getter or a value. Adding the getter to an existing // setter will store the value (kGetterProperty | kSetterProperty), which // is incompatible with adding any further properties. enum PropertyKind { kNone = 0, // Bit patterns representing different object literal property types. kGetterProperty = 1, kSetterProperty = 2, kValueProperty = 7, // Helper constants. kValueFlag = 4 }; // Validation per ECMA 262 - 11.1.5 "Object Initialiser". class ObjectLiteralChecker { public: ObjectLiteralChecker(ParserBase* parser, StrictMode strict_mode) : parser_(parser), finder_(scanner()->unicode_cache()), strict_mode_(strict_mode) { } void CheckProperty(Token::Value property, PropertyKind type, bool* ok); private: ParserBase* parser() const { return parser_; } Scanner* scanner() const { return parser_->scanner(); } // Checks the type of conflict based on values coming from PropertyType. bool HasConflict(PropertyKind type1, PropertyKind type2) { return (type1 & type2) != 0; } bool IsDataDataConflict(PropertyKind type1, PropertyKind type2) { return ((type1 & type2) & kValueFlag) != 0; } bool IsDataAccessorConflict(PropertyKind type1, PropertyKind type2) { return ((type1 ^ type2) & kValueFlag) != 0; } bool IsAccessorAccessorConflict(PropertyKind type1, PropertyKind type2) { return ((type1 | type2) & kValueFlag) == 0; } ParserBase* parser_; DuplicateFinder finder_; StrictMode strict_mode_; }; // If true, the next (and immediately following) function literal is // preceded by a parenthesis. // Heuristically that means that the function will be called immediately, // so never lazily compile it. bool parenthesized_function_; typename Traits::Type::Scope* scope_; // Scope stack. FunctionState* function_state_; // Function state stack. v8::Extension* extension_; FuncNameInferrer* fni_; ParserRecorder* log_; Mode mode_; private: Scanner* scanner_; uintptr_t stack_limit_; bool stack_overflow_; bool allow_lazy_; bool allow_natives_syntax_; bool allow_generators_; bool allow_for_of_; typename Traits::Type::Zone* zone_; // Only used by Parser. }; class PreParserIdentifier { public: PreParserIdentifier() : type_(kUnknownIdentifier) {} static PreParserIdentifier Default() { return PreParserIdentifier(kUnknownIdentifier); } static PreParserIdentifier Eval() { return PreParserIdentifier(kEvalIdentifier); } static PreParserIdentifier Arguments() { return PreParserIdentifier(kArgumentsIdentifier); } static PreParserIdentifier FutureReserved() { return PreParserIdentifier(kFutureReservedIdentifier); } static PreParserIdentifier FutureStrictReserved() { return PreParserIdentifier(kFutureStrictReservedIdentifier); } static PreParserIdentifier Yield() { return PreParserIdentifier(kYieldIdentifier); } bool IsEval() { return type_ == kEvalIdentifier; } bool IsArguments() { return type_ == kArgumentsIdentifier; } bool IsEvalOrArguments() { return type_ >= kEvalIdentifier; } bool IsYield() { return type_ == kYieldIdentifier; } bool IsFutureReserved() { return type_ == kFutureReservedIdentifier; } bool IsFutureStrictReserved() { return type_ == kFutureStrictReservedIdentifier; } bool IsValidStrictVariable() { return type_ == kUnknownIdentifier; } private: enum Type { kUnknownIdentifier, kFutureReservedIdentifier, kFutureStrictReservedIdentifier, kYieldIdentifier, kEvalIdentifier, kArgumentsIdentifier }; explicit PreParserIdentifier(Type type) : type_(type) {} Type type_; friend class PreParserExpression; }; // Bits 0 and 1 are used to identify the type of expression: // If bit 0 is set, it's an identifier. // if bit 1 is set, it's a string literal. // If neither is set, it's no particular type, and both set isn't // use yet. class PreParserExpression { public: static PreParserExpression Default() { return PreParserExpression(kUnknownExpression); } static PreParserExpression FromIdentifier(PreParserIdentifier id) { return PreParserExpression(kIdentifierFlag | (id.type_ << kIdentifierShift)); } static PreParserExpression StringLiteral() { return PreParserExpression(kUnknownStringLiteral); } static PreParserExpression UseStrictStringLiteral() { return PreParserExpression(kUseStrictString); } static PreParserExpression This() { return PreParserExpression(kThisExpression); } static PreParserExpression ThisProperty() { return PreParserExpression(kThisPropertyExpression); } static PreParserExpression Property() { return PreParserExpression(kPropertyExpression); } static PreParserExpression Call() { return PreParserExpression(kCallExpression); } bool IsIdentifier() { return (code_ & kIdentifierFlag) != 0; } PreParserIdentifier AsIdentifier() { ASSERT(IsIdentifier()); return PreParserIdentifier( static_cast(code_ >> kIdentifierShift)); } bool IsStringLiteral() { return (code_ & kStringLiteralFlag) != 0; } bool IsUseStrictLiteral() { return (code_ & kStringLiteralMask) == kUseStrictString; } bool IsThis() { return code_ == kThisExpression; } bool IsThisProperty() { return code_ == kThisPropertyExpression; } bool IsProperty() { return code_ == kPropertyExpression || code_ == kThisPropertyExpression; } bool IsCall() { return code_ == kCallExpression; } bool IsValidReferenceExpression() { return IsIdentifier() || IsProperty(); } // At the moment PreParser doesn't track these expression types. bool IsFunctionLiteral() const { return false; } bool IsCallNew() const { return false; } PreParserExpression AsFunctionLiteral() { return *this; } // Dummy implementation for making expression->somefunc() work in both Parser // and PreParser. PreParserExpression* operator->() { return this; } // More dummy implementations of things PreParser doesn't need to track: void set_index(int index) {} // For YieldExpressions void set_parenthesized() {} private: // Least significant 2 bits are used as flags. Bits 0 and 1 represent // identifiers or strings literals, and are mutually exclusive, but can both // be absent. If the expression is an identifier or a string literal, the // other bits describe the type (see PreParserIdentifier::Type and string // literal constants below). enum { kUnknownExpression = 0, // Identifiers kIdentifierFlag = 1, // Used to detect labels. kIdentifierShift = 3, kStringLiteralFlag = 2, // Used to detect directive prologue. kUnknownStringLiteral = kStringLiteralFlag, kUseStrictString = kStringLiteralFlag | 8, kStringLiteralMask = kUseStrictString, // Below here applies if neither identifier nor string literal. Reserve the // 2 least significant bits for flags. kThisExpression = 1 << 2, kThisPropertyExpression = 2 << 2, kPropertyExpression = 3 << 2, kCallExpression = 4 << 2 }; explicit PreParserExpression(int expression_code) : code_(expression_code) {} int code_; }; // PreParserExpressionList doesn't actually store the expressions because // PreParser doesn't need to. class PreParserExpressionList { public: // These functions make list->Add(some_expression) work (and do nothing). PreParserExpressionList() : length_(0) {} PreParserExpressionList* operator->() { return this; } void Add(PreParserExpression, void*) { ++length_; } int length() const { return length_; } private: int length_; }; class PreParserScope { public: explicit PreParserScope(PreParserScope* outer_scope, ScopeType scope_type) : scope_type_(scope_type) { strict_mode_ = outer_scope ? outer_scope->strict_mode() : SLOPPY; } ScopeType type() { return scope_type_; } StrictMode strict_mode() const { return strict_mode_; } void SetStrictMode(StrictMode strict_mode) { strict_mode_ = strict_mode; } private: ScopeType scope_type_; StrictMode strict_mode_; }; class PreParserFactory { public: explicit PreParserFactory(void* extra_param) {} PreParserExpression NewLiteral(PreParserIdentifier identifier, int pos) { return PreParserExpression::Default(); } PreParserExpression NewNumberLiteral(double number, int pos) { return PreParserExpression::Default(); } PreParserExpression NewRegExpLiteral(PreParserIdentifier js_pattern, PreParserIdentifier js_flags, int literal_index, int pos) { return PreParserExpression::Default(); } PreParserExpression NewArrayLiteral(PreParserExpressionList values, int literal_index, int pos) { return PreParserExpression::Default(); } PreParserExpression NewObjectLiteralProperty(bool is_getter, PreParserExpression value, int pos) { return PreParserExpression::Default(); } PreParserExpression NewObjectLiteralProperty(PreParserExpression key, PreParserExpression value) { return PreParserExpression::Default(); } PreParserExpression NewObjectLiteral(PreParserExpressionList properties, int literal_index, int boilerplate_properties, bool has_function, int pos) { return PreParserExpression::Default(); } PreParserExpression NewVariableProxy(void* generator_variable) { return PreParserExpression::Default(); } PreParserExpression NewProperty(PreParserExpression obj, PreParserExpression key, int pos) { if (obj.IsThis()) { return PreParserExpression::ThisProperty(); } return PreParserExpression::Property(); } PreParserExpression NewUnaryOperation(Token::Value op, PreParserExpression expression, int pos) { return PreParserExpression::Default(); } PreParserExpression NewBinaryOperation(Token::Value op, PreParserExpression left, PreParserExpression right, int pos) { return PreParserExpression::Default(); } PreParserExpression NewCompareOperation(Token::Value op, PreParserExpression left, PreParserExpression right, int pos) { return PreParserExpression::Default(); } PreParserExpression NewAssignment(Token::Value op, PreParserExpression left, PreParserExpression right, int pos) { return PreParserExpression::Default(); } PreParserExpression NewYield(PreParserExpression generator_object, PreParserExpression expression, Yield::Kind yield_kind, int pos) { return PreParserExpression::Default(); } PreParserExpression NewConditional(PreParserExpression condition, PreParserExpression then_expression, PreParserExpression else_expression, int pos) { return PreParserExpression::Default(); } PreParserExpression NewCountOperation(Token::Value op, bool is_prefix, PreParserExpression expression, int pos) { return PreParserExpression::Default(); } PreParserExpression NewCall(PreParserExpression expression, PreParserExpressionList arguments, int pos) { return PreParserExpression::Call(); } PreParserExpression NewCallNew(PreParserExpression expression, PreParserExpressionList arguments, int pos) { return PreParserExpression::Default(); } }; class PreParser; class PreParserTraits { public: struct Type { // TODO(marja): To be removed. The Traits object should contain all the data // it needs. typedef PreParser* Parser; // Used by FunctionState and BlockState. typedef PreParserScope Scope; // PreParser doesn't need to store generator variables. typedef void GeneratorVariable; // No interaction with Zones. typedef void Zone; // Return types for traversing functions. typedef PreParserIdentifier Identifier; typedef PreParserExpression Expression; typedef PreParserExpression YieldExpression; typedef PreParserExpression FunctionLiteral; typedef PreParserExpression ObjectLiteralProperty; typedef PreParserExpression Literal; typedef PreParserExpressionList ExpressionList; typedef PreParserExpressionList PropertyList; // For constructing objects returned by the traversing functions. typedef PreParserFactory Factory; }; explicit PreParserTraits(PreParser* pre_parser) : pre_parser_(pre_parser) {} // Custom operations executed when FunctionStates are created and // destructed. (The PreParser doesn't need to do anything.) template static void SetUpFunctionState(FunctionState* function_state, void*) {} template static void TearDownFunctionState(FunctionState* function_state, void*) {} // Helper functions for recursive descent. static bool IsEvalOrArguments(PreParserIdentifier identifier) { return identifier.IsEvalOrArguments(); } // Returns true if the expression is of type "this.foo". static bool IsThisProperty(PreParserExpression expression) { return expression.IsThisProperty(); } static bool IsIdentifier(PreParserExpression expression) { return expression.IsIdentifier(); } static PreParserIdentifier AsIdentifier(PreParserExpression expression) { return expression.AsIdentifier(); } static bool IsBoilerplateProperty(PreParserExpression property) { // PreParser doesn't count boilerplate properties. return false; } static bool IsArrayIndex(PreParserIdentifier string, uint32_t* index) { return false; } // Functions for encapsulating the differences between parsing and preparsing; // operations interleaved with the recursive descent. static void PushLiteralName(FuncNameInferrer* fni, PreParserIdentifier id) { // PreParser should not use FuncNameInferrer. UNREACHABLE(); } static