// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include // NOLINT(readability/streams) #include "src/base/utils/random-number-generator.h" #include "src/macro-assembler.h" #include "src/mips/macro-assembler-mips.h" #include "src/mips/simulator-mips.h" #include "src/v8.h" #include "test/cctest/cctest.h" using namespace v8::internal; typedef void* (*F)(int x, int y, int p2, int p3, int p4); typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); #define __ masm-> static byte to_non_zero(int n) { return static_cast(n) % 255 + 1; } static bool all_zeroes(const byte* beg, const byte* end) { CHECK(beg); CHECK(beg <= end); while (beg < end) { if (*beg++ != 0) return false; } return true; } TEST(CopyBytes) { CcTest::InitializeVM(); Isolate* isolate = Isolate::Current(); HandleScope handles(isolate); const int data_size = 1 * KB; size_t act_size; // Allocate two blocks to copy data between. byte* src_buffer = static_cast(v8::base::OS::Allocate(data_size, &act_size, 0)); CHECK(src_buffer); CHECK(act_size >= static_cast(data_size)); byte* dest_buffer = static_cast(v8::base::OS::Allocate(data_size, &act_size, 0)); CHECK(dest_buffer); CHECK(act_size >= static_cast(data_size)); // Storage for a0 and a1. byte* a0_; byte* a1_; MacroAssembler assembler(isolate, NULL, 0); MacroAssembler* masm = &assembler; // Code to be generated: The stuff in CopyBytes followed by a store of a0 and // a1, respectively. __ CopyBytes(a0, a1, a2, a3); __ li(a2, Operand(reinterpret_cast(&a0_))); __ li(a3, Operand(reinterpret_cast(&a1_))); __ sw(a0, MemOperand(a2)); __ jr(ra); __ sw(a1, MemOperand(a3)); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); ::F f = FUNCTION_CAST< ::F>(code->entry()); // Initialise source data with non-zero bytes. for (int i = 0; i < data_size; i++) { src_buffer[i] = to_non_zero(i); } const int fuzz = 11; for (int size = 0; size < 600; size++) { for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) { for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) { memset(dest_buffer, 0, data_size); CHECK(dest + size < dest_buffer + data_size); (void) CALL_GENERATED_CODE(f, reinterpret_cast(src), reinterpret_cast(dest), size, 0, 0); // a0 and a1 should point at the first byte after the copied data. CHECK_EQ(src + size, a0_); CHECK_EQ(dest + size, a1_); // Check that we haven't written outside the target area. CHECK(all_zeroes(dest_buffer, dest)); CHECK(all_zeroes(dest + size, dest_buffer + data_size)); // Check the target area. CHECK_EQ(0, memcmp(src, dest, size)); } } } // Check that the source data hasn't been clobbered. for (int i = 0; i < data_size; i++) { CHECK(src_buffer[i] == to_non_zero(i)); } } static void TestNaN(const char *code) { // NaN value is different on MIPS and x86 architectures, and TEST(NaNx) // tests checks the case where a x86 NaN value is serialized into the // snapshot on the simulator during cross compilation. v8::HandleScope scope(CcTest::isolate()); v8::Local context = CcTest::NewContext(PRINT_EXTENSION); v8::Context::Scope context_scope(context); v8::Local script = v8::Script::Compile(v8_str(code)); v8::Local result = v8::Local::Cast(script->Run()); // Have to populate the handle manually, as it's not Cast-able. i::Handle o = v8::Utils::OpenHandle(result); i::Handle array1(reinterpret_cast(*o)); i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements()); double value = a->get_scalar(0); CHECK(std::isnan(value) && bit_cast(value) == bit_cast(std::numeric_limits::quiet_NaN())); } TEST(NaN0) { TestNaN( "var result;" "for (var i = 0; i < 2; i++) {" " result = new Array(Number.NaN, Number.POSITIVE_INFINITY);" "}" "result;"); } TEST(NaN1) { TestNaN( "var result;" "for (var i = 0; i < 2; i++) {" " result = [NaN];" "}" "result;"); } TEST(jump_tables4) { // Similar to test-assembler-mips jump_tables1, with extra test for branch // trampoline required before emission of the dd table (where trampolines are // blocked), and proper transition to long-branch mode. // Regression test for v8:4294. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, NULL, 0); MacroAssembler* masm = &assembler; const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label near_start, end; __ addiu(sp, sp, -4); __ sw(ra, MemOperand(sp)); __ mov(v0, zero_reg); __ Branch(&end); __ bind(&near_start); // Generate slightly less than 32K instructions, which will soon require // trampoline for branch distance fixup. for (int i = 0; i < 32768 - 256; ++i) { __ addiu(v0, v0, 1); } Label done; { __ BlockTrampolinePoolFor(kNumCases + 6); PredictableCodeSizeScope predictable( masm, (kNumCases + 6) * Assembler::kInstrSize); Label here; __ bal(&here); __ sll(at, a0, 2); // In delay slot. __ bind(&here); __ addu(at, at, ra); __ lw(at, MemOperand(at, 4 * Assembler::kInstrSize)); __ jr(at); __ nop(); // Branch delay slot nop. for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(v0, (values[i] >> 16) & 0xffff); __ ori(v0, v0, values[i] & 0xffff); __ Branch(&done); } __ bind(&done); __ lw(ra, MemOperand(sp)); __ addiu(sp, sp, 4); __ jr(ra); __ nop(); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int res = reinterpret_cast(CALL_GENERATED_CODE(f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } #undef __