// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/execution/isolate.h" #include "src/heap/factory-inl.h" #include "src/objects/heap-number-inl.h" #include "src/utils/identity-map.h" #include "src/objects/objects.h" #include "src/zone/zone.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { // Helper for testing. A "friend" of the IdentityMapBase class, it is able to // "move" objects to simulate GC for testing the internals of the map. class IdentityMapTester : public HandleAndZoneScope { public: IdentityMap map; IdentityMapTester() : map(heap(), ZoneAllocationPolicy(main_zone())) {} Heap* heap() { return isolate()->heap(); } Isolate* isolate() { return main_isolate(); } void TestGetFind(Handle key1, void* val1, Handle key2, void* val2) { CHECK_NULL(map.Find(key1)); CHECK_NULL(map.Find(key2)); // Set {key1} the first time. void** entry = map.Get(key1); CHECK_NOT_NULL(entry); *entry = val1; for (int i = 0; i < 3; i++) { // Get and find {key1} K times. { void** nentry = map.Get(key1); CHECK_EQ(entry, nentry); CHECK_EQ(val1, *nentry); CHECK_NULL(map.Find(key2)); } { void** nentry = map.Find(key1); CHECK_EQ(entry, nentry); CHECK_EQ(val1, *nentry); CHECK_NULL(map.Find(key2)); } } // Set {key2} the first time. void** entry2 = map.Get(key2); CHECK_NOT_NULL(entry2); *entry2 = val2; for (int i = 0; i < 3; i++) { // Get and find {key1} and {key2} K times. { void** nentry = map.Get(key2); CHECK_EQ(entry2, nentry); CHECK_EQ(val2, *nentry); } { void** nentry = map.Find(key2); CHECK_EQ(entry2, nentry); CHECK_EQ(val2, *nentry); } { void** nentry = map.Find(key1); CHECK_EQ(val1, *nentry); } } } void TestFindDelete(Handle key1, void* val1, Handle key2, void* val2) { CHECK_NULL(map.Find(key1)); CHECK_NULL(map.Find(key2)); // Set {key1} and {key2} for the first time. void** entry1 = map.Get(key1); CHECK_NOT_NULL(entry1); *entry1 = val1; void** entry2 = map.Get(key2); CHECK_NOT_NULL(entry2); *entry2 = val2; for (int i = 0; i < 3; i++) { // Find {key1} and {key2} 3 times. { void** nentry = map.Find(key2); CHECK_EQ(val2, *nentry); } { void** nentry = map.Find(key1); CHECK_EQ(val1, *nentry); } } // Delete {key1} void* deleted_entry_1; CHECK(map.Delete(key1, &deleted_entry_1)); CHECK_NOT_NULL(deleted_entry_1); deleted_entry_1 = val1; for (int i = 0; i < 3; i++) { // Find {key1} and not {key2} 3 times. { void** nentry = map.Find(key1); CHECK_NULL(nentry); } { void** nentry = map.Find(key2); CHECK_EQ(val2, *nentry); } } // Delete {key2} void* deleted_entry_2; CHECK(map.Delete(key2, &deleted_entry_2)); CHECK_NOT_NULL(deleted_entry_2); deleted_entry_2 = val2; for (int i = 0; i < 3; i++) { // Don't find {key1} and {key2} 3 times. { void** nentry = map.Find(key1); CHECK_NULL(nentry); } { void** nentry = map.Find(key2); CHECK_NULL(nentry); } } } Handle smi(int value) { return Handle(Smi::FromInt(value), isolate()); } Handle num(double value) { return isolate()->factory()->NewNumber(value); } void SimulateGCByIncrementingSmisBy(int shift) { for (int i = 0; i < map.capacity_; i++) { Address key = map.keys_[i]; if (!Internals::HasHeapObjectTag(key)) { map.keys_[i] = Internals::IntToSmi(Internals::SmiValue(key) + shift); } } map.gc_counter_ = -1; } void CheckFind(Handle key, void* value) { void** entry = map.Find(key); CHECK_NOT_NULL(entry); CHECK_EQ(value, *entry); } void CheckGet(Handle key, void* value) { void** entry = map.Get(key); CHECK_NOT_NULL(entry); CHECK_EQ(value, *entry); } void CheckDelete(Handle key, void* value) { void* entry; CHECK(map.Delete(key, &entry)); CHECK_NOT_NULL(entry); CHECK_EQ(value, entry); } void PrintMap() { PrintF("{\n"); for (int i = 0; i < map.capacity_; i++) { PrintF(" %3d: %p => %p\n", i, reinterpret_cast(map.keys_[i]), reinterpret_cast(map.values_[i])); } PrintF("}\n"); } void Resize() { map.Resize(map.capacity_ * 4); } void Rehash() { map.Rehash(); } }; TEST(Find_smi_not_found) { IdentityMapTester t; for (int i = 0; i < 100; i++) { CHECK_NULL(t.map.Find(t.smi(i))); } } TEST(Find_num_not_found) { IdentityMapTester t; for (int i = 0; i < 100; i++) { CHECK_NULL(t.map.Find(t.num(i + 0.2))); } } TEST(Delete_smi_not_found) { IdentityMapTester t; for (int i = 0; i < 100; i++) { void* deleted_value = &t; CHECK(!t.map.Delete(t.smi(i), &deleted_value)); CHECK_EQ(&t, deleted_value); } } TEST(Delete_num_not_found) { IdentityMapTester t; for (int i = 0; i < 100; i++) { void* deleted_value = &t; CHECK(!t.map.Delete(t.num(i + 0.2), &deleted_value)); CHECK_EQ(&t, deleted_value); } } TEST(GetFind_smi_0) { IdentityMapTester t; t.TestGetFind(t.smi(0), t.isolate(), t.smi(1), t.heap()); } TEST(GetFind_smi_13) { IdentityMapTester t; t.TestGetFind(t.smi(13), t.isolate(), t.smi(17), t.heap()); } TEST(GetFind_num_13) { IdentityMapTester t; t.TestGetFind(t.num(13.1), t.isolate(), t.num(17.1), t.heap()); } TEST(Delete_smi_13) { IdentityMapTester t; t.TestFindDelete(t.smi(13), t.isolate(), t.smi(17), t.heap()); CHECK(t.map.empty()); } TEST(Delete_num_13) { IdentityMapTester t; t.TestFindDelete(t.num(13.1), t.isolate(), t.num(17.1), t.heap()); CHECK(t.map.empty()); } TEST(GetFind_smi_17m) { const int kInterval = 17; const int kShift = 1099; IdentityMapTester t; for (int i = 1; i < 100; i += kInterval) { t.map.Set(t.smi(i), reinterpret_cast(i + kShift)); } for (int i = 1; i < 100; i += kInterval) { t.CheckFind(t.smi(i), reinterpret_cast(i + kShift)); } for (int i = 1; i < 100; i += kInterval) { t.CheckGet(t.smi(i), reinterpret_cast(i + kShift)); } for (int i = 1; i < 100; i++) { void** entry = t.map.Find(t.smi(i)); if ((i % kInterval) != 1) { CHECK_NULL(entry); } else { CHECK_NOT_NULL(entry); CHECK_EQ(reinterpret_cast(i + kShift), *entry); } } } TEST(Delete_smi_17m) { const int kInterval = 17; const int kShift = 1099; IdentityMapTester t; for (int i = 1; i < 100; i += kInterval) { t.map.Set(t.smi(i), reinterpret_cast(i + kShift)); } for (int i = 1; i < 100; i += kInterval) { t.CheckFind(t.smi(i), reinterpret_cast(i + kShift)); } for (int i = 1; i < 100; i += kInterval) { t.CheckDelete(t.smi(i), reinterpret_cast(i + kShift)); for (int j = 1; j < 100; j += kInterval) { void** entry = t.map.Find(t.smi(j)); if (j <= i) { CHECK_NULL(entry); } else { CHECK_NOT_NULL(entry); CHECK_EQ(reinterpret_cast(j + kShift), *entry); } } } } TEST(GetFind_num_1000) { const int kPrime = 137; IdentityMapTester t; int val1; int val2; for (int i = 0; i < 1000; i++) { t.TestGetFind(t.smi(i * kPrime), &val1, t.smi(i * kPrime + 1), &val2); } } TEST(Delete_num_1000) { const int kPrime = 137; IdentityMapTester t; for (int i = 0; i < 1000; i++) { t.map.Set(t.smi(i * kPrime), reinterpret_cast(i * kPrime)); } // Delete every second value in reverse. for (int i = 999; i >= 0; i -= 2) { void* entry; CHECK(t.map.Delete(t.smi(i * kPrime), &entry)); CHECK_EQ(reinterpret_cast(i * kPrime), entry); } for (int i = 0; i < 1000; i++) { void** entry = t.map.Find(t.smi(i * kPrime)); if (i % 2) { CHECK_NULL(entry); } else { CHECK_NOT_NULL(entry); CHECK_EQ(reinterpret_cast(i * kPrime), *entry); } } // Delete the rest. for (int i = 0; i < 1000; i += 2) { void* entry; CHECK(t.map.Delete(t.smi(i * kPrime), &entry)); CHECK_EQ(reinterpret_cast(i * kPrime), entry); } for (int i = 0; i < 1000; i++) { void** entry = t.map.Find(t.smi(i * kPrime)); CHECK_NULL(entry); } } TEST(GetFind_smi_gc) { const int kKey = 33; const int kShift = 1211; IdentityMapTester t; t.map.Set(t.smi(kKey), &t); t.SimulateGCByIncrementingSmisBy(kShift); t.CheckFind(t.smi(kKey + kShift), &t); t.CheckGet(t.smi(kKey + kShift), &t); } TEST(Delete_smi_gc) { const int kKey = 33; const int kShift = 1211; IdentityMapTester t; t.map.Set(t.smi(kKey), &t); t.SimulateGCByIncrementingSmisBy(kShift); t.CheckDelete(t.smi(kKey + kShift), &t); } TEST(GetFind_smi_gc2) { int kKey1 = 1; int kKey2 = 33; const int kShift = 1211; IdentityMapTester t; t.map.Set(t.smi(kKey1), &kKey1); t.map.Set(t.smi(kKey2), &kKey2); t.SimulateGCByIncrementingSmisBy(kShift); t.CheckFind(t.smi(kKey1 + kShift), &kKey1); t.CheckGet(t.smi(kKey1 + kShift), &kKey1); t.CheckFind(t.smi(kKey2 + kShift), &kKey2); t.CheckGet(t.smi(kKey2 + kShift), &kKey2); } TEST(Delete_smi_gc2) { int kKey1 = 1; int kKey2 = 33; const int kShift = 1211; IdentityMapTester t; t.map.Set(t.smi(kKey1), &kKey1); t.map.Set(t.smi(kKey2), &kKey2); t.SimulateGCByIncrementingSmisBy(kShift); t.CheckDelete(t.smi(kKey1 + kShift), &kKey1); t.CheckDelete(t.smi(kKey2 + kShift), &kKey2); } TEST(GetFind_smi_gc_n) { const int kShift = 12011; IdentityMapTester t; int keys[12] = {1, 2, 7, 8, 15, 23, 1 + 32, 2 + 32, 7 + 32, 8 + 32, 15 + 32, 23 + 32}; // Initialize the map first. for (size_t i = 0; i < arraysize(keys); i += 2) { t.TestGetFind(t.smi(keys[i]), &keys[i], t.smi(keys[i + 1]), &keys[i + 1]); } // Check the above initialization. for (size_t i = 0; i < arraysize(keys); i++) { t.CheckFind(t.smi(keys[i]), &keys[i]); } // Simulate a GC by "moving" the smis in the internal keys array. t.SimulateGCByIncrementingSmisBy(kShift); // Check that searching for the incremented smis finds the same values. for (size_t i = 0; i < arraysize(keys); i++) { t.CheckFind(t.smi(keys[i] + kShift), &keys[i]); } // Check that searching for the incremented smis gets the same values. for (size_t i = 0; i < arraysize(keys); i++) { t.CheckGet(t.smi(keys[i] + kShift), &keys[i]); } } TEST(Delete_smi_gc_n) { const int kShift = 12011; IdentityMapTester t; int keys[12] = {1, 2, 7, 8, 15, 23, 1 + 32, 2 + 32, 7 + 32, 8 + 32, 15 + 32, 23 + 32}; // Initialize the map first. for (size_t i = 0; i < arraysize(keys); i++) { t.map.Set(t.smi(keys[i]), &keys[i]); } // Simulate a GC by "moving" the smis in the internal keys array. t.SimulateGCByIncrementingSmisBy(kShift); // Check that deleting for the incremented smis finds the same values. for (size_t i = 0; i < arraysize(keys); i++) { t.CheckDelete(t.smi(keys[i] + kShift), &keys[i]); } } TEST(GetFind_smi_num_gc_n) { const int kShift = 12019; IdentityMapTester t; int smi_keys[] = {1, 2, 7, 15, 23}; Handle num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4), t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8), t.num(9.9), t.num(10.1)}; // Initialize the map first. for (size_t i = 0; i < arraysize(smi_keys); i++) { t.map.Set(t.smi(smi_keys[i]), &smi_keys[i]); } for (size_t i = 0; i < arraysize(num_keys); i++) { t.map.Set(num_keys[i], &num_keys[i]); } // Check the above initialization. for (size_t i = 0; i < arraysize(smi_keys); i++) { t.CheckFind(t.smi(smi_keys[i]), &smi_keys[i]); } for (size_t i = 0; i < arraysize(num_keys); i++) { t.CheckFind(num_keys[i], &num_keys[i]); } // Simulate a GC by moving SMIs. // Ironically the SMIs "move", but the heap numbers don't! t.SimulateGCByIncrementingSmisBy(kShift); // Check that searching for the incremented smis finds the same values. for (size_t i = 0; i < arraysize(smi_keys); i++) { t.CheckFind(t.smi(smi_keys[i] + kShift), &smi_keys[i]); t.CheckGet(t.smi(smi_keys[i] + kShift), &smi_keys[i]); } // Check that searching for the numbers finds the same values. for (size_t i = 0; i < arraysize(num_keys); i++) { t.CheckFind(num_keys[i], &num_keys[i]); t.CheckGet(num_keys[i], &num_keys[i]); } } TEST(Delete_smi_num_gc_n) { const int kShift = 12019; IdentityMapTester t; int smi_keys[] = {1, 2, 7, 15, 23}; Handle num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4), t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8), t.num(9.9), t.num(10.1)}; // Initialize the map first. for (size_t i = 0; i < arraysize(smi_keys); i++) { t.map.Set(t.smi(smi_keys[i]), &smi_keys[i]); } for (size_t i = 0; i < arraysize(num_keys); i++) { t.map.Set(num_keys[i], &num_keys[i]); } // Simulate a GC by moving SMIs. // Ironically the SMIs "move", but the heap numbers don't! t.SimulateGCByIncrementingSmisBy(kShift); // Check that deleting for the incremented smis finds the same values. for (size_t i = 0; i < arraysize(smi_keys); i++) { t.CheckDelete(t.smi(smi_keys[i] + kShift), &smi_keys[i]); } // Check that deleting the numbers finds the same values. for (size_t i = 0; i < arraysize(num_keys); i++) { t.CheckDelete(num_keys[i], &num_keys[i]); } } TEST(Delete_smi_resizes) { const int kKeyCount = 1024; const int kValueOffset = 27; IdentityMapTester t; // Insert one element to initialize map. t.map.Set(t.smi(0), reinterpret_cast(kValueOffset)); int initial_capacity = t.map.capacity(); CHECK_LT(initial_capacity, kKeyCount); // Insert another kKeyCount - 1 keys. for (int i = 1; i < kKeyCount; i++) { t.map.Set(t.smi(i), reinterpret_cast(i + kValueOffset)); } // Check capacity increased. CHECK_GT(t.map.capacity(), initial_capacity); CHECK_GE(t.map.capacity(), kKeyCount); // Delete all the keys. for (int i = 0; i < kKeyCount; i++) { t.CheckDelete(t.smi(i), reinterpret_cast(i + kValueOffset)); } // Should resize back to initial capacity. CHECK_EQ(t.map.capacity(), initial_capacity); } TEST(Iterator_smi_num) { IdentityMapTester t; int smi_keys[] = {1, 2, 7, 15, 23}; Handle num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4), t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8), t.num(9.9), t.num(10.1)}; // Initialize the map. for (size_t i = 0; i < arraysize(smi_keys); i++) { t.map.Set(t.smi(smi_keys[i]), reinterpret_cast(i)); } for (size_t i = 0; i < arraysize(num_keys); i++) { t.map.Set(num_keys[i], reinterpret_cast(i + 5)); } // Check iterator sees all values once. std::set seen; { IdentityMap::IteratableScope it_scope(&t.map); for (auto it = it_scope.begin(); it != it_scope.end(); ++it) { CHECK(seen.find(reinterpret_cast(**it)) == seen.end()); seen.insert(reinterpret_cast(**it)); } } for (intptr_t i = 0; i < 15; i++) { CHECK(seen.find(i) != seen.end()); } } TEST(Iterator_smi_num_gc) { const int kShift = 16039; IdentityMapTester t; int smi_keys[] = {1, 2, 7, 15, 23}; Handle num_keys[] = {t.num(1.1), t.num(2.2), t.num(3.3), t.num(4.4), t.num(5.5), t.num(6.6), t.num(7.7), t.num(8.8), t.num(9.9), t.num(10.1)}; // Initialize the map. for (size_t i = 0; i < arraysize(smi_keys); i++) { t.map.Set(t.smi(smi_keys[i]), reinterpret_cast(i)); } for (size_t i = 0; i < arraysize(num_keys); i++) { t.map.Set(num_keys[i], reinterpret_cast(i + 5)); } // Simulate GC by moving the SMIs. t.SimulateGCByIncrementingSmisBy(kShift); // Check iterator sees all values. std::set seen; { IdentityMap::IteratableScope it_scope(&t.map); for (auto it = it_scope.begin(); it != it_scope.end(); ++it) { CHECK(seen.find(reinterpret_cast(**it)) == seen.end()); seen.insert(reinterpret_cast(**it)); } } for (intptr_t i = 0; i < 15; i++) { CHECK(seen.find(i) != seen.end()); } } void IterateCollisionTest(int stride) { for (int load = 15; load <= 120; load = load * 2) { IdentityMapTester t; { // Add entries to the map. HandleScope scope(t.isolate()); int next = 1; for (int i = 0; i < load; i++) { t.map.Set(t.smi(next), reinterpret_cast(next)); t.CheckFind(t.smi(next), reinterpret_cast(next)); next = next + stride; } } // Iterate through the map and check we see all elements only once. std::set seen; { IdentityMap::IteratableScope it_scope( &t.map); for (auto it = it_scope.begin(); it != it_scope.end(); ++it) { CHECK(seen.find(reinterpret_cast(**it)) == seen.end()); seen.insert(reinterpret_cast(**it)); } } // Check get and find on map. { HandleScope scope(t.isolate()); int next = 1; for (int i = 0; i < load; i++) { CHECK(seen.find(next) != seen.end()); t.CheckFind(t.smi(next), reinterpret_cast(next)); t.CheckGet(t.smi(next), reinterpret_cast(next)); next = next + stride; } } } } TEST(IterateCollisions_1) { IterateCollisionTest(1); } TEST(IterateCollisions_2) { IterateCollisionTest(2); } TEST(IterateCollisions_3) { IterateCollisionTest(3); } TEST(IterateCollisions_5) { IterateCollisionTest(5); } TEST(IterateCollisions_7) { IterateCollisionTest(7); } void CollisionTest(int stride, bool rehash = false, bool resize = false) { for (int load = 15; load <= 120; load = load * 