void PushPropertyName(FuncNameInferrer* fni, PreParserExpression expression) { // PreParser should not use FuncNameInferrer. UNREACHABLE(); } static void CheckFunctionLiteralInsideTopLevelObjectLiteral( PreParserScope* scope, PreParserExpression value, bool* has_function) {} static void CheckAssigningFunctionLiteralToProperty( PreParserExpression left, PreParserExpression right) {} // PreParser doesn't need to keep track of eval calls. static void CheckPossibleEvalCall(PreParserExpression expression, PreParserScope* scope) {} static PreParserExpression MarkExpressionAsLValue( PreParserExpression expression) { // TODO(marja): To be able to produce the same errors, the preparser needs // to start tracking which expressions are variables and which are lvalues. return expression; } bool ShortcutNumericLiteralBinaryExpression(PreParserExpression* x, PreParserExpression y, Token::Value op, int pos, PreParserFactory* factory) { return false; } PreParserExpression BuildUnaryExpression(PreParserExpression expression, Token::Value op, int pos, PreParserFactory* factory) { return PreParserExpression::Default(); } PreParserExpression NewThrowReferenceError(const char* type, int pos) { return PreParserExpression::Default(); } PreParserExpression NewThrowSyntaxError( const char* type, Handle arg, int pos) { return PreParserExpression::Default(); } PreParserExpression NewThrowTypeError( const char* type, Handle arg1, Handle arg2, int pos) { return PreParserExpression::Default(); } // Reporting errors. void ReportMessageAt(Scanner::Location location, const char* message, Vector args, bool is_reference_error = false); void ReportMessageAt(Scanner::Location location, const char* type, const char* name_opt, bool is_reference_error = false); void ReportMessageAt(int start_pos, int end_pos, const char* type, const char* name_opt, bool is_reference_error = false); // "null" return type creators. static PreParserIdentifier EmptyIdentifier() { return PreParserIdentifier::Default(); } static PreParserExpression EmptyExpression() { return PreParserExpression::Default(); } static PreParserExpression EmptyLiteral() { return PreParserExpression::Default(); } static PreParserExpressionList NullExpressionList() { return PreParserExpressionList(); } // Odd-ball literal creators. static PreParserExpression GetLiteralTheHole(int position, PreParserFactory* factory) { return PreParserExpression::Default(); } // Producing data during the recursive descent. PreParserIdentifier GetSymbol(Scanner* scanner); static PreParserIdentifier NextLiteralString(Scanner* scanner, PretenureFlag tenured) { return PreParserIdentifier::Default(); } static PreParserExpression ThisExpression(PreParserScope* scope, PreParserFactory* factory) { return PreParserExpression::This(); } static PreParserExpression ExpressionFromLiteral( Token::Value token, int pos, Scanner* scanner, PreParserFactory* factory) { return PreParserExpression::Default(); } static PreParserExpression ExpressionFromIdentifier( PreParserIdentifier name, int pos, PreParserScope* scope, PreParserFactory* factory) { return PreParserExpression::FromIdentifier(name); } PreParserExpression ExpressionFromString(int pos, Scanner* scanner, PreParserFactory* factory = NULL); static PreParserExpressionList NewExpressionList(int size, void* zone) { return PreParserExpressionList(); } static PreParserExpressionList NewPropertyList(int size, void* zone) { return PreParserExpressionList(); } // Temporary glue; these functions will move to ParserBase. PreParserExpression ParseV8Intrinsic(bool* ok); PreParserExpression ParseFunctionLiteral( PreParserIdentifier name, Scanner::Location function_name_location, bool name_is_strict_reserved, bool is_generator, int function_token_position, FunctionLiteral::FunctionType type, bool* ok); private: PreParser* pre_parser_; }; // Preparsing checks a JavaScript program and emits preparse-data that helps // a later parsing to be faster. // See preparse-data-format.h for the data format. // The PreParser checks that the syntax follows the grammar for JavaScript, // and collects some information about the program along the way. // The grammar check is only performed in order to understand the program // sufficiently to deduce some information about it, that can be used // to speed up later parsing. Finding errors is not the goal of pre-parsing, // rather it is to speed up properly written and correct programs. // That means that contextual checks (like a label being declared where // it is used) are generally omitted. class PreParser : public ParserBase { public: typedef PreParserIdentifier Identifier; typedef PreParserExpression Expression; enum PreParseResult { kPreParseStackOverflow, kPreParseSuccess }; PreParser(Scanner* scanner, ParserRecorder* log, uintptr_t stack_limit) : ParserBase(scanner, stack_limit, NULL, log, NULL, this) {} // Pre-parse the program from the character stream; returns true on // success (even if parsing failed, the pre-parse data successfully // captured the syntax error), and false if a stack-overflow happened // during parsing. PreParseResult PreParseProgram() { PreParserScope scope(scope_, GLOBAL_SCOPE); FunctionState top_scope(&function_state_, &scope_, &scope, NULL); bool ok = true; int start_position = scanner()->peek_location().beg_pos; ParseSourceElements(Token::EOS, &ok); if (stack_overflow()) return kPreParseStackOverflow; if (!ok) { ReportUnexpectedToken(scanner()->current_token()); } else if (scope_->strict_mode() == STRICT) { CheckOctalLiteral(start_position, scanner()->location().end_pos, &ok); } return kPreParseSuccess; } // Parses a single function literal, from the opening parentheses before // parameters to the closing brace after the body. // Returns a FunctionEntry describing the body of the function in enough // detail that it can be lazily compiled. // The scanner is expected to have matched the "function" or "function*" // keyword and parameters, and have consumed the initial '{'. // At return, unless an error occurred, the scanner is positioned before the // the final '}'. PreParseResult PreParseLazyFunction(StrictMode strict_mode, bool is_generator, ParserRecorder* log); private: friend class PreParserTraits; // These types form an algebra over syntactic categories that is just // rich enough to let