// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include // NOLINT(readability/streams) #include "src/base/utils/random-number-generator.h" #include "src/macro-assembler.h" #include "src/mips/macro-assembler-mips.h" #include "src/mips/simulator-mips.h" #include "src/v8.h" #include "test/cctest/cctest.h" using namespace v8::internal; typedef void* (*F)(int x, int y, int p2, int p3, int p4); typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4); typedef Object* (*F4)(void* p0, void* p1, int p2, int p3, int p4); #define __ masm-> TEST(BYTESWAP) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); struct T { int32_t r1; int32_t r2; int32_t r3; int32_t r4; int32_t r5; }; T t; MacroAssembler assembler(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ lw(a2, MemOperand(a0, offsetof(T, r1))); __ nop(); __ ByteSwapSigned(a2, a2, 4); __ sw(a2, MemOperand(a0, offsetof(T, r1))); __ lw(a2, MemOperand(a0, offsetof(T, r2))); __ nop(); __ ByteSwapSigned(a2, a2, 2); __ sw(a2, MemOperand(a0, offsetof(T, r2))); __ lw(a2, MemOperand(a0, offsetof(T, r3))); __ nop(); __ ByteSwapSigned(a2, a2, 1); __ sw(a2, MemOperand(a0, offsetof(T, r3))); __ lw(a2, MemOperand(a0, offsetof(T, r4))); __ nop(); __ ByteSwapUnsigned(a2, a2, 1); __ sw(a2, MemOperand(a0, offsetof(T, r4))); __ lw(a2, MemOperand(a0, offsetof(T, r5))); __ nop(); __ ByteSwapUnsigned(a2, a2, 2); __ sw(a2, MemOperand(a0, offsetof(T, r5))); __ jr(ra); __ nop(); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); ::F3 f = FUNCTION_CAST<::F3>(code->entry()); t.r1 = 0x781A15C3; t.r2 = 0x2CDE; t.r3 = 0x9F; t.r4 = 0x9F; t.r5 = 0x2CDE; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0xC3151A78), t.r1); CHECK_EQ(static_cast(0xDE2C0000), t.r2); CHECK_EQ(static_cast(0x9FFFFFFF), t.r3); CHECK_EQ(static_cast(0x9F000000), t.r4); CHECK_EQ(static_cast(0xDE2C0000), t.r5); } static void TestNaN(const char *code) { // NaN value is different on MIPS and x86 architectures, and TEST(NaNx) // tests checks the case where a x86 NaN value is serialized into the // snapshot on the simulator during cross compilation. v8::HandleScope scope(CcTest::isolate()); v8::Local context = CcTest::NewContext(PRINT_EXTENSION); v8::Context::Scope context_scope(context); v8::Local script = v8::Script::Compile(context, v8_str(code)).ToLocalChecked(); v8::Local result = v8::Local::Cast(script->Run(context).ToLocalChecked()); i::Handle o = v8::Utils::OpenHandle(*result); i::Handle array1(reinterpret_cast(*o)); i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements()); double value = a->get_scalar(0); CHECK(std::isnan(value) && bit_cast(value) == bit_cast(std::numeric_limits::quiet_NaN())); } TEST(NaN0) { TestNaN( "var result;" "for (var i = 0; i < 2; i++) {" " result = new Array(Number.NaN, Number.POSITIVE_INFINITY);" "}" "result;"); } TEST(NaN1) { TestNaN( "var result;" "for (var i = 0; i < 2; i++) {" " result = [NaN];" "}" "result;"); } TEST(jump_tables4) { // Similar to test-assembler-mips jump_tables1, with extra test for branch // trampoline required before emission of the dd table (where trampolines are // blocked), and proper transition to long-branch mode. // Regression test for v8:4294. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label near_start, end, done; __ Push(ra); __ mov(v0, zero_reg); __ Branch(&end); __ bind(&near_start); // Generate slightly less than 32K instructions, which will soon require // trampoline for branch distance fixup. for (int i = 0; i < 32768 - 256; ++i) { __ addiu(v0, v0, 1); } __ GenerateSwitchTable(a0, kNumCases, [&labels](size_t i) { return labels + i; }); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ li(v0, values[i]); __ Branch(&done); } __ bind(&done); __ Pop(ra); __ jr(ra); __ nop(); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables5) { if (!IsMipsArchVariant(kMips32r6)) return; // Similar to test-assembler-mips jump_tables1, with extra test for emitting a // compact branch instruction before emission of the dd table. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label done; __ Push(ra); { __ BlockTrampolinePoolFor(kNumCases + 6 + 1); PredictableCodeSizeScope predictable( masm, kNumCases * kPointerSize + ((6 + 1) * Assembler::kInstrSize)); __ addiupc(at, 6 + 1); __ Lsa(at, at, a0, 2); __ lw(at, MemOperand(at)); __ jalr(at); __ nop(); // Branch delay slot nop. __ bc(&done); // A nop instruction must be generated by the forbidden slot guard // (Assembler::dd(Label*)). for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ li(v0, values[i]); __ jr(ra); __ nop(); } __ bind(&done); __ Pop(ra); __ jr(ra); __ nop(); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables6) { // Similar to test-assembler-mips jump_tables1, with extra test for branch // trampoline required after emission of the dd table (where trampolines are // blocked). This test checks if number of really generated instructions is // greater than number of counted instructions from code, as we are expecting // generation of trampoline in this case (when number of kFillInstr // instructions is close to 32K) CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; const int kSwitchTableCases = 40; const int kInstrSize = Assembler::kInstrSize; const int kMaxBranchOffset = Assembler::kMaxBranchOffset; const int kTrampolineSlotsSize = Assembler::kTrampolineSlotsSize; const int kSwitchTablePrologueSize = MacroAssembler::kSwitchTablePrologueSize; const int kMaxOffsetForTrampolineStart = kMaxBranchOffset - 16 * kTrampolineSlotsSize; const int kFillInstr = (kMaxOffsetForTrampolineStart / kInstrSize) - (kSwitchTablePrologueSize + kSwitchTableCases) - 20; int values[kSwitchTableCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kSwitchTableCases]; Label near_start, end, done; __ Push(ra); __ mov(v0, zero_reg); int offs1 = masm->pc_offset(); int gen_insn = 0; __ Branch(&end); gen_insn += Assembler::IsCompactBranchSupported() ? 1 : 2; __ bind(&near_start); // Generate slightly less than 32K instructions, which will soon require // trampoline for branch distance fixup. for (int i = 0; i < kFillInstr; ++i) { __ addiu(v0, v0, 1); } gen_insn += kFillInstr; __ GenerateSwitchTable(a0, kSwitchTableCases, [&labels](size_t i) { return labels + i; }); gen_insn += (kSwitchTablePrologueSize + kSwitchTableCases); for (int i = 0; i < kSwitchTableCases; ++i) { __ bind(&labels[i]); __ li(v0, values[i]); __ Branch(&done); } gen_insn += ((Assembler::IsCompactBranchSupported() ? 3 : 4) * kSwitchTableCases); // If offset from here to first branch instr is greater than max allowed // offset for trampoline ... CHECK_LT(kMaxOffsetForTrampolineStart, masm->pc_offset() - offs1); // ... number of generated instructions must be greater then "gen_insn", // as we are expecting trampoline generation CHECK_LT(gen_insn, (masm->pc_offset() - offs1) / kInstrSize); __ bind(&done); __ Pop(ra); __ jr(ra); __ nop(); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kSwitchTableCases; ++i) { int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ Lsa(v0, a0, a1, sa); __ jr(ra); __ nop(); CodeDesc desc; assembler.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F1 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0)); return res; } TEST(Lsa) { CcTest::InitializeVM(); struct TestCaseLsa { int32_t rt; int32_t rs; uint8_t sa; uint32_t expected_res; }; struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res {0x4, 0x1, 1, 0x6}, {0x4, 0x1, 2, 0x8}, {0x4, 0x1, 3, 0xc}, {0x4, 0x1, 4, 0x14}, {0x4, 0x1, 5, 0x24}, {0x0, 0x1, 1, 0x2}, {0x0, 0x1, 2, 0x4}, {0x0, 0x1, 3, 0x8}, {0x0, 0x1, 4, 0x10}, {0x0, 0x1, 5, 0x20}, {0x4, 0x0, 1, 0x4}, {0x4, 0x0, 2, 0x4}, {0x4, 0x0, 3, 0x4}, {0x4, 0x0, 4, 0x4}, {0x4, 0x0, 5, 0x4}, // Shift overflow. {0x4, INT32_MAX, 1, 0x2}, {0x4, INT32_MAX >> 1, 2, 0x0}, {0x4, INT32_MAX >> 2, 3, 0xfffffffc}, {0x4, INT32_MAX >> 3, 4, 0xfffffff4}, {0x4, INT32_MAX >> 4, 5, 0xffffffe4}, // Signed addition overflow. {INT32_MAX - 1, 0x1, 1, 0x80000000}, {INT32_MAX - 3, 0x1, 2, 0x80000000}, {INT32_MAX - 7, 0x1, 3, 0x80000000}, {INT32_MAX - 15, 0x1, 4, 0x80000000}, {INT32_MAX - 31, 0x1, 5, 0x80000000}, // Addition overflow. {-2, 0x1, 1, 0x0}, {-4, 0x1, 2, 0x0}, {-8, 0x1, 3, 0x0}, {-16, 0x1, 4, 0x0}, {-32, 0x1, 5, 0x0}}; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa); for (size_t i = 0; i < nr_test_cases; ++i) { uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa); PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa); CHECK_EQ(tc[i].expected_res, res); } } static