2) { IdentityMapTester t; { // Add entries to the map. HandleScope scope(t.isolate()); int next = 1; for (int i = 0; i < load; i++) { t.map.Set(t.smi(next), reinterpret_cast(next)); t.CheckFind(t.smi(next), reinterpret_cast(next)); next = next + stride; } } if (resize) t.Resize(); // Explicit resize (internal method). if (rehash) t.Rehash(); // Explicit rehash (internal method). { // Check find and get. HandleScope scope(t.isolate()); int next = 1; for (int i = 0; i < load; i++) { t.CheckFind(t.smi(next), reinterpret_cast(next)); t.CheckGet(t.smi(next), reinterpret_cast(next)); next = next + stride; } } } } TEST(Collisions_1) { CollisionTest(1); } TEST(Collisions_2) { CollisionTest(2); } TEST(Collisions_3) { CollisionTest(3); } TEST(Collisions_5) { CollisionTest(5); } TEST(Collisions_7) { CollisionTest(7); } TEST(Resize) { CollisionTest(9, false, true); } TEST(Rehash) { CollisionTest(11, true, false); } TEST(ExplicitGC) { IdentityMapTester t; Handle num_keys[] = {t.num(2.1), t.num(2.4), t.num(3.3), t.num(4.3), t.num(7.5), t.num(6.4), t.num(7.3), t.num(8.3), t.num(8.9), t.num(10.4)}; // Insert some objects that should be in new space. for (size_t i = 0; i < arraysize(num_keys); i++) { t.map.Set(num_keys[i], &num_keys[i]); } // Do an explicit, real GC. t.heap()->CollectGarbage(i::NEW_SPACE, i::GarbageCollectionReason::kTesting); // Check that searching for the numbers finds the same values. for (size_t i = 0; i < arraysize(num_keys); i++) { t.CheckFind(num_keys[i], &num_keys[i]); t.CheckGet(num_keys[i], &num_keys[i]); } } TEST(CanonicalHandleScope) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = CcTest::heap(); HandleScope outer(isolate); CanonicalHandleScope outer_canonical(isolate); // Deduplicate smi handles. std::vector> smi_handles; for (int i = 0; i < 100; i++) { smi_handles.push_back(Handle(Smi::FromInt(i), isolate)); } Address* next_handle = isolate->handle_scope_data()->next; for (int i = 0; i < 100; i++) { Handle new_smi = Handle(Smi::FromInt(i), isolate); Handle old_smi = smi_handles[i]; CHECK_EQ(new_smi.location(), old_smi.location()); } // Check that no new handles have been allocated. CHECK_EQ(next_handle, isolate->handle_scope_data()->next); // Deduplicate root list items. Handle empty_string(ReadOnlyRoots(heap).empty_string(), isolate); Handle free_space_map(ReadOnlyRoots(heap).free_space_map(), isolate); Handle uninitialized_symbol( ReadOnlyRoots(heap).uninitialized_symbol(), isolate); CHECK_EQ(isolate->factory()->empty_string().location(), empty_string.location()); CHECK_EQ(isolate->factory()->free_space_map().location(), free_space_map.location()); CHECK_EQ(isolate->factory()->uninitialized_symbol().location(), uninitialized_symbol.location()); // Check that no new handles have been allocated. CHECK_EQ(next_handle, isolate->handle_scope_data()->next); // Test ordinary heap objects. Handle number1 = isolate->factory()->NewHeapNumber(3.3); Handle string1 = isolate->factory()->NewStringFromAsciiChecked("test"); next_handle = isolate->handle_scope_data()->next; Handle number2(*number1, isolate); Handle string2(*string1, isolate); CHECK_EQ(number1.location(), number2.location()); CHECK_EQ(string1.location(), string2.location()); CcTest::CollectAllGarbage(); Handle