us recognize and propagate the constructs that // are either being counted in the preparser data, or is important // to throw the correct syntax error exceptions. enum VariableDeclarationContext { kSourceElement, kStatement, kForStatement }; // If a list of variable declarations includes any initializers. enum VariableDeclarationProperties { kHasInitializers, kHasNoInitializers }; class Statement { public: static Statement Default() { return Statement(kUnknownStatement); } static Statement FunctionDeclaration() { return Statement(kFunctionDeclaration); } // Creates expression statement from expression. // Preserves being an unparenthesized string literal, possibly // "use strict". static Statement ExpressionStatement(Expression expression) { if (expression.IsUseStrictLiteral()) { return Statement(kUseStrictExpressionStatement); } if (expression.IsStringLiteral()) { return Statement(kStringLiteralExpressionStatement); } return Default(); } bool IsStringLiteral() { return code_ == kStringLiteralExpressionStatement; } bool IsUseStrictLiteral() { return code_ == kUseStrictExpressionStatement; } bool IsFunctionDeclaration() { return code_ == kFunctionDeclaration; } private: enum Type { kUnknownStatement, kStringLiteralExpressionStatement, kUseStrictExpressionStatement, kFunctionDeclaration }; explicit Statement(Type code) : code_(code) {} Type code_; }; enum SourceElements { kUnknownSourceElements }; // All ParseXXX functions take as the last argument an *ok parameter // which is set to false if parsing failed; it is unchanged otherwise. // By making the 'exception handling' explicit, we are forced to check // for failure at the call sites. Statement ParseSourceElement(bool* ok); SourceElements ParseSourceElements(int end_token, bool* ok); Statement ParseStatement(bool* ok); Statement ParseFunctionDeclaration(bool* ok); Statement ParseBlock(bool* ok); Statement ParseVariableStatement(VariableDeclarationContext var_context, bool* ok); Statement ParseVariableDeclarations(VariableDeclarationContext var_context, VariableDeclarationProperties* decl_props, int* num_decl, bool* ok); Statement ParseExpressionOrLabelledStatement(bool* ok); Statement ParseIfStatement(bool* ok); Statement ParseContinueStatement(bool* ok); Statement ParseBreakStatement(bool* ok); Statement ParseReturnStatement(bool* ok); Statement ParseWithStatement(bool* ok); Statement ParseSwitchStatement(bool* ok); Statement ParseDoWhileStatement(bool* ok); Statement ParseWhileStatement(bool* ok); Statement ParseForStatement(bool* ok); Statement ParseThrowStatement(bool* ok); Statement ParseTryStatement(bool* ok); Statement ParseDebuggerStatement(bool* ok); Expression ParseConditionalExpression(bool accept_IN, bool* ok); Expression ParseObjectLiteral(bool* ok); Expression ParseV8Intrinsic(bool* ok); Expression ParseFunctionLiteral( Identifier name, Scanner::Location function_name_location, bool name_is_strict_reserved, bool is_generator, int function_token_pos, FunctionLiteral::FunctionType function_type, bool* ok); void ParseLazyFunctionLiteralBody(bool* ok); // Logs the currently parsed literal as a symbol in the preparser data. void LogSymbol(); // Log the currently parsed string literal. Expression GetStringSymbol(); bool CheckInOrOf(bool accept_OF); }; template ParserBase::FunctionState::FunctionState( FunctionState** function_state_stack, typename Traits::Type::Scope** scope_stack, typename Traits::Type::Scope* scope, typename Traits::Type::Zone* extra_param) : next_materialized_literal_index_(JSFunction::kLiteralsPrefixSize), next_handler_index_(0), expected_property_count_(0), is_generator_(false), generator_object_variable_(NULL), function_state_stack_(function_state_stack), outer_function_state_(*function_state_stack), scope_stack_(scope_stack), outer_scope_(*scope_stack), saved_ast_node_id_(0), extra_param_(extra_param), factory_(extra_param) { *scope_stack_ = scope; *function_state_stack = this; Traits::SetUpFunctionState(this, extra_param); } template ParserBase::FunctionState::~FunctionState() { *scope_stack_ = outer_scope_; *function_state_stack_ = outer_function_state_; Traits::TearDownFunctionState(this, extra_param_); } template void ParserBase::ReportUnexpectedToken(Token::Value token) { Scanner::Location source_location = scanner()->location(); // Four of the tokens are treated specially switch (token) { case Token::EOS: return ReportMessageAt(source_location, "unexpected_eos"); case Token::NUMBER: return ReportMessageAt(source_location, "unexpected_token_number"); case Token::STRING: return ReportMessageAt(source_location, "unexpected_token_string"); case Token::IDENTIFIER: return ReportMessageAt(source_location, "unexpected_token_identifier"); case Token::FUTURE_RESERVED_WORD: return ReportMessageAt(source_location, "unexpected_reserved"); case Token::YIELD: case Token::FUTURE_STRICT_RESERVED_WORD: return ReportMessageAt(source_location, strict_mode() == SLOPPY ? "unexpected_token_identifier" : "unexpected_strict_reserved"); default: const char* name = Token::String(token); ASSERT(name != NULL); Traits::ReportMessageAt( source_location, "unexpected_token", Vector(&name, 1)); } } template typename ParserBase::IdentifierT ParserBase::ParseIdentifier( AllowEvalOrArgumentsAsIdentifier allow_eval_or_arguments, bool* ok) { Token::Value next = Next(); if (next == Token::IDENTIFIER) { IdentifierT name = this->GetSymbol(scanner()); if (allow_eval_or_arguments == kDontAllowEvalOrArguments && strict_mode() == STRICT && this->IsEvalOrArguments(name)) { ReportMessageAt(scanner()->location(), "strict_eval_arguments"); *ok = false; } return name; } else if (strict_mode() == SLOPPY && (next == Token::FUTURE_STRICT_RESERVED_WORD || (next == Token::YIELD && !is_generator()))) { return this->GetSymbol(scanner()); } else { this->ReportUnexpectedToken(next); *ok = false; return Traits::EmptyIdentifier(); } } template typename ParserBase::IdentifierT ParserBase< Traits>::ParseIdentifierOrStrictReservedWord(bool* is_strict_reserved, bool* ok) { Token::Value next = Next(); if (next == Token::IDENTIFIER) { *is_strict_reserved = false; } else if (next == Token::FUTURE_STRICT_RESERVED_WORD || (next == Token::YIELD && !this->is_generator())) { *is_strict_reserved = true; } else { ReportUnexpectedToken(next); *ok = false; return Traits::EmptyIdentifier(); } return this->GetSymbol(scanner()); } template typename ParserBase::IdentifierT ParserBase::ParseIdentifierName(bool* ok) { Token::Value next = Next(); if (next != Token::IDENTIFIER && next != Token::FUTURE_RESERVED_WORD && next != Token::FUTURE_STRICT_RESERVED_WORD && !Token::IsKeyword(next)) { this->ReportUnexpectedToken(next); *ok = false; return Traits::EmptyIdentifier(); } return this->GetSymbol(scanner()); } template typename ParserBase::IdentifierT ParserBase::ParseIdentifierNameOrGetOrSet(bool* is_get, bool* is_set, bool* ok) { IdentifierT result = ParseIdentifierName(ok); if (!