const std::vector cvt_trunc_uint32_test_values() { static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00, 0x7fffffff, 0x80000000, 0x80000001, 0x80ffff00, 0x8fffffff, 0xffffffff}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector cvt_trunc_int32_test_values() { static const int32_t kValues[] = { static_cast(0x00000000), static_cast(0x00000001), static_cast(0x00ffff00), static_cast(0x7fffffff), static_cast(0x80000000), static_cast(0x80000001), static_cast(0x80ffff00), static_cast(0x8fffffff), static_cast(0xffffffff)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } // Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } #define FOR_INPUTS(ctype, itype, var, test_vector) \ std::vector var##_vec = test_vector(); \ for (std::vector::iterator var = var##_vec.begin(); \ var != var##_vec.end(); ++var) #define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \ std::vector var##_vec = test_vector(); \ std::vector::iterator var; \ std::vector::reverse_iterator var2; \ for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \ var != var##_vec.end(); ++var, ++var2) #define FOR_ENUM_INPUTS(var, type, test_vector) \ FOR_INPUTS(enum type, type, var, test_vector) #define FOR_STRUCT_INPUTS(var, type, test_vector) \ FOR_INPUTS(struct type, type, var, test_vector) #define FOR_UINT32_INPUTS(var, test_vector) \ FOR_INPUTS(uint32_t, uint32, var, test_vector) #define FOR_INT32_INPUTS(var, test_vector) \ FOR_INPUTS(int32_t, int32, var, test_vector) #define FOR_INT32_INPUTS2(var, var2, test_vector) \ FOR_INPUTS2(int32_t, int32, var, var2, test_vector) #define FOR_UINT64_INPUTS(var, test_vector) \ FOR_INPUTS(uint64_t, uint32, var, test_vector) template RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) { typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; __ mtc1(a0, f4); GenerateConvertInstructionFunc(masm); __ mfc1(v0, f2); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F_CVT f = FUNCTION_CAST(code->entry()); return reinterpret_cast( CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0)); } TEST(cvt_s_w_Trunc_uw_s) { CcTest::InitializeVM(); FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) { uint32_t input = *i; auto fn = [](MacroAssembler* masm) { __ cvt_s_w(f0, f4); __ Trunc_uw_s(f2, f0, f6); }; CHECK_EQ(static_cast(input), run_Cvt(input, fn)); } } TEST(cvt_d_w_Trunc_w_d) { CcTest::InitializeVM(); FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) { int32_t input = *i; auto fn = [](MacroAssembler* masm) { __ cvt_d_w(f0, f4); __ Trunc_w_d(f2, f0); }; CHECK_EQ(static_cast(input), run_Cvt(input, fn)); } } static const std::vector overflow_int32_test_values() { static const int32_t kValues[] = { static_cast(0xf0000000), static_cast(0x00000001), static_cast(0xff000000), static_cast(0x0000f000), static_cast(0x0f000000), static_cast(0x991234ab), static_cast(0xb0ffff01), static_cast(0x00006fff), static_cast(0xffffffff)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } enum OverflowBranchType { kAddBranchOverflow, kSubBranchOverflow, }; struct OverflowRegisterCombination { Register dst; Register left; Register right; Register scratch; }; static const std::vector overflow_branch_type() { static const enum OverflowBranchType kValues[] = {kAddBranchOverflow, kSubBranchOverflow}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector overflow_register_combination() { static const struct OverflowRegisterCombination kValues[] = { {t0, t1, t2, t3}, {t0, t0, t2, t3}, {t0, t1, t0, t3}, {t0, t1, t1, t3}}; return std::vector( &kValues[0], &kValues[arraysize(kValues)]); } template static bool IsAddOverflow(T x, T y) { DCHECK(std::numeric_limits::is_integer); T max = std::numeric_limits::max(); T min = std::numeric_limits::min(); return (x > 0 && y > (max - x)) || (x < 0 && y < (min - x)); } template static bool IsSubOverflow(T x, T y) { DCHECK(std::numeric_limits::is_integer); T max = std::numeric_limits::max(); T min = std::numeric_limits::min(); return (y > 0 && x < (min + y)) || (y < 0 && x > (max + y)); } template static bool runOverflow(IN_TYPE valLeft, IN_TYPE valRight, Func