// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODE_STUB_ASSEMBLER_H_ #define V8_CODE_STUB_ASSEMBLER_H_ #include #include "src/compiler/code-assembler.h" #include "src/globals.h" #include "src/objects.h" namespace v8 { namespace internal { class CallInterfaceDescriptor; class StatsCounter; class StubCache; enum class PrimitiveType { kBoolean, kNumber, kString, kSymbol }; #define HEAP_CONSTANT_LIST(V) \ V(BooleanMap, BooleanMap) \ V(CodeMap, CodeMap) \ V(empty_string, EmptyString) \ V(EmptyFixedArray, EmptyFixedArray) \ V(FalseValue, False) \ V(FixedArrayMap, FixedArrayMap) \ V(FixedCOWArrayMap, FixedCOWArrayMap) \ V(FixedDoubleArrayMap, FixedDoubleArrayMap) \ V(HeapNumberMap, HeapNumberMap) \ V(MinusZeroValue, MinusZero) \ V(NanValue, Nan) \ V(NullValue, Null) \ V(TheHoleValue, TheHole) \ V(TrueValue, True) \ V(UndefinedValue, Undefined) // Provides JavaScript-specific "macro-assembler" functionality on top of the // CodeAssembler. By factoring the JavaScript-isms out of the CodeAssembler, // it's possible to add JavaScript-specific useful CodeAssembler "macros" // without modifying files in the compiler directory (and requiring a review // from a compiler directory OWNER). class V8_EXPORT_PRIVATE CodeStubAssembler : public compiler::CodeAssembler { public: // Create with CallStub linkage. // |result_size| specifies the number of results returned by the stub. // TODO(rmcilroy): move result_size to the CallInterfaceDescriptor. CodeStubAssembler(Isolate* isolate, Zone* zone, const CallInterfaceDescriptor& descriptor, Code::Flags flags, const char* name, size_t result_size = 1); // Create with JSCall linkage. CodeStubAssembler(Isolate* isolate, Zone* zone, int parameter_count, Code::Flags flags, const char* name); enum AllocationFlag : uint8_t { kNone = 0, kDoubleAlignment = 1, kPretenured = 1 << 1 }; typedef base::Flags AllocationFlags; // TODO(ishell): Fix all loads/stores from arrays by int32 offsets/indices // and eventually remove INTEGER_PARAMETERS in favour of INTPTR_PARAMETERS. enum ParameterMode { INTEGER_PARAMETERS, SMI_PARAMETERS, INTPTR_PARAMETERS }; // On 32-bit platforms, there is a slight performance advantage to doing all // of the array offset/index arithmetic with SMIs, since it's possible // to save a few tag/untag operations without paying an extra expense when // calculating array offset (the smi math can be folded away) and there are // fewer live ranges. Thus only convert indices to untagged value on 64-bit // platforms. ParameterMode OptimalParameterMode() const { return Is64() ? INTPTR_PARAMETERS : SMI_PARAMETERS; } compiler::Node* UntagParameter(compiler::Node* value, ParameterMode mode) { if (mode != SMI_PARAMETERS) value = SmiUntag(value); return value; } compiler::Node* TagParameter(compiler::Node* value, ParameterMode mode) { if (mode != SMI_PARAMETERS) value = SmiTag(value); return value; } compiler::Node* NoContextConstant(); #define HEAP_CONSTANT_ACCESSOR(rootName, name) compiler::Node* name##Constant(); HEAP_CONSTANT_LIST(HEAP_CONSTANT_ACCESSOR) #undef HEAP_CONSTANT_ACCESSOR #define HEAP_CONSTANT_TEST(rootName, name) \ compiler::Node* Is##name(compiler::Node* value); HEAP_CONSTANT_LIST(HEAP_CONSTANT_TEST) #undef HEAP_CONSTANT_TEST compiler::Node* HashSeed(); compiler::Node* StaleRegisterConstant(); compiler::Node* IntPtrOrSmiConstant(int value, ParameterMode mode); compiler::Node* IntPtrAddFoldConstants(compiler::Node* left, compiler::Node* right); compiler::Node* IntPtrSubFoldConstants(compiler::Node* left, compiler::Node* right); // Round the 32bits payload of the provided word up to the next power of two. compiler::Node* IntPtrRoundUpToPowerOfTwo32(compiler::Node* value); compiler::Node* IntPtrMax(compiler::Node* left, compiler::Node* right); // Float64 operations. compiler::Node* Float64Ceil(compiler::Node* x); compiler::Node* Float64Floor(compiler::Node* x); compiler::Node* Float64Round(compiler::Node* x); compiler::Node* Float64Trunc(compiler::Node* x); // Tag a Word as a Smi value. compiler::Node* SmiTag(compiler::Node* value); // Untag a Smi value as a Word. compiler::Node* SmiUntag(compiler::Node* value); // Smi conversions. compiler::Node* SmiToFloat64(compiler::Node* value); compiler::Node* SmiFromWord(compiler::Node* value) { return SmiTag(value); } compiler::Node* SmiFromWord32(compiler::Node* value); compiler::Node* SmiToWord(compiler::Node* value) { return SmiUntag(value); } compiler::Node* SmiToWord32(compiler::Node* value); // Smi operations. compiler::Node* SmiAdd(compiler::Node* a, compiler::Node* b); compiler::Node* SmiSub(compiler::Node* a, compiler::Node* b); compiler::Node* SmiEqual(compiler::Node* a, compiler::Node* b); compiler::Node* SmiAbove(compiler::Node* a, compiler::Node* b); compiler::Node* SmiAboveOrEqual(compiler::Node* a, compiler::Node* b); compiler::Node* SmiBelow(compiler::Node* a, compiler::Node* b); compiler::Node* SmiLessThan(compiler::Node* a, compiler::Node* b); compiler::Node* SmiLessThanOrEqual(compiler::Node* a, compiler::Node* b); compiler::Node* SmiMax(compiler::Node* a, compiler::Node* b); compiler::Node* SmiMin(compiler::Node* a, compiler::Node* b); // Computes a % b for Smi inputs a and b; result is not necessarily a Smi. compiler::Node* SmiMod(compiler::Node* a, compiler::Node* b); // Computes a * b for Smi inputs a and b; result is not necessarily a Smi. compiler::Node* SmiMul(compiler::Node* a, compiler::Node* b); compiler::Node* SmiOr(compiler::Node* a, compiler::Node* b) { return BitcastWordToTaggedSigned( WordOr(BitcastTaggedToWord(a), BitcastTaggedToWord(b))); } // Smi | HeapNumber operations. compiler::Node* NumberInc(compiler::Node* value); // Allocate an object of the given size. compiler::Node* Allocate(compiler::Node* size, AllocationFlags flags = kNone); compiler::Node* Allocate(int size, AllocationFlags flags = kNone); compiler::Node* InnerAllocate(compiler::Node* previous, int offset); compiler::Node* InnerAllocate(compiler::Node* previous, compiler::Node* offset); compiler::Node* IsRegularHeapObjectSize(compiler::Node* size); typedef std::function ConditionBody; void Assert(ConditionBody condition_body, const char* string = nullptr, const char* file = nullptr, int line = 0); // Check a value for smi-ness compiler::Node* TaggedIsSmi(compiler::Node* a); // Check that the value is a non-negative