*ok) return Traits::EmptyIdentifier(); scanner()->IsGetOrSet(is_get, is_set); return result; } template typename ParserBase::ExpressionT ParserBase::ParseRegExpLiteral( bool seen_equal, bool* ok) { int pos = peek_position(); if (!scanner()->ScanRegExpPattern(seen_equal)) { Next(); ReportMessage("unterminated_regexp", Vector::empty()); *ok = false; return Traits::EmptyExpression(); } int literal_index = function_state_->NextMaterializedLiteralIndex(); IdentifierT js_pattern = this->NextLiteralString(scanner(), TENURED); if (!scanner()->ScanRegExpFlags()) { Next(); ReportMessageAt(scanner()->location(), "invalid_regexp_flags"); *ok = false; return Traits::EmptyExpression(); } IdentifierT js_flags = this->NextLiteralString(scanner(), TENURED); Next(); return factory()->NewRegExpLiteral(js_pattern, js_flags, literal_index, pos); } #define CHECK_OK ok); \ if (!*ok) return this->EmptyExpression(); \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY // Used in functions where the return type is not ExpressionT. #define CHECK_OK_CUSTOM(x) ok); \ if (!*ok) return this->x(); \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY template typename ParserBase::ExpressionT ParserBase::ParsePrimaryExpression(bool* ok) { // PrimaryExpression :: // 'this' // 'null' // 'true' // 'false' // Identifier // Number // String // ArrayLiteral // ObjectLiteral // RegExpLiteral // '(' Expression ')' int pos = peek_position(); ExpressionT result = this->EmptyExpression(); Token::Value token = peek(); switch (token) { case Token::THIS: { Consume(Token::THIS); result = this->ThisExpression(scope_, factory()); break; } case Token::NULL_LITERAL: case Token::TRUE_LITERAL: case Token::FALSE_LITERAL: case Token::NUMBER: Next(); result = this->ExpressionFromLiteral(token, pos, scanner(), factory()); break; case Token::IDENTIFIER: case Token::YIELD: case Token::FUTURE_STRICT_RESERVED_WORD: { // Using eval or arguments in this context is OK even in strict mode. IdentifierT name = ParseIdentifier(kAllowEvalOrArguments, CHECK_OK); result = this->ExpressionFromIdentifier(name, pos, scope_, factory()); break; } case Token::STRING: { Consume(Token::STRING); result = this->ExpressionFromString(pos, scanner(), factory()); break; } case Token::ASSIGN_DIV: result = this->ParseRegExpLiteral(true, CHECK_OK); break; case Token::DIV: result = this->ParseRegExpLiteral(false, CHECK_OK); break; case Token::LBRACK: result = this->ParseArrayLiteral(CHECK_OK); break; case Token::LBRACE: result = this->ParseObjectLiteral(CHECK_OK); break; case Token::LPAREN: Consume(Token::LPAREN); // Heuristically try to detect immediately called functions before // seeing the call parentheses. parenthesized_function_ = (peek() == Token::FUNCTION); result = this->ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); break; case Token::MOD: if (allow_natives_syntax() || extension_ != NULL) { result = this->ParseV8Intrinsic(CHECK_OK); break; } // If we're not allowing special syntax we fall-through to the // default case. default: { Next(); ReportUnexpectedToken(token); *ok = false; } } return result; } // Precedence = 1 template typename ParserBase::ExpressionT ParserBase::ParseExpression( bool accept_IN, bool* ok) { // Expression :: // AssignmentExpression // Expression ',' AssignmentExpression ExpressionT result = this->ParseAssignmentExpression(accept_IN, CHECK_OK); while (peek() == Token::COMMA) { Expect(Token::COMMA, CHECK_OK); int pos = position(); ExpressionT right = this->ParseAssignmentExpression(accept_IN, CHECK_OK); result = factory()->NewBinaryOperation(Token::COMMA, result, right, pos); } return result; } template typename ParserBase::ExpressionT ParserBase::ParseArrayLiteral( bool* ok) { // ArrayLiteral :: // '[' Expression? (',' Expression?)* ']' int pos = peek_position(); typename Traits::Type::ExpressionList values = this->NewExpressionList(4, zone_); Expect(Token::LBRACK, CHECK_OK); while (peek() != Token::RBRACK) { ExpressionT elem = this->EmptyExpression(); if (peek() == Token::COMMA) { elem = this->GetLiteralTheHole(peek_position(), factory()); } else { elem = this->ParseAssignmentExpression(true, CHECK_OK); } values->Add(elem, zone_); if (peek() != Token::RBRACK) { Expect(Token::COMMA, CHECK_OK); } } Expect(Token::RBRACK, CHECK_OK); // Update the scope information before the pre-parsing bailout. int literal_index = function_state_->NextMaterializedLiteralIndex(); return factory()->NewArrayLiteral(values, literal_index, pos); } template typename ParserBase::ExpressionT ParserBase::ParseObjectLiteral( bool* ok) { // ObjectLiteral :: // '{' (( // ((IdentifierName | String | Number) ':' AssignmentExpression) | // (('get' | 'set') (IdentifierName | String | Number) FunctionLiteral) // ) ',')* '}' // (Except that trailing comma is not required and not allowed.) int pos = peek_position(); typename Traits::Type::PropertyList properties = this->NewPropertyList(4, zone_); int number_of_boilerplate_properties = 0; bool has_function = false; ObjectLiteralChecker checker(this, strict_mode()); Expect(Token::LBRACE, CHECK_OK); while (peek() != Token::RBRACE) { if (fni_ != NULL) fni_->Enter(); typename Traits::Type::Literal key = this->EmptyLiteral(); Token::Value next = peek(); int next_pos = peek_position(); switch (next) { case Token::FUTURE_RESERVED_WORD: case Token::FUTURE_STRICT_RESERVED_WORD: case Token::IDENTIFIER: { bool is_getter = false; bool is_setter = false; IdentifierT id = ParseIdentifierNameOrGetOrSet(&is_getter, &is_setter, CHECK_OK); if (fni_ != NULL) this->PushLiteralName(fni_, id); if ((is_getter || is_setter) && peek() != Token::COLON) { // Special handling of getter and setter syntax: // { ... , get foo() { ... }, ... , set