GenerateOverflowInstructions) { typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; GenerateOverflowInstructions(masm, valLeft, valRight); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F_CVT f = FUNCTION_CAST(code->entry()); int32_t r = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); DCHECK(r == 0 || r == 1); return r; } TEST(BranchOverflowInt32BothLabelsTrampoline) { if (!IsMipsArchVariant(kMips32r6)) return; static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; FOR_INT32_INPUTS(i, overflow_int32_test_values) { FOR_INT32_INPUTS(j, overflow_int32_test_values) { FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, overflow_register_combination) { int32_t ii = *i; int32_t jj = *j; enum OverflowBranchType branchType = *br; struct OverflowRegisterCombination rc = *regComb; // If left and right register are same then left and right // test values must also be same, otherwise we skip the test if (rc.left.code() == rc.right.code()) { if (ii != jj) { continue; } } bool res1 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, no_overflow, end; __ li(rc.left, valLeft); __ li(rc.right, valRight); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, &no_overflow, rc.scratch); break; } Label done; size_t nr_calls = kMaxBranchOffset / (2 * Instruction::kInstrSize) + 2; for (size_t i = 0; i < nr_calls; ++i) { __ BranchShort(&done, eq, a0, Operand(a1)); } __ bind(&done); __ li(v0, 2); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); switch (branchType) { case kAddBranchOverflow: CHECK_EQ(IsAddOverflow(ii, jj), res1); break; case kSubBranchOverflow: CHECK_EQ(IsSubOverflow(ii, jj), res1); break; default: UNREACHABLE(); } } } } } } TEST(BranchOverflowInt32BothLabels) { FOR_INT32_INPUTS(i, overflow_int32_test_values) { FOR_INT32_INPUTS(j, overflow_int32_test_values) { FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, overflow_register_combination) { int32_t ii = *i; int32_t jj = *j; enum OverflowBranchType branchType = *br; struct OverflowRegisterCombination rc = *regComb; // If left and right register are same then left and right // test values must also be same, otherwise we skip the test if (rc.left.code() == rc.right.code()) { if (ii != jj) { continue; } } bool res1 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, no_overflow, end; __ li(rc.left, valLeft); __ li(rc.right, valRight); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, &no_overflow, rc.scratch); break; } __ li(v0, 2); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); bool res2 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, no_overflow, end; __ li(rc.left, valLeft); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, &no_overflow, rc.scratch); break; } __ li(v0, 2); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); switch (branchType) { case kAddBranchOverflow: CHECK_EQ(IsAddOverflow(ii, jj), res1); CHECK_EQ(IsAddOverflow(ii, jj), res2); break; case kSubBranchOverflow: CHECK_EQ(IsSubOverflow(ii, jj), res1); CHECK_EQ(IsSubOverflow(ii, jj), res2); break; default: UNREACHABLE(); } } } } } } TEST(BranchOverflowInt32LeftLabel) { FOR_INT32_INPUTS(i, overflow_int32_test_values) { FOR_INT32_INPUTS(j, overflow_int32_test_values) { FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, overflow_register_combination) { int32_t ii = *i; int32_t jj = *j; enum OverflowBranchType branchType = *br; struct OverflowRegisterCombination rc = *regComb; // If left and right register are same then left and right // test values must also be same, otherwise we skip the test if (rc.left.code() == rc.right.code()) { if (ii != jj) { continue; } } bool res1 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, end; __ li(rc.left, valLeft); __ li(rc.right, valRight); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL, rc.scratch); break; } __ li(v0, 0); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ bind(&end); }); bool res2 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, end; __ li(rc.left, valLeft); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, NULL, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, NULL, rc.scratch); break; } __ li(v0, 0); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ bind(&end); }); switch (branchType) { case kAddBranchOverflow: CHECK_EQ(IsAddOverflow(ii, jj), res1); CHECK_EQ(IsAddOverflow(ii, jj), res2); break; case kSubBranchOverflow: CHECK_EQ(IsSubOverflow(ii, jj), res1); CHECK_EQ(IsSubOverflow(ii, jj), res2); break; default: UNREACHABLE(); } } } } } } TEST(BranchOverflowInt32RightLabel) { FOR_INT32_INPUTS(i, overflow_int32_test_values) { FOR_INT32_INPUTS(j, overflow_int32_test_values) { FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, overflow_register_combination) { int32_t ii = *i; int32_t jj = *j; enum OverflowBranchType branchType = *br; struct OverflowRegisterCombination rc = *regComb; // If left and right register are same then left and right // test values must also be same, otherwise we skip the test if (rc.left.code() == rc.right.code()) { if (ii != jj) { continue; } } bool res1 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label no_overflow, end; __ li(rc.left, valLeft); __ li(rc.right, valRight); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, rc.right, NULL, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, rc.right, NULL, &no_overflow, rc.scratch); break; } __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); bool res2 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label no_overflow, end; __ li(rc.left, valLeft); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), NULL, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), NULL, &no_overflow, rc.scratch); break; } __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); switch (branchType) { case kAddBranchOverflow: CHECK_EQ(IsAddOverflow(ii, jj), res1); CHECK_EQ(IsAddOverflow(ii, jj), res2); break; case kSubBranchOverflow: CHECK_EQ(IsSubOverflow(ii, jj), res1); CHECK_EQ(IsSubOverflow(ii, jj), res2); break; default: UNREACHABLE(); } } } } } } TEST(min_max_nan) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct TestFloat { double a; double b; double c; double d; float e; float f; float g; float h; }; TestFloat test; const double dnan = std::numeric_limits::quiet_NaN(); const double dinf = std::numeric_limits::infinity(); const double dminf = -std::numeric_limits::infinity(); const float fnan = std::numeric_limits::quiet_NaN(); const float finf = std::numeric_limits::infinity(); const float fminf = std::numeric_limits::infinity(); const int kTableLength = 13; double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, dinf, dminf, dinf, dnan, 3.0, dinf, dnan, dnan}; double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, dinf, 42.0, dinf, dminf, 3.0, dnan, dnan, dinf, dnan}; double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, dminf, dminf, dnan, dnan, dnan, dnan, dnan}; double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dnan, dnan, dnan, dnan, dnan}; float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf, finf, fnan, 3.0, finf, fnan, fnan}; float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf, fminf, 3.0, fnan, fnan, finf, fnan}; float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf, fminf, fnan, fnan, fnan, fnan, fnan}; float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, fnan, fnan, fnan, fnan, fnan}; auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) { __ bind(nan); __ LoadRoot(at, Heap::kNanValueRootIndex); __ Ldc1(dst, FieldMemOperand(at, HeapNumber::kValueOffset)); __ Branch(back); }; auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) { __ bind(nan); __ Move(dst, fnan); __ Branch(back); }; Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan; Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan; __ push(s6); __ InitializeRootRegister(); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e))); __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f))); __ Float64Min(f10, f4, f8, &handle_mind_nan); __ bind(&back_mind_nan); __ Float64Max(f12, f4, f8, &handle_maxd_nan); __ bind(&back_maxd_nan); __ Float32Min(f14, f2, f6, &handle_mins_nan); __ bind(&back_mins_nan); __ Float32Max(f16, f2, f6, &handle_maxs_nan); __ bind(&back_maxs_nan); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d))); __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g))); __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h))); __ pop(s6); __ jr(ra); __ nop(); handle_dnan(f10, &handle_mind_nan, &back_mind_nan); handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan); handle_snan(f14, &handle_mins_nan, &back_mins_nan); handle_snan(f16, &handle_maxs_nan, &back_maxs_nan); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); ::F3 f = FUNCTION_CAST<::F3>(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.e = inputse[i]; test.f = inputsf[i]; CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0); CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); } } template bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset, IN_TYPE value, Func GenerateUnalignedInstructionFunc) { typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; IN_TYPE res; GenerateUnalignedInstructionFunc(masm, in_offset, out_offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F_CVT f = FUNCTION_CAST(code->entry()); MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE)); CALL_GENERATED_CODE(isolate, f, memory_buffer, 0, 0, 0, 0); MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE)); return res == value; } static const std::vector unsigned_test_values() { static const uint64_t kValues[] = { 0x2180f18a06384414, 0x000a714532102277, 0xbc1acccf180649f0, 0x8000000080008000, 0x0000000000000001, 0xffffffffffffffff, }; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector unsigned_test_offset() { static const int32_t kValues[] = {// value, offset -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector unsigned_test_offset_increment() { static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } TEST(Ulh) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulh(v0, MemOperand(a0, in_offset)); __ Ush(v0, MemOperand(a0, out_offset), v0); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ulh(a0, MemOperand(a0, in_offset)); __ Ush(a0, MemOperand(t0, out_offset), v0); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_2)); auto fn_3 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ulhu(a0, MemOperand(a0, in_offset)); __ Ush(a0, MemOperand(t0, out_offset), t1); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_3)); auto fn_4 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulhu(v0, MemOperand(a0, in_offset)); __ Ush(v0, MemOperand(a0, out_offset), t1); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_4)); } } } } TEST(Ulh_bitextension) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { Label success, fail, end, different; __ Ulh(t0, MemOperand(a0, in_offset)); __ Ulhu(t1, MemOperand(a0, in_offset)); __ Branch(&different, ne, t0, Operand(t1)); // If signed and unsigned values are same, check // the upper bits to see if they are zero __ sra(t0, t0, 15); __ Branch(&success, eq, t0, Operand(zero_reg)); __ Branch(&fail); // If signed and unsigned values are different, // check that the upper bits are complementary __ bind(&different); __ sra(t1, t1, 15); __ Branch(&fail, ne, t1, Operand(1)); __ sra(t0, t0, 15); __ addiu(t0, t0, 1); __ Branch(&fail, ne, t0, Operand(zero_reg)); // Fall through to success __ bind(&success); __ Ulh(t0, MemOperand(a0, in_offset)); __ Ush(t0, MemOperand(a0, out_offset), v0); __ Branch(&end); __ bind(&fail); __ Ush(zero_reg, MemOperand(a0, out_offset), v0); __ bind(&end); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Ulw) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint32_t value = static_cast(*i & 0xFFFFFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn_1 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulw(v0, MemOperand(a0, in_offset)); __ Usw(v0, MemOperand(a0, out_offset)); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn_1)); auto fn_2 = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ulw(a0, MemOperand(a0, in_offset)); __ Usw(a0, MemOperand(t0, out_offset)); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, (uint32_t)value, fn_2)); } } } } TEST(Ulwc1) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { float value = static_cast(*i & 0xFFFFFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulwc1(f0, MemOperand(a0, in_offset), t0); __ Uswc1(f0, MemOperand(a0, out_offset), t0); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } TEST(Uldc1) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { double value = static_cast(*i); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; auto fn = [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Uldc1(f0, MemOperand(a0, in_offset), t0); __ Usdc1(f0, MemOperand(a0, out_offset), t0); }; CHECK_EQ(true, run_Unaligned(buffer_middle, in_offset, out_offset, value, fn)); } } } } static const std::vector sltu_test_values() { static const uint32_t kValues[] = { 0, 1, 0x7ffe, 0x7fff, 0x8000, 0x8001, 0xfffe, 0xffff, 0xffff7ffe, 0xffff7fff, 0xffff8000, 0xffff8001, 0xfffffffe, 0xffffffff, }; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } template bool run_Sltu(uint32_t rs, uint32_t rd, Func GenerateSltuInstructionFunc) { typedef int32_t (*F_CVT)(uint32_t x0, uint32_t x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; GenerateSltuInstructionFunc(masm, rd); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F_CVT f = FUNCTION_CAST(code->entry()); int32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, rs, rd, 0, 0, 0)); return res == 1; } TEST(Sltu) { CcTest::InitializeVM(); FOR_UINT32_INPUTS(i, sltu_test_values) { FOR_UINT32_INPUTS(j, sltu_test_values) { uint32_t rs = *i; uint32_t rd = *j; auto fn_1 = [](MacroAssembler* masm, uint32_t imm) { __ Sltu(v0, a0, Operand(imm)); }; CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_1)); auto fn_2 = [](MacroAssembler* masm, uint32_t imm) { __ Sltu(v0, a0, a1); }; CHECK_EQ(rs < rd, run_Sltu(rs, rd, fn_2)); } } } template static ::F4 GenerateMacroFloat32MinMax(MacroAssembler* masm) { T a = T::from_code(4); // f4 T b = T::from_code(6); // f6 T c = T::from_code(8); // f8 Label ool_min_abc, ool_min_aab, ool_min_aba; Label ool_max_abc, ool_max_aab, ool_max_aba; Label done_min_abc, done_min_aab, done_min_aba; Label done_max_abc, done_max_aab, done_max_aba; #define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ __ lwc1(x, MemOperand(a0, offsetof(Inputs, src1_))); \ __ lwc1(y, MemOperand(a0, offsetof(Inputs, src2_))); \ __ fminmax(res, x, y, &ool); \ __ bind(&done); \ __ swc1(a, MemOperand(a1, offsetof(Results, res_field))) // a = min(b, c); FLOAT_MIN_MAX(Float32Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); // a = min(a, b); FLOAT_MIN_MAX(Float32Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); // a = min(b, a); FLOAT_MIN_MAX(Float32Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); // a = max(b, c); FLOAT_MIN_MAX(Float32Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); // a = max(a, b); FLOAT_MIN_MAX(Float32Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); // a = max(b, a); FLOAT_MIN_MAX(Float32Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); #undef FLOAT_MIN_MAX __ jr(ra); __ nop(); // Generate out-of-line cases. __ bind(&ool_min_abc); __ Float32MinOutOfLine(a, b, c); __ Branch(&done_min_abc); __ bind(&ool_min_aab); __ Float32MinOutOfLine(a, a, b); __ Branch(&done_min_aab); __ bind(&ool_min_aba); __ Float32MinOutOfLine(a, b, a); __ Branch(&done_min_aba); __ bind(&ool_max_abc); __ Float32MaxOutOfLine(a, b, c); __ Branch(&done_max_abc); __ bind(&ool_max_aab); __ Float32MaxOutOfLine(a, a, b); __ Branch(&done_max_aab); __ bind(&ool_max_aba); __ Float32MaxOutOfLine(a, b, a); __ Branch(&done_max_aba); CodeDesc desc; masm->GetCode(&desc); Handle code = masm->isolate()->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif return FUNCTION_CAST<::F4>(code->entry()); } TEST(macro_float_minmax_f32) { // Test the Float32Min and Float32Max macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct Inputs { float src1_; float src2_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro assembler. float min_abc_; float min_aab_; float min_aba_; float max_abc_; float max_aab_; float max_aba_; }; ::F4 f = GenerateMacroFloat32MinMax(masm); Object* dummy = nullptr; USE(dummy); #define CHECK_MINMAX(src1, src2, min, max) \ do { \ Inputs inputs = {src1, src2}; \ Results results; \ dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ } while (0) float nan_a = std::numeric_limits::quiet_NaN(); float nan_b = std::numeric_limits::quiet_NaN(); CHECK_MINMAX(1.0f, -1.0f, -1.0f, 1.0f); CHECK_MINMAX(-1.0f, 1.0f, -1.0f, 1.0f); CHECK_MINMAX(0.0f, -1.0f, -1.0f, 0.0f); CHECK_MINMAX(-1.0f, 0.0f, -1.0f, 