smi. compiler::Node* WordIsPositiveSmi(compiler::Node* a); // Check that a word has a word-aligned address. compiler::Node* WordIsWordAligned(compiler::Node* word); compiler::Node* WordIsPowerOfTwo(compiler::Node* value); void BranchIfSmiEqual(compiler::Node* a, compiler::Node* b, Label* if_true, Label* if_false) { Branch(SmiEqual(a, b), if_true, if_false); } void BranchIfSmiLessThan(compiler::Node* a, compiler::Node* b, Label* if_true, Label* if_false) { Branch(SmiLessThan(a, b), if_true, if_false); } void BranchIfSmiLessThanOrEqual(compiler::Node* a, compiler::Node* b, Label* if_true, Label* if_false) { Branch(SmiLessThanOrEqual(a, b), if_true, if_false); } void BranchIfFloat64IsNaN(compiler::Node* value, Label* if_true, Label* if_false) { Branch(Float64Equal(value, value), if_false, if_true); } // Branches to {if_true} if ToBoolean applied to {value} yields true, // otherwise goes to {if_false}. void BranchIfToBooleanIsTrue(compiler::Node* value, Label* if_true, Label* if_false); void BranchIfSimd128Equal(compiler::Node* lhs, compiler::Node* lhs_map, compiler::Node* rhs, compiler::Node* rhs_map, Label* if_equal, Label* if_notequal); void BranchIfSimd128Equal(compiler::Node* lhs, compiler::Node* rhs, Label* if_equal, Label* if_notequal) { BranchIfSimd128Equal(lhs, LoadMap(lhs), rhs, LoadMap(rhs), if_equal, if_notequal); } void BranchIfJSReceiver(compiler::Node* object, Label* if_true, Label* if_false); void BranchIfJSObject(compiler::Node* object, Label* if_true, Label* if_false); void BranchIfFastJSArray(compiler::Node* object, compiler::Node* context, Label* if_true, Label* if_false); // Load value from current frame by given offset in bytes. compiler::Node* LoadFromFrame(int offset, MachineType rep = MachineType::AnyTagged()); // Load value from current parent frame by given offset in bytes. compiler::Node* LoadFromParentFrame( int offset, MachineType rep = MachineType::AnyTagged()); // Load an object pointer from a buffer that isn't in the heap. compiler::Node* LoadBufferObject(compiler::Node* buffer, int offset, MachineType rep = MachineType::AnyTagged()); // Load a field from an object on the heap. compiler::Node* LoadObjectField(compiler::Node* object, int offset, MachineType rep = MachineType::AnyTagged()); compiler::Node* LoadObjectField(compiler::Node* object, compiler::Node* offset, MachineType rep = MachineType::AnyTagged()); // Load a SMI field and untag it. compiler::Node* LoadAndUntagObjectField(compiler::Node* object, int offset); // Load a SMI field, untag it, and convert to Word32. compiler::Node* LoadAndUntagToWord32ObjectField(compiler::Node* object, int offset); // Load a SMI and untag it. compiler::Node* LoadAndUntagSmi(compiler::Node* base, int index); // Load a SMI root, untag it, and convert to Word32. compiler::Node* LoadAndUntagToWord32Root(Heap::RootListIndex root_index); // Load the floating point value of a HeapNumber. compiler::Node* LoadHeapNumberValue(compiler::Node* object); // Load the Map of an HeapObject. compiler::Node* LoadMap(compiler::Node* object); // Load the instance type of an HeapObject. compiler::Node* LoadInstanceType(compiler::Node* object); // Compare the instance the type of the object against the provided one. compiler::Node* HasInstanceType(compiler::Node* object, InstanceType type); // Load the properties backing store of a JSObject. compiler::Node* LoadProperties(compiler::Node* object); // Load the elements backing store of a JSObject. compiler::Node* LoadElements(compiler::Node* object); // Load the length of a JSArray instance. compiler::Node* LoadJSArrayLength(compiler::Node* array); // Load the length of a fixed array base instance. compiler::Node* LoadFixedArrayBaseLength(compiler::Node* array); // Load the length of a fixed array base instance. compiler::Node* LoadAndUntagFixedArrayBaseLength(compiler::Node* array); // Load the bit field of a Map. compiler::Node* LoadMapBitField(compiler::Node* map); // Load bit field 2 of a map. compiler::Node* LoadMapBitField2(compiler::Node* map); // Load bit field 3 of a map. compiler::Node* LoadMapBitField3(compiler::Node* map); // Load the instance type of a map. compiler::Node* LoadMapInstanceType(compiler::Node* map); // Load the ElementsKind of a map. compiler::Node* LoadMapElementsKind(compiler::Node* map); // Load the instance descriptors of a map. compiler::Node* LoadMapDescriptors(compiler::Node* map); // Load the prototype of a map. compiler::Node* LoadMapPrototype(compiler::Node* map); // Load the prototype info of a map. The result has to be checked if it is a // prototype info object or not. compiler::Node* LoadMapPrototypeInfo(compiler::Node* map, Label* if_has_no_proto_info); // Load the instance size of a Map. compiler::Node* LoadMapInstanceSize(compiler::Node* map); // Load the inobject properties count of a Map (valid only for JSObjects). compiler::Node* LoadMapInobjectProperties(compiler::Node* map); // Load the constructor function index of a Map (only for primitive maps). compiler::Node* LoadMapConstructorFunctionIndex(compiler::Node* map); // Load the constructor of a Map (equivalent to Map::GetConstructor()). compiler::Node* LoadMapConstructor(compiler::Node* map); // Check if the map is set for slow properties. compiler::Node* IsDictionaryMap(compiler::Node* map); // Load the hash field of a name as an uint32 value. compiler::Node* LoadNameHashField(compiler::Node* name); // Load the hash value of a name as an uint32 value. // If {if_hash_not_computed} label is specified then it also checks if // hash is actually computed. compiler::Node* LoadNameHash(compiler::Node* name, Label* if_hash_not_computed = nullptr); // Load length field of a String object. compiler::Node* LoadStringLength(compiler::Node* object); // Load value field of a JSValue object. compiler::Node* LoadJSValueValue(compiler::Node* object); // Load value field of a WeakCell object. compiler::Node* LoadWeakCellValueUnchecked(compiler::Node* weak_cell); compiler::Node* LoadWeakCellValue(compiler::Node* weak_cell, Label* if_cleared = nullptr); // Load an array element from a FixedArray. compiler::Node* LoadFixedArrayElement( compiler::Node* object, compiler::Node* index, int additional_offset = 0, ParameterMode parameter_mode = INTEGER_PARAMETERS); // Load an array element from a FixedArray, untag it and return it as