foo(v) { ... v ... } , ... } // We have already read the "get" or "set" keyword. Token::Value next = Next(); if (next != i::Token::IDENTIFIER && next != i::Token::FUTURE_RESERVED_WORD && next != i::Token::FUTURE_STRICT_RESERVED_WORD && next != i::Token::NUMBER && next != i::Token::STRING && !Token::IsKeyword(next)) { ReportUnexpectedToken(next); *ok = false; return this->EmptyLiteral(); } // Validate the property. PropertyKind type = is_getter ? kGetterProperty : kSetterProperty; checker.CheckProperty(next, type, CHECK_OK); IdentifierT name = this->GetSymbol(scanner_); typename Traits::Type::FunctionLiteral value = this->ParseFunctionLiteral( name, scanner()->location(), false, // reserved words are allowed here false, // not a generator RelocInfo::kNoPosition, FunctionLiteral::ANONYMOUS_EXPRESSION, CHECK_OK); // Allow any number of parameters for compatibilty with JSC. // Specification only allows zero parameters for get and one for set. typename Traits::Type::ObjectLiteralProperty property = factory()->NewObjectLiteralProperty(is_getter, value, next_pos); if (this->IsBoilerplateProperty(property)) { number_of_boilerplate_properties++; } properties->Add(property, zone()); if (peek() != Token::RBRACE) { // Need {} because of the CHECK_OK macro. Expect(Token::COMMA, CHECK_OK); } if (fni_ != NULL) { fni_->Infer(); fni_->Leave(); } continue; // restart the while } // Failed to parse as get/set property, so it's just a normal property // (which might be called "get" or "set" or something else). key = factory()->NewLiteral(id, next_pos); break; } case Token::STRING: { Consume(Token::STRING); IdentifierT string = this->GetSymbol(scanner_); if (fni_ != NULL) this->PushLiteralName(fni_, string); uint32_t index; if (this->IsArrayIndex(string, &index)) { key = factory()->NewNumberLiteral(index, next_pos); break; } key = factory()->NewLiteral(string, next_pos); break; } case Token::NUMBER: { Consume(Token::NUMBER); key = this->ExpressionFromLiteral(Token::NUMBER, next_pos, scanner_, factory()); break; } default: if (Token::IsKeyword(next)) { Consume(next); IdentifierT string = this->GetSymbol(scanner_); key = factory()->NewLiteral(string, next_pos); } else { Token::Value next = Next(); ReportUnexpectedToken(next); *ok = false; return this->EmptyLiteral(); } } // Validate the property checker.CheckProperty(next, kValueProperty, CHECK_OK); Expect(Token::COLON, CHECK_OK); ExpressionT value = this->ParseAssignmentExpression(true, CHECK_OK); typename Traits::Type::ObjectLiteralProperty property = factory()->NewObjectLiteralProperty(key, value); // Mark top-level object literals that contain function literals and // pretenure the literal so it can be added as a constant function // property. (Parser only.) this->CheckFunctionLiteralInsideTopLevelObjectLiteral(scope_, value, &has_function); // Count CONSTANT or COMPUTED properties to maintain the enumeration order. if (this->IsBoilerplateProperty(property)) { number_of_boilerplate_properties++; } properties->Add(property, zone()); // TODO(1240767): Consider allowing trailing comma. if (peek() != Token::RBRACE) { // Need {} because of the CHECK_OK macro. Expect(Token::COMMA, CHECK_OK); } if (fni_ != NULL) { fni_->Infer(); fni_->Leave(); } } Expect(Token::RBRACE, CHECK_OK); // Computation of literal_index must happen before pre parse bailout. int literal_index = function_state_->NextMaterializedLiteralIndex(); return factory()->NewObjectLiteral(properties, literal_index, number_of_boilerplate_properties, has_function, pos); } template typename Traits::Type::ExpressionList ParserBase::ParseArguments( bool* ok) { // Arguments :: // '(' (AssignmentExpression)*[','] ')' typename Traits::Type::ExpressionList result = this->NewExpressionList(4, zone_); Expect(Token::LPAREN, CHECK_OK_CUSTOM(NullExpressionList)); bool done = (peek() == Token::RPAREN); while (!done) { ExpressionT argument = this->ParseAssignmentExpression( true, CHECK_OK_CUSTOM(NullExpressionList)); result->Add(argument, zone_); if (result->length() > Code::kMaxArguments) { ReportMessageAt(scanner()->location(), "too_many_arguments"); *ok = false; return this->NullExpressionList(); } done = (peek() == Token::RPAREN); if (!done) { // Need {} because of the CHECK_OK_CUSTOM macro. Expect(Token::COMMA, CHECK_OK_CUSTOM(NullExpressionList)); } } Expect(Token::RPAREN, CHECK_OK_CUSTOM(NullExpressionList)); return result; } // Precedence = 2 template typename ParserBase::ExpressionT ParserBase::ParseAssignmentExpression(bool accept_IN, bool* ok) { // AssignmentExpression :: // ConditionalExpression // YieldExpression // LeftHandSideExpression AssignmentOperator AssignmentExpression Scanner::Location lhs_location = scanner()->peek_location(); if (peek() == Token::YIELD && is_generator()) { return this->ParseYieldExpression(ok); } if (fni_ != NULL) fni_->Enter(); ExpressionT expression = this->ParseConditionalExpression(accept_IN, CHECK_OK); if (!Token::IsAssignmentOp(peek())) { if (fni_ != NULL) fni_->Leave(); // Parsed conditional expression only (no assignment). return expression; } expression = this->CheckAndRewriteReferenceExpression( expression, lhs_location, "invalid_lhs_in_assignment", CHECK_OK); expression = this->MarkExpressionAsLValue(expression); Token::Value op = Next(); // Get assignment operator. int pos = position(); ExpressionT right = this->ParseAssignmentExpression(accept_IN, CHECK_OK); // TODO(1231235): We try to estimate the set of properties set by // constructors. We define a new property whenever there is an // assignment to a property of 'this'. We should probably only add // properties if we haven't seen them before. Otherwise we'll // probably overestimate the number of properties. if (op == Token::ASSIGN && this->IsThisProperty(expression)) { function_state_->AddProperty(); } this->CheckAssigningFunctionLiteralToProperty(expression, right); if (fni_ != NULL) { // Check if the right hand side is a call to avoid inferring a // name if we're dealing with "a = function(){...