0.0f); CHECK_MINMAX(-0.0f, -1.0f, -1.0f, -0.0f); CHECK_MINMAX(-1.0f, -0.0f, -1.0f, -0.0f); CHECK_MINMAX(0.0f, 1.0f, 0.0f, 1.0f); CHECK_MINMAX(1.0f, 0.0f, 0.0f, 1.0f); CHECK_MINMAX(0.0f, 0.0f, 0.0f, 0.0f); CHECK_MINMAX(-0.0f, -0.0f, -0.0f, -0.0f); CHECK_MINMAX(-0.0f, 0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, -0.0f, -0.0f, 0.0f); CHECK_MINMAX(0.0f, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0f, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } template static ::F4 GenerateMacroFloat64MinMax(MacroAssembler* masm) { T a = T::from_code(4); // f4 T b = T::from_code(6); // f6 T c = T::from_code(8); // f8 Label ool_min_abc, ool_min_aab, ool_min_aba; Label ool_max_abc, ool_max_aab, ool_max_aba; Label done_min_abc, done_min_aab, done_min_aba; Label done_max_abc, done_max_aab, done_max_aba; #define FLOAT_MIN_MAX(fminmax, res, x, y, done, ool, res_field) \ __ Ldc1(x, MemOperand(a0, offsetof(Inputs, src1_))); \ __ Ldc1(y, MemOperand(a0, offsetof(Inputs, src2_))); \ __ fminmax(res, x, y, &ool); \ __ bind(&done); \ __ Sdc1(a, MemOperand(a1, offsetof(Results, res_field))) // a = min(b, c); FLOAT_MIN_MAX(Float64Min, a, b, c, done_min_abc, ool_min_abc, min_abc_); // a = min(a, b); FLOAT_MIN_MAX(Float64Min, a, a, b, done_min_aab, ool_min_aab, min_aab_); // a = min(b, a); FLOAT_MIN_MAX(Float64Min, a, b, a, done_min_aba, ool_min_aba, min_aba_); // a = max(b, c); FLOAT_MIN_MAX(Float64Max, a, b, c, done_max_abc, ool_max_abc, max_abc_); // a = max(a, b); FLOAT_MIN_MAX(Float64Max, a, a, b, done_max_aab, ool_max_aab, max_aab_); // a = max(b, a); FLOAT_MIN_MAX(Float64Max, a, b, a, done_max_aba, ool_max_aba, max_aba_); #undef FLOAT_MIN_MAX __ jr(ra); __ nop(); // Generate out-of-line cases. __ bind(&ool_min_abc); __ Float64MinOutOfLine(a, b, c); __ Branch(&done_min_abc); __ bind(&ool_min_aab); __ Float64MinOutOfLine(a, a, b); __ Branch(&done_min_aab); __ bind(&ool_min_aba); __ Float64MinOutOfLine(a, b, a); __ Branch(&done_min_aba); __ bind(&ool_max_abc); __ Float64MaxOutOfLine(a, b, c); __ Branch(&done_max_abc); __ bind(&ool_max_aab); __ Float64MaxOutOfLine(a, a, b); __ Branch(&done_max_aab); __ bind(&ool_max_aba); __ Float64MaxOutOfLine(a, b, a); __ Branch(&done_max_aba); CodeDesc desc; masm->GetCode(&desc); Handle code = masm->isolate()->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef DEBUG OFStream os(stdout); code->Print(os); #endif return FUNCTION_CAST<::F4>(code->entry()); } TEST(macro_float_minmax_f64) { // Test the Float64Min and Float64Max macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct Inputs { double src1_; double src2_; }; struct Results { // Check all register aliasing possibilities in order to exercise all // code-paths in the macro assembler. double min_abc_; double min_aab_; double min_aba_; double max_abc_; double max_aab_; double max_aba_; }; ::F4 f = GenerateMacroFloat64MinMax(masm); Object* dummy = nullptr; USE(dummy); #define CHECK_MINMAX(src1, src2, min, max) \ do { \ Inputs inputs = {src1, src2}; \ Results results; \ dummy = CALL_GENERATED_CODE(isolate, f, &inputs, &results, 0, 0, 0); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_abc_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aab_)); \ CHECK_EQ(bit_cast(min), bit_cast(results.min_aba_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_abc_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aab_)); \ CHECK_EQ(bit_cast(max), bit_cast(results.max_aba_)); \ /* Use a bit_cast to correctly identify -0.0 and NaNs. */ \ } while (0) double nan_a = std::numeric_limits::quiet_NaN(); double nan_b = std::numeric_limits::quiet_NaN(); CHECK_MINMAX(1.0, -1.0, -1.0, 1.0); CHECK_MINMAX(-1.0, 1.0, -1.0, 1.0); CHECK_MINMAX(0.0, -1.0, -1.0, 0.0); CHECK_MINMAX(-1.0, 0.0, -1.0, 0.0); CHECK_MINMAX(-0.0, -1.0, -1.0, -0.0); CHECK_MINMAX(-1.0, -0.0, -1.0, -0.0); CHECK_MINMAX(0.0, 1.0, 0.0, 1.0); CHECK_MINMAX(1.0, 0.0, 0.0, 1.0); CHECK_MINMAX(0.0, 0.0, 0.0, 0.0); CHECK_MINMAX(-0.0, -0.0, -0.0, -0.0); CHECK_MINMAX(-0.0, 0.0, -0.0, 0.0); CHECK_MINMAX(0.0, -0.0, -0.0, 0.0); CHECK_MINMAX(0.0, nan_a, nan_a, nan_a); CHECK_MINMAX(nan_a, 0.0, nan_a, nan_a); CHECK_MINMAX(nan_a, nan_b, nan_a, nan_a); CHECK_MINMAX(nan_b, nan_a, nan_b, nan_b); #undef CHECK_MINMAX } #undef __