// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/cctest/compiler/function-tester.h" namespace v8 { namespace internal { namespace compiler { template <typename U> static void TypedArrayLoadHelper(const char* array_type) { static const uint32_t kValues[] = { 0x00000000, 0x00000001, 0x00000023, 0x00000042, 0x12345678, 0x87654321, 0x0000003f, 0x0000007f, 0x00003fff, 0x00007fff, 0x3fffffff, 0x7fffffff, 0x000000ff, 0x00000080, 0x0000ffff, 0x00008000, 0xffffffff, 0x80000000}; EmbeddedVector<char, 1024> values_buffer; StringBuilder values_builder(values_buffer.start(), values_buffer.length()); for (size_t i = 0; i < arraysize(kValues); ++i) { values_builder.AddFormatted("a[%d] = 0x%08x;", i, kValues[i]); } // Note that below source creates two different typed arrays with the same // elements kind to get coverage for both (on heap / with external backing // store) access patterns. const char* source = "(function(a) {" " var x = (a = new %sArray(%d)); %s;" " var y = (a = new %sArray(%d)); %s; %%TypedArrayGetBuffer(y);" " if (!%%HasFixed%sElements(x)) %%AbortJS('x');" " if (!%%HasFixed%sElements(y)) %%AbortJS('y');" " function f(a,b) {" " a = a | 0; b = b | 0;" " return x[a] + y[b];" " }" " return f;" "})()"; EmbeddedVector<char, 1024> source_buffer; SNPrintF(source_buffer, source, array_type, arraysize(kValues), values_buffer.start(), array_type, arraysize(kValues), values_buffer.start(), array_type, array_type); FunctionTester T(source_buffer.start(), CompilationInfo::kFunctionContextSpecializing | CompilationInfo::kTypingEnabled); for (size_t i = 0; i < arraysize(kValues); ++i) { for (size_t j = 0; j < arraysize(kValues); ++j) { volatile U value_a = static_cast<U>(kValues[i]); volatile U value_b = static_cast<U>(kValues[j]); double expected = static_cast<double>(value_a) + static_cast<double>(value_b); T.CheckCall(T.Val(expected), T.Val(static_cast<double>(i)), T.Val(static_cast<double>(j))); } } } TEST(TypedArrayLoad) { FLAG_typed_array_max_size_in_heap = 256; TypedArrayLoadHelper<int8_t>("Int8"); TypedArrayLoadHelper<uint8_t>("Uint8"); TypedArrayLoadHelper<int16_t>("Int16"); TypedArrayLoadHelper<uint16_t>("Uint16"); TypedArrayLoadHelper<int32_t>("Int32"); TypedArrayLoadHelper<uint32_t>("Uint32"); TypedArrayLoadHelper<float>("Float32"); TypedArrayLoadHelper<double>("Float64"); // TODO(mstarzinger): Add tests for ClampedUint8. } template <typename U> static void TypedArrayStoreHelper(const char* array_type) { static const uint32_t kValues[] = { 0x00000000, 0x00000001, 0x00000023, 0x00000042, 0x12345678, 0x87654321, 0x0000003f, 0x0000007f, 0x00003fff, 0x00007fff, 0x3fffffff, 0x7fffffff, 0x000000ff, 0x00000080, 0x0000ffff, 0x00008000, 0xffffffff, 0x80000000}; EmbeddedVector<char, 1024> values_buffer; StringBuilder values_builder(values_buffer.start(), values_buffer.length()); for (size_t i = 0; i < arraysize(kValues); ++i) { values_builder.AddFormatted("a[%d] = 0x%08x;", i, kValues[i]); } // Note that below source creates two different typed arrays with the same // elements kind to get coverage for both (on heap/with external backing // store) access patterns. const char* source = "(function(a) {" " var x = (a = new %sArray(%d)); %s;" " var y = (a = new %sArray(%d)); %s; %%TypedArrayGetBuffer(y);" " if (!%%HasFixed%sElements(x)) %%AbortJS('x');" " if (!%%HasFixed%sElements(y)) %%AbortJS('y');" " function f(a,b) {" " a = a | 0; b = b | 0;" " var t = x[a];" " x[a] = y[b];" " y[b] = t;" " t = y[b];" " y[b] = x[a];" " x[a] = t;" " return x[a] + y[b];" " }" " return f;" "})()"; EmbeddedVector<char, 2048> source_buffer; SNPrintF(source_buffer, source, array_type, arraysize(kValues), values_buffer.start(), array_type, arraysize(kValues), values_buffer.start(), array_type, array_type); FunctionTester T(source_buffer.start(), CompilationInfo::kFunctionContextSpecializing | CompilationInfo::kTypingEnabled); for (size_t i = 0; i < arraysize(kValues); ++i) { for (size_t j = 0; j < arraysize(kValues); ++j) { volatile U value_a = static_cast<U>(kValues[i]); volatile U value_b = static_cast<U>(kValues[j]); double expected = static_cast<double>(value_a) + static_cast<double>(value_b); T.CheckCall(T.Val(expected), T.Val(static_cast<double>(i)), T.Val(static_cast<double>(j))); } } } TEST(TypedArrayStore) { FLAG_typed_array_max_size_in_heap = 256; TypedArrayStoreHelper<int8_t>("Int8"); TypedArrayStoreHelper<uint8_t>("Uint8"); TypedArrayStoreHelper<int16_t>("Int16"); TypedArrayStoreHelper<uint16_t>("Uint16"); TypedArrayStoreHelper<int32_t>("Int32"); TypedArrayStoreHelper<uint32_t>("Uint32"); TypedArrayStoreHelper<float>("Float32"); TypedArrayStoreHelper<double>("Float64"); // TODO(mstarzinger): Add tests for ClampedUint8. } } // namespace compiler } // namespace internal } // namespace v8