// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/assembler-inl.h"
#include "src/macro-assembler-inl.h"
#include "src/simulator.h"
#include "src/utils.h"
#include "src/wasm/jump-table-assembler.h"
#include "test/cctest/cctest.h"
#include "test/common/assembler-tester.h"
namespace v8 {
namespace internal {
namespace wasm {
#if 0
#define TRACE(...) PrintF(__VA_ARGS__)
#else
#define TRACE(...)
#endif
#define __ masm.
// TODO(v8:7424,v8:8018): Extend this test to all architectures.
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || \
V8_TARGET_ARCH_ARM64
namespace {
static volatile int global_stop_bit = 0;
Address GenerateJumpTableThunk(Address jump_target) {
size_t allocated;
byte* buffer;
#if V8_TARGET_ARCH_ARM64
// TODO(wasm): Currently {kMaxWasmCodeMemory} limits code sufficiently, so
// that the jump table only supports {near_call} distances.
const uintptr_t kThunkAddrMask = (1 << WhichPowerOf2(kMaxWasmCodeMemory)) - 1;
const int kArbitrarilyChosenRetryCount = 10; // Retry to avoid flakes.
for (int retry = 0; retry < kArbitrarilyChosenRetryCount; ++retry) {
Address random_addr = reinterpret_cast
(GetRandomMmapAddr());
void* address = reinterpret_cast((jump_target & ~kThunkAddrMask) |
(random_addr & kThunkAddrMask));
buffer = AllocateAssemblerBuffer(
&allocated, AssemblerBase::kMinimalBufferSize, address);
Address bufferptr = reinterpret_cast(buffer);
if ((bufferptr & ~kThunkAddrMask) == (jump_target & ~kThunkAddrMask)) break;
}
#else
buffer = AllocateAssemblerBuffer(
&allocated, AssemblerBase::kMinimalBufferSize, GetRandomMmapAddr());
#endif
MacroAssembler masm(nullptr, AssemblerOptions{}, buffer,
static_cast(allocated), CodeObjectRequired::kNo);
Label exit;
Register scratch = kReturnRegister0;
Address stop_bit_address = reinterpret_cast(&global_stop_bit);
#if V8_TARGET_ARCH_X64
__ Move(scratch, stop_bit_address, RelocInfo::NONE);
__ testl(MemOperand(scratch, 0), Immediate(1));
__ j(not_zero, &exit);
__ Jump(jump_target, RelocInfo::NONE);
#elif V8_TARGET_ARCH_IA32
__ Move(scratch, Immediate(stop_bit_address, RelocInfo::NONE));
__ test(MemOperand(scratch, 0), Immediate(1));
__ j(not_zero, &exit);
__ jmp(jump_target, RelocInfo::NONE);
#elif V8_TARGET_ARCH_ARM
__ mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ ldr(scratch, MemOperand(scratch, 0));
__ tst(scratch, Operand(1));
__ b(ne, &exit);
__ Jump(jump_target, RelocInfo::NONE);
#elif V8_TARGET_ARCH_ARM64
__ Mov(scratch, Operand(stop_bit_address, RelocInfo::NONE));
__ Ldr(scratch, MemOperand(scratch, 0));
__ Tbnz(scratch, 0, &exit);
__ Mov(scratch, Immediate(jump_target, RelocInfo::NONE));
__ Br(scratch);
#else
#error Unsupported architecture
#endif
__ bind(&exit);
__ Ret();
CodeDesc desc;
masm.GetCode(nullptr, &desc);
MakeAssemblerBufferExecutable(buffer, allocated);
return reinterpret_cast(buffer);
}
class JumpTableRunner : public v8::base::Thread {
public:
JumpTableRunner(Address slot_address, int runner_id)
: Thread(Options("JumpTableRunner")),
slot_address_(slot_address),
runner_id_(runner_id) {}
void Run() override {
TRACE("Runner #%d is starting ...\n", runner_id_);
GeneratedCode::FromAddress(CcTest::i_isolate(), slot_address_).Call();
TRACE("Runner #%d is stopping ...\n", runner_id_);
USE(runner_id_);
}
private:
Address slot_address_;
int runner_id_;
};
class JumpTablePatcher : public v8::base::Thread {
public:
JumpTablePatcher(Address slot_start, uint32_t slot_index, Address thunk1,
Address thunk2)
: Thread(Options("JumpTablePatcher")),
slot_start_(slot_start),
slot_index_(slot_index),
thunks_{thunk1, thunk2} {}
void Run() override {
TRACE("Patcher is starting ...\n");
constexpr int kNumberOfPatchIterations = 64;
for (int i = 0; i < kNumberOfPatchIterations; ++i) {
TRACE(" patch slot " V8PRIxPTR_FMT " to thunk #%d\n",
slot_start_ + JumpTableAssembler::SlotIndexToOffset(slot_index_),
i % 2);
JumpTableAssembler::PatchJumpTableSlot(
slot_start_, slot_index_, thunks_[i % 2], WasmCode::kFlushICache);
}
TRACE("Patcher is stopping ...\n");
}
private:
Address slot_start_;
uint32_t slot_index_;
Address thunks_[2];
};
} // namespace
// This test is intended to stress concurrent patching of jump-table slots. It
// uses the following setup:
// 1) Picks a particular slot of the jump-table. Slots are iterated over to
// ensure multiple entries (at different offset alignments) are tested.
// 2) Starts multiple runners that spin through the above slot. The runners
// use thunk code that will jump to the same jump-table slot repeatedly
// until the {global_stop_bit} indicates a test-end condition.
// 3) Start a patcher that repeatedly patches the jump-table slot back and
// forth between two thunk. If there is a race then chances are high that
// one of the runners is currently executing the jump-table slot.
TEST(JumpTablePatchingStress) {
constexpr int kJumpTableSlotCount = 128;
constexpr int kNumberOfRunnerThreads = 5;
size_t allocated;
byte* buffer = AllocateAssemblerBuffer(
&allocated,
JumpTableAssembler::SizeForNumberOfSlots(kJumpTableSlotCount));
MakeAssemblerBufferWritableAndExecutable(buffer, allocated);
// Iterate through jump-table slots to hammer at different alignments within
// the jump-table, thereby increasing stress for variable-length ISAs.
Address slot_start = reinterpret_cast(buffer);
for (int slot = 0; slot < kJumpTableSlotCount; ++slot) {
TRACE("Hammering on jump table slot #%d ...\n", slot);
uint32_t slot_offset = JumpTableAssembler::SlotIndexToOffset(slot);
Address thunk1 = GenerateJumpTableThunk(slot_start + slot_offset);
Address thunk2 = GenerateJumpTableThunk(slot_start + slot_offset);
TRACE(" generated thunk1: " V8PRIxPTR_FMT "\n", thunk1);
TRACE(" generated thunk2: " V8PRIxPTR_FMT "\n", thunk2);
JumpTableAssembler::PatchJumpTableSlot(slot_start, slot, thunk1,
WasmCode::kFlushICache);
// Start multiple runner threads and a patcher thread that hammer on the
// same jump-table slot concurrently.
std::list runners;
for (int runner = 0; runner < kNumberOfRunnerThreads; ++runner) {
runners.emplace_back(slot_start + slot_offset, runner);
}
JumpTablePatcher patcher(slot_start, slot, thunk1, thunk2);
global_stop_bit = 0; // Signal runners to keep going.
for (auto& runner : runners) runner.Start();
patcher.Start();
patcher.Join();
global_stop_bit = -1; // Signal runners to stop.
for (auto& runner : runners) runner.Join();
}
}
#endif // V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM ||
// V8_TARGET_ARCH_ARM64
#undef __
#undef TRACE
} // namespace wasm
} // namespace internal
} // namespace v8