}();"-like // expression. if ((op == Token::INIT_VAR || op == Token::INIT_CONST_LEGACY || op == Token::ASSIGN) && (!right->IsCall() && !right->IsCallNew())) { fni_->Infer(); } else { fni_->RemoveLastFunction(); } fni_->Leave(); } return factory()->NewAssignment(op, expression, right, pos); } template typename ParserBase::ExpressionT ParserBase::ParseYieldExpression(bool* ok) { // YieldExpression :: // 'yield' '*'? AssignmentExpression int pos = peek_position(); Expect(Token::YIELD, CHECK_OK); Yield::Kind kind = Check(Token::MUL) ? Yield::DELEGATING : Yield::SUSPEND; ExpressionT generator_object = factory()->NewVariableProxy(function_state_->generator_object_variable()); ExpressionT expression = ParseAssignmentExpression(false, CHECK_OK); typename Traits::Type::YieldExpression yield = factory()->NewYield(generator_object, expression, kind, pos); if (kind == Yield::DELEGATING) { yield->set_index(function_state_->NextHandlerIndex()); } return yield; } // Precedence = 3 template typename ParserBase::ExpressionT ParserBase::ParseConditionalExpression(bool accept_IN, bool* ok) { // ConditionalExpression :: // LogicalOrExpression // LogicalOrExpression '?' AssignmentExpression ':' AssignmentExpression int pos = peek_position(); // We start using the binary expression parser for prec >= 4 only! ExpressionT expression = this->ParseBinaryExpression(4, accept_IN, CHECK_OK); if (peek() != Token::CONDITIONAL) return expression; Consume(Token::CONDITIONAL); // In parsing the first assignment expression in conditional // expressions we always accept the 'in' keyword; see ECMA-262, // section 11.12, page 58. ExpressionT left = ParseAssignmentExpression(true, CHECK_OK); Expect(Token::COLON, CHECK_OK); ExpressionT right = ParseAssignmentExpression(accept_IN, CHECK_OK); return factory()->NewConditional(expression, left, right, pos); } // Precedence >= 4 template typename ParserBase::ExpressionT ParserBase::ParseBinaryExpression(int prec, bool accept_IN, bool* ok) { ASSERT(prec >= 4); ExpressionT x = this->ParseUnaryExpression(CHECK_OK); for (int prec1 = Precedence(peek(), accept_IN); prec1 >= prec; prec1--) { // prec1 >= 4 while (Precedence(peek(), accept_IN) == prec1) { Token::Value op = Next(); int pos = position(); ExpressionT y = ParseBinaryExpression(prec1 + 1, accept_IN, CHECK_OK); if (this->ShortcutNumericLiteralBinaryExpression(&x, y, op, pos, factory())) { continue; } // For now we distinguish between comparisons and other binary // operations. (We could combine the two and get rid of this // code and AST node eventually.) if (Token::IsCompareOp(op)) { // We have a comparison. Token::Value cmp = op; switch (op) { case Token::NE: cmp = Token::EQ; break; case Token::NE_STRICT: cmp = Token::EQ_STRICT; break; default: break; } x = factory()->NewCompareOperation(cmp, x, y, pos); if (cmp != op) { // The comparison was negated - add a NOT. x = factory()->NewUnaryOperation(Token::NOT, x, pos); } } else { // We have a "normal" binary operation. x = factory()->NewBinaryOperation(op, x, y, pos); } } } return x; } template typename ParserBase::ExpressionT ParserBase::ParseUnaryExpression(bool* ok) { // UnaryExpression :: // PostfixExpression // 'delete' UnaryExpression // 'void' UnaryExpression // 'typeof' UnaryExpression // '++' UnaryExpression // '--' UnaryExpression // '+' UnaryExpression // '-' UnaryExpression // '~' UnaryExpression // '!' UnaryExpression Token::Value op = peek(); if (Token::IsUnaryOp(op)) { op = Next(); int pos = position(); ExpressionT expression = ParseUnaryExpression(CHECK_OK); // "delete identifier" is a syntax error in strict mode. if (op == Token::DELETE && strict_mode() == STRICT && this->IsIdentifier(expression)) { ReportMessage("strict_delete", Vector::empty()); *ok = false; return this->EmptyExpression(); } // Allow Traits do rewrite the expression. return this->BuildUnaryExpression(expression, op, pos, factory()); } else if (Token::IsCountOp(op)) { op = Next(); Scanner::Location lhs_location = scanner()->peek_location(); ExpressionT expression = this->ParseUnaryExpression(CHECK_OK); expression = this->CheckAndRewriteReferenceExpression( expression, lhs_location, "invalid_lhs_in_prefix_op", CHECK_OK); this->MarkExpressionAsLValue(expression); return factory()->NewCountOperation(op, true /* prefix */, expression, position()); } else { return this->ParsePostfixExpression(ok); } } template typename ParserBase::ExpressionT ParserBase::ParsePostfixExpression(bool* ok) { // PostfixExpression :: // LeftHandSideExpression ('++' | '--')? Scanner::Location lhs_location = scanner()->peek_location(); ExpressionT expression = this->ParseLeftHandSideExpression(CHECK_OK); if (!scanner()->HasAnyLineTerminatorBeforeNext() && Token::IsCountOp(peek())) { expression = this->CheckAndRewriteReferenceExpression( expression, lhs_location, "invalid_lhs_in_postfix_op", CHECK_OK); expression = this->MarkExpressionAsLValue(expression); Token::Value next = Next(); expression = factory()->NewCountOperation(next, false /* postfix */, expression, position()); } return expression; } template typename ParserBase::ExpressionT ParserBase::ParseLeftHandSideExpression(bool* ok) { // LeftHandSideExpression :: // (NewExpression | MemberExpression) ... ExpressionT result = this->ParseMemberWithNewPrefixesExpression(CHECK_OK); while (true) { switch (peek()) { case Token::LBRACK: { Consume(Token::LBRACK); int pos = position(); ExpressionT index = ParseExpression(true, CHECK_OK); result = factory()->NewProperty(result, index, pos); Expect(Token::RBRACK, CHECK_OK); break; } case Token::LPAREN: { int pos; if (scanner()->current_token() == Token::IDENTIFIER) { // For call of an identifier we want to report position of // the identifier as position of the call in the stack trace. pos = position(); } else { // For other kinds of calls we record position of the parenthesis as // position of the call. Note that this is extremely important for // expressions of the form function(){...