number3(*number2, isolate); Handle string3(*string2, isolate); CHECK_EQ(number1.location(), number3.location()); CHECK_EQ(string1.location(), string3.location()); // Check that no new handles have been allocated. CHECK_EQ(next_handle, isolate->handle_scope_data()->next); // Inner handle scope do not create canonical handles. { HandleScope inner(isolate); Handle number4(*number1, isolate); Handle string4(*string1, isolate); CHECK_NE(number1.location(), number4.location()); CHECK_NE(string1.location(), string4.location()); // Nested canonical scope does not conflict with outer canonical scope, // but does not canonicalize across scopes. CanonicalHandleScope inner_canonical(isolate); Handle number5(*number4, isolate); Handle string5(*string4, isolate); CHECK_NE(number4.location(), number5.location()); CHECK_NE(string4.location(), string5.location()); CHECK_NE(number1.location(), number5.location()); CHECK_NE(string1.location(), string5.location()); Handle number6(*number1, isolate); Handle string6(*string1, isolate); CHECK_NE(number4.location(), number6.location()); CHECK_NE(string4.location(), string6.location()); CHECK_NE(number1.location(), number6.location()); CHECK_NE(string1.location(), string6.location()); CHECK_EQ(number5.location(), number6.location()); CHECK_EQ(string5.location(), string6.location()); } } TEST(GCShortCutting) { if (FLAG_single_generation) return; ManualGCScope manual_gc_scope; IdentityMapTester t; Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const int kDummyValue = 0; for (int i = 0; i < 16; i++) { // Insert a varying number of Smis as padding to ensure some tests straddle // a boundary where the thin string short cutting will cause size_ to be // greater to capacity_ if not corrected by IdentityMap // (see crbug.com/704132). for (int j = 0; j < i; j++) { t.map.Set(t.smi(j), reinterpret_cast(kDummyValue)); } Handle thin_string = factory->NewStringFromAsciiChecked("thin_string"); Handle internalized_string = factory->InternalizeString(thin_string); DCHECK_IMPLIES(FLAG_thin_strings, thin_string->IsThinString()); DCHECK_NE(*thin_string, *internalized_string); // Insert both keys into the map. t.map.Set(thin_string, &thin_string); t.map.Set(internalized_string, &internalized_string); // Do an explicit, real GC, this should short-cut the thin string to point // to the internalized string. t.heap()->CollectGarbage(i::NEW_SPACE, i::GarbageCollectionReason::kTesting); DCHECK_IMPLIES(FLAG_thin_strings && !FLAG_optimize_for_size, *thin_string == *internalized_string); // Check that getting the object points to one of the handles. void** thin_string_entry = t.map.Get(thin_string); CHECK(*thin_string_entry == &thin_string || *thin_string_entry == &internalized_string); void** internalized_string_entry = t.map.Get(internalized_string); CHECK(*internalized_string_entry == &thin_string || *internalized_string_entry == &internalized_string); // Trigger resize. for (int j = 0; j < 16; j++) { t.map.Set(t.smi(j + 16), reinterpret_cast(kDummyValue)); } t.map.Clear(); } } } // namespace internal } // namespace v8