Word32. compiler::Node* LoadAndUntagToWord32FixedArrayElement( compiler::Node* object, compiler::Node* index, int additional_offset = 0, ParameterMode parameter_mode = INTEGER_PARAMETERS); // Load an array element from a FixedDoubleArray. compiler::Node* LoadFixedDoubleArrayElement( compiler::Node* object, compiler::Node* index, MachineType machine_type, int additional_offset = 0, ParameterMode parameter_mode = INTEGER_PARAMETERS, Label* if_hole = nullptr); // Load Float64 value by |base| + |offset| address. If the value is a double // hole then jump to |if_hole|. If |machine_type| is None then only the hole // check is generated. compiler::Node* LoadDoubleWithHoleCheck( compiler::Node* base, compiler::Node* offset, Label* if_hole, MachineType machine_type = MachineType::Float64()); compiler::Node* LoadFixedTypedArrayElement( compiler::Node* data_pointer, compiler::Node* index_node, ElementsKind elements_kind, ParameterMode parameter_mode = INTEGER_PARAMETERS); // Context manipulation compiler::Node* LoadContextElement(compiler::Node* context, int slot_index); compiler::Node* LoadContextElement(compiler::Node* context, compiler::Node* slot_index); compiler::Node* StoreContextElement(compiler::Node* context, int slot_index, compiler::Node* value); compiler::Node* StoreContextElement(compiler::Node* context, compiler::Node* slot_index, compiler::Node* value); compiler::Node* LoadNativeContext(compiler::Node* context); compiler::Node* LoadJSArrayElementsMap(ElementsKind kind, compiler::Node* native_context); // Store the floating point value of a HeapNumber. compiler::Node* StoreHeapNumberValue(compiler::Node* object, compiler::Node* value); // Store a field to an object on the heap. compiler::Node* StoreObjectField( compiler::Node* object, int offset, compiler::Node* value); compiler::Node* StoreObjectField(compiler::Node* object, compiler::Node* offset, compiler::Node* value); compiler::Node* StoreObjectFieldNoWriteBarrier( compiler::Node* object, int offset, compiler::Node* value, MachineRepresentation rep = MachineRepresentation::kTagged); compiler::Node* StoreObjectFieldNoWriteBarrier( compiler::Node* object, compiler::Node* offset, compiler::Node* value, MachineRepresentation rep = MachineRepresentation::kTagged); // Store the Map of an HeapObject. compiler::Node* StoreMapNoWriteBarrier(compiler::Node* object, compiler::Node* map); compiler::Node* StoreObjectFieldRoot(compiler::Node* object, int offset, Heap::RootListIndex root); // Store an array element to a FixedArray. compiler::Node* StoreFixedArrayElement( compiler::Node* object, int index, compiler::Node* value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, ParameterMode parameter_mode = INTEGER_PARAMETERS) { return StoreFixedArrayElement(object, Int32Constant(index), value, barrier_mode, parameter_mode); } compiler::Node* StoreFixedArrayElement( compiler::Node* object, compiler::Node* index, compiler::Node* value, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, ParameterMode parameter_mode = INTEGER_PARAMETERS); compiler::Node* StoreFixedDoubleArrayElement( compiler::Node* object, compiler::Node* index, compiler::Node* value, ParameterMode parameter_mode = INTEGER_PARAMETERS); void StoreFieldsNoWriteBarrier(compiler::Node* start_address, compiler::Node* end_address, compiler::Node* value); // Allocate a HeapNumber without initializing its value. compiler::Node* AllocateHeapNumber(MutableMode mode = IMMUTABLE); // Allocate a HeapNumber with a specific value. compiler::Node* AllocateHeapNumberWithValue(compiler::Node* value, MutableMode mode = IMMUTABLE); // Allocate a SeqOneByteString with the given length. compiler::Node* AllocateSeqOneByteString(int length, AllocationFlags flags = kNone); compiler::Node* AllocateSeqOneByteString( compiler::Node* context, compiler::Node* length, ParameterMode mode = INTPTR_PARAMETERS, AllocationFlags flags = kNone); // Allocate a SeqTwoByteString with the given length. compiler::Node* AllocateSeqTwoByteString(int length, AllocationFlags flags = kNone); compiler::Node* AllocateSeqTwoByteString( compiler::Node* context, compiler::Node* length, ParameterMode mode = INTPTR_PARAMETERS, AllocationFlags flags = kNone); // Allocate a SlicedOneByteString with the given length, parent and offset. // |length| and |offset| are expected to be tagged. compiler::Node* AllocateSlicedOneByteString(compiler::Node* length, compiler::Node* parent, compiler::Node* offset); // Allocate a SlicedTwoByteString with the given length, parent and offset. // |length| and |offset| are expected to be tagged. compiler::Node* AllocateSlicedTwoByteString(compiler::Node* length, compiler::Node* parent, compiler::Node* offset); // Allocate a one-byte ConsString with the given length, first and second // parts. |length| is expected to be tagged, and |first| and |second| are // expected to be one-byte strings. compiler::Node* AllocateOneByteConsString(compiler::Node* length, compiler::Node* first, compiler::Node* second, AllocationFlags flags = kNone); // Allocate a two-byte ConsString with the given length, first and second // parts. |length| is expected to be tagged, and |first| and |second| are // expected to be two-byte strings. compiler::Node* AllocateTwoByteConsString(compiler::Node* length, compiler::Node* first, compiler::Node* second, AllocationFlags flags = kNone); // Allocate an appropriate one- or two-byte ConsString with the first and // second parts specified by |first| and |second|. compiler::Node* NewConsString(compiler::Node* context, compiler::Node* length, compiler::Node* left, compiler::Node* right, AllocationFlags flags = kNone); // Allocate a RegExpResult with the given length (the number of captures, // including the match itself), index (the index where the match starts), // and input string. |length| and |index| are expected to be tagged, and // |input| must be a string. compiler::Node* AllocateRegExpResult(compiler::Node* context, compiler::Node* length, compiler::Node* index, compiler::Node* input); compiler::Node* AllocateNameDictionary(int capacity); compiler::Node* AllocateNameDictionary(compiler::Node* capacity); compiler::Node* AllocateJSObjectFromMap(compiler::Node* map, compiler::Node* properties = nullptr, compiler::Node* elements = nullptr); void InitializeJSObjectFromMap(compiler::Node* object, compiler::Node* map, compiler::Node* size, compiler::Node* properties = nullptr, compiler::Node* elements = nullptr); void InitializeJSObjectBody(compiler::Node* object, compiler::Node* map, compiler::Node* size, int start_offset = JSObject::kHeaderSize); // Allocate a JSArray without elements and initialize the header fields. compiler::Node* AllocateUninitializedJSArrayWithoutElements( ElementsKind kind, compiler::Node* array_map, compiler::Node* length, compiler::Node* allocation_site); // Allocate and return a JSArray with initialized header fields and its // uninitialized elements. // The ParameterMode argument is only used for the capacity parameter. std::pair AllocateUninitializedJSArrayWithElements( ElementsKind kind, compiler::Node* array_map, compiler::Node* length, compiler::Node* allocation_site, compiler::Node* capacity, ParameterMode capacity_mode = INTEGER_PARAMETERS); // Allocate a JSArray and fill elements with the hole. // The ParameterMode argument is only used for the capacity parameter. compiler::Node* AllocateJSArray( ElementsKind kind, compiler::Node* array_map, compiler::Node* capacity, compiler::Node* length, compiler::Node* allocation_site = nullptr, ParameterMode capacity_mode = INTEGER_PARAMETERS); compiler::Node* AllocateFixedArray(ElementsKind kind, compiler::Node* capacity, ParameterMode mode = INTEGER_PARAMETERS, AllocationFlags flags = kNone); // Perform CreateArrayIterator (ES6 #sec-createarrayiterator). compiler::Node* CreateArrayIterator(compiler::Node* array, compiler::Node* array_map, compiler::Node* array_type, compiler::Node* context, IterationKind mode); compiler::Node* AllocateJSArrayIterator(compiler::Node* array, compiler::Node* array_map, compiler::Node* map); void FillFixedArrayWithValue(ElementsKind kind, compiler::Node* array, compiler::Node* from_index, compiler::Node* to_index, Heap::RootListIndex value_root_index, ParameterMode mode = INTEGER_PARAMETERS); // Copies all elements from |from_array| of |length| size to // |to_array| of the same size respecting the elements kind. void CopyFixedArrayElements( ElementsKind kind, compiler::Node* from_array, compiler::Node* to_array, compiler::Node* length, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, ParameterMode mode = INTEGER_PARAMETERS) { CopyFixedArrayElements(kind, from_array, kind, to_array, length, length, barrier_mode, mode); } // Copies |element_count| elements from |from_array| to |to_array| of // |capacity| size respecting both array's elements kinds. void CopyFixedArrayElements( ElementsKind from_kind, compiler::Node* from_array, ElementsKind to_kind, compiler::Node* to_array, compiler::Node* element_count, compiler::Node* capacity, WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER, ParameterMode mode = INTEGER_PARAMETERS); // Copies |character_count| elements from |from_string| to |to_string| // starting at the |from_index|'th character. |from_string| and |to_string| // can either be one-byte strings or two-byte strings, although if // |from_string| is two-byte, then |to_string| must be two-byte. // |from_index|, |to_index| and |character_count| must be either Smis or // intptr_ts depending on |mode| s.t. 0 <= |from_index| <= |from_index| + // |character_count| <= from_string.length and 0 <= |to_index| <= |to_index| + // |character_count| <= to_string.length. void CopyStringCharacters(compiler::Node* from_string, compiler::Node* to_string, compiler::Node* from_index, compiler::Node* to_index, compiler::Node* character_count, String::Encoding from_encoding, String::Encoding to_encoding, ParameterMode mode); // Loads an element from |array| of |from_kind| elements by given |offset| // (NOTE: not index!), does a hole check if |if_hole| is provided and // converts the value so that it becomes ready for storing to array of // |to_kind| elements. compiler::Node* LoadElementAndPrepareForStore(compiler::Node* array, compiler::Node* offset, ElementsKind from_kind, ElementsKind to_kind, Label* if_hole); compiler::Node* CalculateNewElementsCapacity( compiler::Node* old_capacity, ParameterMode mode = INTEGER_PARAMETERS); // Tries to grow the |elements| array of given |object| to store the |key| // or bails out if the growing gap is too big. Returns new elements. compiler::Node* TryGrowElementsCapacity(compiler::Node* object, compiler::Node* elements, ElementsKind kind, compiler::Node* key, Label* bailout); // Tries to grow the |capacity|-length |elements| array of given |object| // to store the |key| or bails out if the growing gap is too big. Returns // new elements. compiler::Node* TryGrowElementsCapacity(compiler::Node* object, compiler::Node* elements, ElementsKind kind, compiler::Node* key, compiler::Node* capacity, ParameterMode mode, Label* bailout); // Grows elements capacity of given object. Returns new elements. compiler::Node* GrowElementsCapacity( compiler::Node* object, compiler::Node* elements, ElementsKind from_kind, ElementsKind to_kind, compiler::Node* capacity, compiler::Node* new_capacity, ParameterMode mode, Label* bailout); // Allocation site manipulation void InitializeAllocationMemento(compiler::Node* base_allocation, int base_allocation_size, compiler::Node* allocation_site); compiler::Node* TryTaggedToFloat64(compiler::Node* value, Label* if_valueisnotnumber); compiler::Node* TruncateTaggedToFloat64(compiler::Node* context, compiler::Node* value); compiler::Node* TruncateTaggedToWord32(compiler::Node* context, compiler::Node* value); // Truncate the floating point value of a HeapNumber to an Int32. compiler::Node* TruncateHeapNumberValueToWord32(compiler::Node* object); // Conversions. compiler::Node* ChangeFloat64ToTagged(compiler::Node* value); compiler::Node* ChangeInt32ToTagged(compiler::Node* value); compiler::Node* ChangeUint32ToTagged(compiler::Node* value); // Type conversions. // Throws a TypeError for {method_name} if {value} is not coercible to Object, // or returns the {value} converted to a String otherwise. compiler::Node* ToThisString(compiler::Node* context, compiler::Node* value, char const* method_name); // Throws a TypeError for {method_name} if {value} is neither of the given // {primitive_type} nor a JSValue wrapping a value of {primitive_type}, or // returns the {value} (or wrapped value) otherwise. compiler::Node* ToThisValue(compiler::Node* context, compiler::Node* value, PrimitiveType primitive_type, char