}() for which call position // should not point to the closing brace otherwise it will intersect // with positions recorded for function literal and confuse debugger. pos = peek_position(); // Also the trailing parenthesis are a hint that the function will // be called immediately. If we happen to have parsed a preceding // function literal eagerly, we can also compile it eagerly. if (result->IsFunctionLiteral() && mode() == PARSE_EAGERLY) { result->AsFunctionLiteral()->set_parenthesized(); } } typename Traits::Type::ExpressionList args = ParseArguments(CHECK_OK); // Keep track of eval() calls since they disable all local variable // optimizations. // The calls that need special treatment are the // direct eval calls. These calls are all of the form eval(...), with // no explicit receiver. // These calls are marked as potentially direct eval calls. Whether // they are actually direct calls to eval is determined at run time. this->CheckPossibleEvalCall(result, scope_); result = factory()->NewCall(result, args, pos); if (fni_ != NULL) fni_->RemoveLastFunction(); break; } case Token::PERIOD: { Consume(Token::PERIOD); int pos = position(); IdentifierT name = ParseIdentifierName(CHECK_OK); result = factory()->NewProperty( result, factory()->NewLiteral(name, pos), pos); if (fni_ != NULL) this->PushLiteralName(fni_, name); break; } default: return result; } } } template typename ParserBase::ExpressionT ParserBase::ParseMemberWithNewPrefixesExpression(bool* ok) { // NewExpression :: // ('new')+ MemberExpression // The grammar for new expressions is pretty warped. We can have several 'new' // keywords following each other, and then a MemberExpression. When we see '(' // after the MemberExpression, it's associated with the rightmost unassociated // 'new' to create a NewExpression with arguments. However, a NewExpression // can also occur without arguments. // Examples of new expression: // new foo.bar().baz means (new (foo.bar)()).baz // new foo()() means (new foo())() // new new foo()() means (new (new foo())()) // new new foo means new (new foo) // new new foo() means new (new foo()) // new new foo().bar().baz means (new (new foo()).bar()).baz if (peek() == Token::NEW) { Consume(Token::NEW); int new_pos = position(); ExpressionT result = this->ParseMemberWithNewPrefixesExpression(CHECK_OK); if (peek() == Token::LPAREN) { // NewExpression with arguments. typename Traits::Type::ExpressionList args = this->ParseArguments(CHECK_OK); result = factory()->NewCallNew(result, args, new_pos); // The expression can still continue with . or [ after the arguments. result = this->ParseMemberExpressionContinuation(result, CHECK_OK); return result; } // NewExpression without arguments. return factory()->NewCallNew(result, this->NewExpressionList(0, zone_), new_pos); } // No 'new' keyword. return this->ParseMemberExpression(ok); } template typename ParserBase::ExpressionT ParserBase::ParseMemberExpression(bool* ok) { // MemberExpression :: // (PrimaryExpression | FunctionLiteral) // ('[' Expression ']' | '.' Identifier | Arguments)* // The '[' Expression ']' and '.' Identifier parts are parsed by // ParseMemberExpressionContinuation, and the Arguments part is parsed by the // caller. // Parse the initial primary or function expression. ExpressionT result = this->EmptyExpression(); if (peek() == Token::FUNCTION) { Consume(Token::FUNCTION); int function_token_position = position(); bool is_generator = allow_generators() && Check(Token::MUL); IdentifierT name; bool is_strict_reserved_name = false; Scanner::Location function_name_location = Scanner::Location::invalid(); FunctionLiteral::FunctionType function_type = FunctionLiteral::ANONYMOUS_EXPRESSION; if (peek_any_identifier()) { name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved_name, CHECK_OK); function_name_location = scanner()->location(); function_type = FunctionLiteral::NAMED_EXPRESSION; } result = this->ParseFunctionLiteral(name, function_name_location, is_strict_reserved_name, is_generator, function_token_position, function_type, CHECK_OK); } else { result = ParsePrimaryExpression(CHECK_OK); } result = ParseMemberExpressionContinuation(result, CHECK_OK); return result; } template typename ParserBase::ExpressionT ParserBase::ParseMemberExpressionContinuation(ExpressionT expression, bool* ok) { // Parses this part of MemberExpression: // ('[' Expression ']' | '.' Identifier)* while (true) { switch (peek()) { case Token::LBRACK: { Consume(Token::LBRACK); int pos = position(); ExpressionT index = this->ParseExpression(true, CHECK_OK); expression = factory()->NewProperty(expression, index, pos); if (fni_ != NULL) { this->PushPropertyName(fni_, index); } Expect(Token::RBRACK, CHECK_OK); break; } case Token::PERIOD: { Consume(Token::PERIOD); int pos = position(); IdentifierT name = ParseIdentifierName(CHECK_OK); expression = factory()->NewProperty( expression, factory()->NewLiteral(name, pos), pos); if (fni_ != NULL) { this->PushLiteralName(fni_, name); } break; } default: return expression; } } ASSERT(false); return this->EmptyExpression(); } template typename ParserBase::ExpressionT ParserBase::CheckAndRewriteReferenceExpression( ExpressionT expression, Scanner::Location location, const char* message, bool* ok) { if (strict_mode() == STRICT && this->IsIdentifier(expression) && this->IsEvalOrArguments(this->AsIdentifier(expression))) { this->ReportMessageAt(location, "strict_eval_arguments", false); *ok = false; return this->EmptyExpression(); } else if (expression->IsValidReferenceExpression()) { return expression; } else if (expression->IsCall()) { // If it is a call, make it a runtime error for legacy web compatibility. // Rewrite `expr' to `expr[throw ReferenceError]'. int pos = location.beg_pos; ExpressionT error = this->NewThrowReferenceError(message, pos); return factory()->NewProperty(expression, error, pos); } else { this->ReportMessageAt(location, message, true); *ok = false; return this->EmptyExpression(); } } #undef CHECK_OK #undef CHECK_OK_CUSTOM template void ParserBase::ObjectLiteralChecker::CheckProperty( Token::Value property, PropertyKind type, bool* ok) { int old; if (property == Token::NUMBER) { old = scanner()->FindNumber(&finder_, type); } else { old = scanner()->FindSymbol(&finder_, type); } PropertyKind old_type = static_cast(old); if (HasConflict(old_type, type)) { if (IsDataDataConflict(old_type, type)) { // Both are data properties. if (strict_mode_ == SLOPPY) return; parser()->ReportMessageAt(scanner()->location(), "strict_duplicate_property"); } else if (IsDataAccessorConflict(old_type, type)) { // Both a data and an accessor property with the same name. parser()->ReportMessageAt(scanner()->location(), "accessor_data_property"); } else { ASSERT(IsAccessorAccessorConflict(old_type, type)); // Both accessors of the same type. parser()->ReportMessageAt(scanner()->location(), "accessor_get_set"); } *ok = false; } } } } // v8::internal #endif // V8_PREPARSER_H