const* method_name); // Throws a TypeError for {method_name} if {value} is not of the given // instance type. Returns {value}'s map. compiler::Node* ThrowIfNotInstanceType(compiler::Node* context, compiler::Node* value, InstanceType instance_type, char const* method_name); // Type checks. // Check whether the map is for an object with special properties, such as a // JSProxy or an object with interceptors. compiler::Node* IsSpecialReceiverMap(compiler::Node* map); compiler::Node* IsSpecialReceiverInstanceType(compiler::Node* instance_type); compiler::Node* IsStringInstanceType(compiler::Node* instance_type); compiler::Node* IsString(compiler::Node* object); compiler::Node* IsJSObject(compiler::Node* object); compiler::Node* IsJSGlobalProxy(compiler::Node* object); compiler::Node* IsJSReceiverInstanceType(compiler::Node* instance_type); compiler::Node* IsJSReceiver(compiler::Node* object); compiler::Node* IsMap(compiler::Node* object); compiler::Node* IsCallableMap(compiler::Node* map); compiler::Node* IsName(compiler::Node* object); compiler::Node* IsJSValue(compiler::Node* object); compiler::Node* IsJSArray(compiler::Node* object); compiler::Node* IsNativeContext(compiler::Node* object); compiler::Node* IsWeakCell(compiler::Node* object); compiler::Node* IsFixedDoubleArray(compiler::Node* object); compiler::Node* IsHashTable(compiler::Node* object); compiler::Node* IsDictionary(compiler::Node* object); compiler::Node* IsUnseededNumberDictionary(compiler::Node* object); // ElementsKind helpers: compiler::Node* IsFastElementsKind(compiler::Node* elements_kind); compiler::Node* IsHoleyFastElementsKind(compiler::Node* elements_kind); // String helpers. // Load a character from a String (might flatten a ConsString). compiler::Node* StringCharCodeAt(compiler::Node* string, compiler::Node* smi_index); // Return the single character string with only {code}. compiler::Node* StringFromCharCode(compiler::Node* code); // Return a new string object which holds a substring containing the range // [from,to[ of string. |from| and |to| are expected to be tagged. compiler::Node* SubString(compiler::Node* context, compiler::Node* string, compiler::Node* from, compiler::Node* to); // Return a new string object produced by concatenating |first| with |second|. compiler::Node* StringAdd(compiler::Node* context, compiler::Node* first, compiler::Node* second, AllocationFlags flags = kNone); // Return the first index >= {from} at which {needle_char} was found in // {string}, or -1 if such an index does not exist. The returned value is // a Smi, {string} is expected to be a String, {needle_char} is an intptr, // and {from} is expected to be tagged. compiler::Node* StringIndexOfChar(compiler::Node* context, compiler::Node* string, compiler::Node* needle_char, compiler::Node* from); compiler::Node* StringFromCodePoint(compiler::Node* codepoint, UnicodeEncoding encoding); // Type conversion helpers. // Convert a String to a Number. compiler::Node* StringToNumber(compiler::Node* context, compiler::Node* input); compiler::Node* NumberToString(compiler::Node* context, compiler::Node* input); // Convert an object to a name. compiler::Node* ToName(compiler::Node* context, compiler::Node* input); // Convert a Non-Number object to a Number. compiler::Node* NonNumberToNumber(compiler::Node* context, compiler::Node* input); // Convert any object to a Number. compiler::Node* ToNumber(compiler::Node* context, compiler::Node* input); // Convert any object to a String. compiler::Node* ToString(compiler::Node* context, compiler::Node* input); // Convert any object to a Primitive. compiler::Node* JSReceiverToPrimitive(compiler::Node* context, compiler::Node* input); // Convert a String to a flat String. compiler::Node* FlattenString(compiler::Node* string); enum ToIntegerTruncationMode { kNoTruncation, kTruncateMinusZero, }; // Convert any object to an Integer. compiler::Node* ToInteger(compiler::Node* context, compiler::Node* input, ToIntegerTruncationMode mode = kNoTruncation); // Returns a node that contains a decoded (unsigned!) value of a bit // field |T| in |word32|. Returns result as an uint32 node. template compiler::Node* DecodeWord32(compiler::Node* word32) { return DecodeWord32(word32, T::kShift, T::kMask); } // Returns a node that contains a decoded (unsigned!) value of a bit // field |T| in |word|. Returns result as a word-size node. template compiler::Node* DecodeWord(compiler::Node* word) { return DecodeWord(word, T::kShift, T::kMask); } // Returns a node that contains a decoded (unsigned!) value of a bit // field |T| in |word32|. Returns result as a word-size node. template compiler::Node* DecodeWordFromWord32(compiler::Node* word32) { return DecodeWord(ChangeUint32ToWord(word32)); } // Decodes an unsigned (!) value from |word32| to an uint32 node. compiler::Node* DecodeWord32(compiler::Node* word32, uint32_t shift, uint32_t mask); // Decodes an unsigned (!) value from |word| to a word-size node. compiler::Node* DecodeWord(compiler::Node* word, uint32_t shift, uint32_t mask); // Returns true if any of the |T|'s bits in given |word32| are set. template compiler::Node* IsSetWord32(compiler::Node* word32) { return IsSetWord32(word32, T::kMask); } // Returns true if any of the mask's bits in given |word32| are set. compiler::Node* IsSetWord32(compiler::Node* word32, uint32_t mask) { return Word32NotEqual(Word32And(word32, Int32Constant(mask)), Int32Constant(0)); } // Returns true if any of the |T|'s bits in given |word| are set. template compiler::Node* IsSetWord(compiler::Node* word) { return WordNotEqual(WordAnd(word, IntPtrConstant(T::kMask)), IntPtrConstant(0)); } void SetCounter(StatsCounter* counter, int value); void IncrementCounter(StatsCounter* counter, int delta); void DecrementCounter(StatsCounter* counter, int delta); // Generates "if (false) goto label" code. Useful for marking a label as // "live" to avoid assertion failures during graph building. In the resulting // code this check will be eliminated. void Use(Label* label); // Various building blocks for stubs doing property lookups. void TryToName(compiler::Node* key, Label* if_keyisindex, Variable* var_index, Label* if_keyisunique, Label* if_bailout); // Calculates array index for given dictionary entry and entry field. // See Dictionary::EntryToIndex(). template compiler::Node* EntryToIndex(compiler::Node* entry, int field_index); template compiler::Node* EntryToIndex(compiler::Node* entry) { return EntryToIndex(entry, Dictionary::kEntryKeyIndex); } // Calculate a valid size for the a hash table. compiler::Node* HashTableComputeCapacity(compiler::Node* at_least_space_for); // Looks up an entry in a NameDictionaryBase successor. If the entry is found // control goes to {if_found} and {var_name_index} contains an index of the // key field of the entry found. If the key is not found control goes to // {if_not_found}. static const int kInlinedDictionaryProbes = 4; template void NameDictionaryLookup(compiler::Node* dictionary, compiler::Node* unique_name, Label* if_found, Variable* var_name_index, Label* if_not_found, int inlined_probes = kInlinedDictionaryProbes); compiler::Node* ComputeIntegerHash(compiler::Node* key, compiler::Node* seed); template void NumberDictionaryLookup(compiler::Node* dictionary, compiler::Node* intptr_index, Label* if_found, Variable* var_entry, Label* if_not_found); // Tries to check if {object} has own {unique_name} property. void TryHasOwnProperty(compiler::Node* object, compiler::Node* map, compiler::Node* instance_type, compiler::Node* unique_name, Label* if_found, Label* if_not_found, Label* if_bailout); // Tries to get {object}'s own {unique_name} property value. If the property // is an accessor then it also calls a getter. If the property is a double // field it re-wraps value in an immutable heap number. void TryGetOwnProperty(compiler::Node* context, compiler::Node* receiver, compiler::Node* object, compiler::Node* map, compiler::Node* instance_type, compiler::Node* unique_name, Label* if_found, Variable* var_value, Label* if_not_found, Label* if_bailout); void LoadPropertyFromFastObject(compiler::Node* object, compiler::Node* map, compiler::Node* descriptors, compiler::Node* name_index, Variable* var_details, Variable* var_value); void LoadPropertyFromNameDictionary(compiler::Node* dictionary, compiler::Node* entry, Variable* var_details, Variable* var_value); void LoadPropertyFromGlobalDictionary(compiler::Node* dictionary, compiler::Node* entry, Variable* var_details, Variable* var_value, Label* if_deleted); // Generic property lookup generator. If the {object} is fast and // {unique_name} property is found then the control goes to {if_found_fast} // label and {var_meta_storage} and {var_name_index} will contain // DescriptorArray and an index of the descriptor's name respectively. // If the {object} is slow or global then the control goes to {if_found_dict} // or {if_found_global} and the {var_meta_storage} and {var_name_index} will // contain a dictionary and an index of the key field of the found entry. // If property is not found or given lookup is not supported then // the control goes to {if_not_found} or {if_bailout} respectively. // // Note: this code does not check if the global dictionary points to deleted // entry! This has to be done by the caller. void TryLookupProperty(compiler::Node* object, compiler::Node* map, compiler::Node* instance_type, compiler::Node* unique_name, Label* if_found_fast, Label* if_found_dict, Label* if_found_global, Variable* var_meta_storage, Variable* var_name_index, Label* if_not_found, Label* if_bailout); void TryLookupElement(compiler::Node* object, compiler::Node* map, compiler::Node* instance_type, compiler::Node* intptr_index, Label* if_found, Label* if_not_found, Label* if_bailout); // This is a type of a lookup in holder generator function. In case of a // property lookup the {key} is guaranteed to be a unique name and in case of // element lookup the key is an Int32 index. typedef std::function LookupInHolder; // Generic property prototype chain lookup generator. // For properties it generates lookup using given {lookup_property_in_holder} // and for elements it uses {lookup_element_in_holder}. // Upon reaching the end of prototype chain the control goes to {if_end}. // If it can't handle the case {receiver}/{key} case then the control goes // to {if_bailout}. void TryPrototypeChainLookup(compiler::Node* receiver, compiler::Node* key, LookupInHolder& lookup_property_in_holder, LookupInHolder& lookup_element_in_holder, Label* if_end, Label* if_bailout); // Instanceof helpers. // ES6 section 7.3.19 OrdinaryHasInstance (C, O) compiler::Node* OrdinaryHasInstance(compiler::Node* context, compiler::Node* callable, compiler::Node* object); // Load/StoreIC helpers. struct LoadICParameters { LoadICParameters(compiler::Node* context, compiler::Node* receiver, compiler::Node* name, compiler::Node* slot, compiler::Node* vector) : context(context), receiver(receiver), name(name), slot(slot), vector(vector) {} compiler::Node* context; compiler::Node* receiver; compiler::Node* name; compiler::Node* slot; compiler::Node* vector; }; struct StoreICParameters : public LoadICParameters { StoreICParameters(compiler::Node* context, compiler::Node* receiver, compiler::Node* name, compiler::Node* value, compiler::Node* slot, compiler::Node* vector) : LoadICParameters(context, receiver, name, slot, vector), value(value) {} compiler::Node* value; }; // Load type feedback vector from the stub caller's frame. compiler::Node* LoadTypeFeedbackVectorForStub(); // Update the type feedback vector. void UpdateFeedback(compiler::Node* feedback, compiler::Node* type_feedback_vector, compiler::Node* slot_id); compiler::Node* LoadReceiverMap(compiler::Node* receiver); // Checks monomorphic case. Returns {feedback} entry of the vector. compiler::Node* TryMonomorphicCase(compiler::Node* slot, compiler::Node* vector, compiler::Node* receiver_map, Label* if_handler, Variable* var_handler, Label* if_miss); void HandlePolymorphicCase(compiler::Node* receiver_map, compiler::Node* feedback, Label* if_handler, Variable* var_handler, Label* if_miss, int unroll_count); void HandleKeyedStorePolymorphicCase(compiler::Node* receiver_map, compiler::Node* feedback, Label* if_handler, Variable* var_handler, Label* if_transition_handler, Variable* var_transition_map_cell, Label* if_miss); compiler::Node* StubCachePrimaryOffset(compiler::Node* name, compiler::Node* map); compiler::Node* StubCacheSecondaryOffset(compiler::Node* name, compiler::Node* seed); // This enum is used here as a replacement for StubCache::Table to avoid // including stub cache header. enum StubCacheTable : int; void TryProbeStubCacheTable(StubCache* stub_cache, StubCacheTable table_id, compiler::Node* entry_offset, compiler::Node* name, compiler::Node* map, Label* if_handler, Variable* var_handler, Label* if_miss); void TryProbeStubCache(StubCache* stub_cache, compiler::Node* receiver, compiler::Node* name, Label* if_handler, Variable* var_handler, Label* if_miss); // Extends properties backing store by JSObject::kFieldsAdded elements. void ExtendPropertiesBackingStore(compiler::Node* object); compiler::Node* PrepareValueForWrite(compiler::Node* value, Representation representation, Label* bailout); void StoreNamedField(compiler::Node* object, FieldIndex index, Representation representation, compiler::Node* value, bool transition_to_field); void StoreNamedField(compiler::Node* object, compiler::Node* offset, bool is_inobject, Representation representation, compiler::Node* value, bool transition_to_field); // Emits keyed sloppy arguments load. Returns either the loaded value. compiler::Node* LoadKeyedSloppyArguments(compiler::Node* receiver, compiler::Node* key, Label* bailout) { return EmitKeyedSloppyArguments(receiver, key, nullptr, bailout); } // Emits keyed sloppy arguments store. void StoreKeyedSloppyArguments(compiler::Node* receiver, compiler::Node* key, compiler::Node* value, Label* bailout) { DCHECK_NOT_NULL(value); EmitKeyedSloppyArguments(receiver, key, value, bailout); } // Loads script context from the script context table. compiler::Node* LoadScriptContext(compiler::Node* context, int context_index); compiler::Node* ClampedToUint8(compiler::Node* int32_value); // Store value to an elements array with given elements kind. void StoreElement(compiler::Node* elements, ElementsKind kind, compiler::Node* index, compiler::Node* value, ParameterMode mode); void EmitElementStore(compiler::Node* object, compiler::Node* key, compiler::Node* value, bool is_jsarray, ElementsKind elements_kind, KeyedAccessStoreMode store_mode, Label* bailout); compiler::Node* CheckForCapacityGrow(compiler::Node* object, compiler::Node* elements, ElementsKind kind, compiler::Node* length, compiler::Node* key, ParameterMode mode, bool is_js_array, Label* bailout); compiler::Node* CopyElementsOnWrite(compiler::Node* object, compiler::Node* elements, ElementsKind kind, compiler::Node* length, ParameterMode mode, Label* bailout); void LoadIC(const LoadICParameters* p); void LoadICProtoArray(const LoadICParameters* p, compiler::Node* handler); void LoadGlobalIC(const LoadICParameters* p); void KeyedLoadIC(const LoadICParameters* p); void KeyedLoadICGeneric(const LoadICParameters* p); void StoreIC(const StoreICParameters* p); void KeyedStoreIC(const StoreICParameters* p, LanguageMode language_mode); void TransitionElementsKind(compiler::Node* object, compiler::Node* map, ElementsKind from_kind, ElementsKind to_kind, bool is_jsarray, Label* bailout); void TrapAllocationMemento(compiler::Node* object, Label* memento_found); compiler::Node* PageFromAddress(compiler::Node* address); // Get the enumerable length from |map| and return the result as a Smi. compiler::Node* EnumLength(compiler::Node* map); // Check the cache validity for |receiver|. Branch to |use_cache| if // the cache is valid, otherwise branch to |use_runtime|. void CheckEnumCache(compiler::Node* receiver, CodeStubAssembler::Label* use_cache, CodeStubAssembler::Label* use_runtime); // Create a new weak cell with a specified value and install it into a // feedback vector. compiler::Node* CreateWeakCellInFeedbackVector( compiler::Node* feedback_vector, compiler::Node* slot, compiler::Node* value); // Create a new AllocationSite and install it into a feedback vector. compiler::Node* CreateAllocationSiteInFeedbackVector( compiler::Node* feedback_vector, compiler::Node* slot); enum class IndexAdvanceMode { kPre, kPost }; void BuildFastLoop( const VariableList& var_list, MachineRepresentation index_rep, compiler::Node* start_index, compiler::Node* end_index, std::function body, int increment, IndexAdvanceMode mode = IndexAdvanceMode::kPre); void BuildFastLoop( MachineRepresentation index_rep, compiler::Node* start_index, compiler::Node* end_index, std::function body, int increment, IndexAdvanceMode mode = IndexAdvanceMode::kPre) { BuildFastLoop(VariableList(0, zone()), index_rep, start_index, end_index, body, increment, mode); } enum class ForEachDirection { kForward, kReverse }; void BuildFastFixedArrayForEach( compiler::Node* fixed_array, ElementsKind kind, compiler::Node* first_element_inclusive, compiler::Node* last_element_exclusive, std::function body, ParameterMode mode = INTPTR_PARAMETERS, ForEachDirection direction = ForEachDirection::kReverse); compiler::Node* GetArrayAllocationSize(compiler::Node* element_count, ElementsKind kind, ParameterMode mode, int header_size) { return ElementOffsetFromIndex(element_count, kind, mode, header_size); } compiler::Node* GetFixedArrayAllocationSize(compiler::Node* element_count, ElementsKind kind, ParameterMode mode) { return GetArrayAllocationSize(element_count, kind, mode, FixedArray::kHeaderSize); } enum RelationalComparisonMode { kLessThan, kLessThanOrEqual, kGreaterThan, kGreaterThanOrEqual }; compiler::Node* RelationalComparison(RelationalComparisonMode mode, compiler::Node* lhs, compiler::Node* rhs, compiler::Node* context); void BranchIfNumericRelationalComparison(RelationalComparisonMode mode, compiler::Node* lhs, compiler::Node* rhs, Label* if_true, Label* if_false); void GotoUnlessNumberLessThan(compiler::Node* lhs, compiler::Node* rhs, Label* if_false); enum ResultMode { kDontNegateResult, kNegateResult }; compiler::Node* Equal(ResultMode mode, compiler::Node* lhs, compiler::Node* rhs, compiler::Node* context); compiler::Node* StrictEqual(ResultMode mode, compiler::Node* lhs, compiler::Node* rhs, compiler::Node* context); // ECMA#sec-samevalue // Similar to StrictEqual except that NaNs are treated as equal and minus zero // differs from positive zero. // Unlike Equal and StrictEqual, returns a value suitable for use in Branch // instructions, e.g. Branch(SameValue(...), &label). compiler::Node* SameValue(compiler::Node* lhs, compiler::Node* rhs, compiler::Node* context); compiler::Node* HasProperty( compiler::Node* object, compiler::Node* key, compiler::Node* context, Runtime::FunctionId fallback_runtime_function_id = Runtime::kHasProperty); compiler::Node* ForInFilter(compiler::Node* key, compiler::Node* object, compiler::Node* context); compiler::Node* Typeof(compiler::Node* value, compiler::Node* context); compiler::Node* InstanceOf(compiler::Node* object, compiler::Node* callable, compiler::Node* context); // TypedArray/ArrayBuffer helpers compiler::Node* IsDetachedBuffer(compiler::Node* buffer); compiler::Node* ElementOffsetFromIndex(compiler::Node* index, ElementsKind kind, ParameterMode mode, int base_size = 0); protected: void HandleStoreICHandlerCase(const StoreICParameters* p, compiler::Node* handler, Label* miss); private: friend class CodeStubArguments; enum ElementSupport { kOnlyProperties, kSupportElements }; void DescriptorLookupLinear(compiler::Node* unique_name, compiler::Node* descriptors, compiler::Node* nof, Label* if_found, Variable* var_name_index, Label* if_not_found); compiler::Node* CallGetterIfAccessor(compiler::Node* value, compiler::Node* details, compiler::Node* context, compiler::Node* receiver, Label* if_bailout); void HandleLoadICHandlerCase( const LoadICParameters* p, compiler::Node* handler, Label* miss, ElementSupport support_elements = kOnlyProperties); void HandleLoadICSmiHandlerCase(const LoadICParameters* p, compiler::Node* holder, compiler::Node* smi_handler, Label* miss, ElementSupport support_elements); void HandleLoadICProtoHandler(const LoadICParameters* p, compiler::Node* handler, Variable* var_holder, Variable* var_smi_handler, Label* if_smi_handler, Label* miss); compiler::Node* EmitLoadICProtoArrayCheck(const LoadICParameters* p, compiler::Node* handler, compiler::Node* handler_length, compiler::Node* handler_flags, Label* miss); void CheckPrototype(compiler::Node* prototype_cell, compiler::Node* name, Label* miss); void NameDictionaryNegativeLookup(compiler::Node* object, compiler::Node* name, Label* miss); // If |transition| is nullptr then the normal field store is generated or // transitioning store otherwise. void HandleStoreFieldAndReturn(compiler::Node* handler_word, compiler::Node* holder, Representation representation, compiler::Node* value, compiler::Node* transition, Label* miss); // If |transition| is nullptr then the normal field store is generated or // transitioning store otherwise. void HandleStoreICSmiHandlerCase(compiler::Node* handler_word, compiler::Node* holder, compiler::Node* value, compiler::Node* transition, Label* miss); void HandleStoreICProtoHandler(const StoreICParameters* p, compiler::Node* handler, Label* miss); compiler::Node* TryToIntptr(compiler::Node* key, Label* miss); void EmitFastElementsBoundsCheck(compiler::Node* object, compiler::Node* elements, compiler::Node* intptr_index, compiler::Node* is_jsarray_condition, Label* miss); void EmitElementLoad(compiler::Node* object, compiler::Node* elements, compiler::Node* elements_kind, compiler::Node* key, compiler::Node* is_jsarray_condition, Label* if_hole, Label* rebox_double, Variable* var_double_value, Label* unimplemented_elements_kind, Label* out_of_bounds, Label* miss); void BranchIfPrototypesHaveNoElements(compiler::Node* receiver_map, Label* definitely_no_elements, Label* possibly_elements); compiler::Node* AllocateRawAligned(compiler::Node* size_in_bytes, AllocationFlags flags, compiler::Node* top_address, compiler::Node* limit_address); compiler::Node* AllocateRawUnaligned(compiler::Node* size_in_bytes, AllocationFlags flags, compiler::Node* top_adddress, compiler::Node* limit_address); // Allocate and return a JSArray of given total size in bytes with header // fields initialized. compiler::Node* AllocateUninitializedJSArray(ElementsKind kind, compiler::Node* array_map, compiler::Node* length, compiler::Node* allocation_site, compiler::Node* size_in_bytes); compiler::Node* SmiShiftBitsConstant(); // Emits keyed sloppy arguments load if the |value| is nullptr or store // otherwise. Returns either the loaded value or |value|. compiler::Node* EmitKeyedSloppyArguments(compiler::Node* receiver, compiler::Node* key, compiler::Node* value, Label* bailout); compiler::Node* AllocateSlicedString(Heap::RootListIndex map_root_index, compiler::Node* length, compiler::Node* parent, compiler::Node* offset); compiler::Node* AllocateConsString(Heap::RootListIndex map_root_index, compiler::Node* length, compiler::Node* first, compiler::Node* second, AllocationFlags flags); static const int kElementLoopUnrollThreshold = 8; }; class CodeStubArguments { public: // |argc| specifies the number of arguments passed to the builtin excluding // the receiver. CodeStubArguments(CodeStubAssembler* assembler, compiler::Node* argc, CodeStubAssembler::ParameterMode mode = CodeStubAssembler::INTPTR_PARAMETERS); compiler::Node* GetReceiver(); // |index| is zero-based and does not include the receiver compiler::Node* AtIndex(compiler::Node* index, CodeStubAssembler::ParameterMode mode = CodeStubAssembler::INTPTR_PARAMETERS); compiler::Node* AtIndex(int index); typedef std::function ForEachBodyFunction; // Iteration doesn't include the receiver. |first| and |last| are zero-based. void ForEach(ForEachBodyFunction body, compiler::Node* first = nullptr, compiler::Node* last = nullptr, CodeStubAssembler::ParameterMode mode = CodeStubAssembler::INTPTR_PARAMETERS) { CodeStubAssembler::VariableList list(0, assembler_->zone()); ForEach(list, body, first, last); } // Iteration doesn't include the receiver. |first| and |last| are zero-based. void ForEach(const CodeStubAssembler::VariableList& vars, ForEachBodyFunction body, compiler::Node* first = nullptr, compiler::Node* last = nullptr, CodeStubAssembler::ParameterMode mode = CodeStubAssembler::INTPTR_PARAMETERS); void PopAndReturn(compiler::Node* value); private: compiler::Node* GetArguments(); CodeStubAssembler* assembler_; compiler::Node* argc_; compiler::Node* arguments_; compiler::Node* fp_; }; #ifdef DEBUG #define CSA_ASSERT(csa, x) \ (csa)->Assert([&] { return (x); }, #x, __FILE__, __LINE__) #else #define CSA_ASSERT(csa, x) ((void)0) #endif #ifdef ENABLE_SLOW_DCHECKS #define CSA_SLOW_ASSERT(csa, x) \ if (FLAG_enable_slow_asserts) { \ (csa)->Assert([&] { return (x); }, #x, __FILE__, __LINE__); \ } #else #define CSA_SLOW_ASSERT(csa, x) ((void)0) #endif DEFINE_OPERATORS_FOR_FLAGS(CodeStubAssembler::AllocationFlags); } // namespace internal } // namespace v8 #endif // V8_CODE_STUB_ASSEMBLER_H_