// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "debug.h" #include "fast-codegen.h" #include "parser.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o rdi: the JS function object being called (ie, ourselves) // o rsi: our context // o rbp: our caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-x64.h for its layout. void FastCodeGenerator::Generate(FunctionLiteral* fun) { function_ = fun; SetFunctionPosition(fun); __ push(rbp); // Caller's frame pointer. __ movq(rbp, rsp); __ push(rsi); // Callee's context. __ push(rdi); // Callee's JS Function. { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = fun->scope()->num_stack_slots(); for (int i = 0; i < locals_count; i++) { __ PushRoot(Heap::kUndefinedValueRootIndex); } } { Comment cmnt(masm_, "[ Stack check"); Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok); StackCheckStub stub; __ CallStub(&stub); __ bind(&ok); } { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(fun->scope()->declarations()); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } { Comment cmnt(masm_, "[ Body"); VisitStatements(fun->body()); } { Comment cmnt(masm_, "[ return ;"); // Emit a 'return undefined' in case control fell off the end of the // body. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); SetReturnPosition(fun); if (FLAG_trace) { __ push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } __ RecordJSReturn(); // Do not use the leave instruction here because it is too short to // patch with the code required by the debugger. __ movq(rsp, rbp); __ pop(rbp); __ ret((fun->scope()->num_parameters() + 1) * kPointerSize); #ifdef ENABLE_DEBUGGER_SUPPORT // Add padding that will be overwritten by a debugger breakpoint. We // have just generated "movq rsp, rbp; pop rbp; ret k" with length 7 // (3 + 1 + 3). const int kPadding = Debug::kX64JSReturnSequenceLength - 7; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } #endif } } void FastCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. __ push(rsi); // The context is the first argument. __ Push(pairs); __ Push(Smi::FromInt(is_eval_ ? 1 : 0)); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FastCodeGenerator::VisitBlock(Block* stmt) { Comment cmnt(masm_, "[ Block"); SetStatementPosition(stmt); VisitStatements(stmt->statements()); } void FastCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) { Comment cmnt(masm_, "[ ExpressionStatement"); SetStatementPosition(stmt); Visit(stmt->expression()); } void FastCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) { Comment cmnt(masm_, "[ ReturnStatement"); SetStatementPosition(stmt); Expression* expr = stmt->expression(); // Complete the statement based on the type of the subexpression. if (expr->AsLiteral() != NULL) { __ Move(rax, expr->AsLiteral()->handle()); } else { Visit(expr); ASSERT(expr->location().is_temporary()); __ pop(rax); } if (FLAG_trace) { __ push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } __ RecordJSReturn(); // Do not use the leave instruction here because it is too short to // patch with the code required by the debugger. __ movq(rsp, rbp); __ pop(rbp); __ ret((function_->scope()->num_parameters() + 1) * kPointerSize); #ifdef ENABLE_DEBUGGER_SUPPORT // Add padding that will be overwritten by a debugger breakpoint. We // have just generated "movq rsp, rbp; pop rbp; ret k" with length 7 // (3 + 1 + 3). const int kPadding = Debug::kX64JSReturnSequenceLength - 7; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } #endif } void FastCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle boilerplate = BuildBoilerplate(expr); if (HasStackOverflow()) return; ASSERT(boilerplate->IsBoilerplate()); // Create a new closure. __ push(rsi); __ Push(boilerplate); __ CallRuntime(Runtime::kNewClosure, 2); if (expr->location().is_temporary()) { __ push(rax); } else { ASSERT(expr->location().is_nowhere()); } } void FastCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); Expression* rewrite = expr->var()->rewrite(); if (rewrite == NULL) { Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in rcx and the global // object on the stack. __ push(CodeGenerator::GlobalObject()); __ Move(rcx, expr->name()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); // A test rax instruction following the call is used by the IC to // indicate that the inobject property case was inlined. Ensure there // is no test rax instruction here. if (expr->location().is_temporary()) { // Replace the global object with the result. __ movq(Operand(rsp, 0), rax); } else { ASSERT(expr->location().is_nowhere()); __ addq(rsp, Immediate(kPointerSize)); } } else { Comment cmnt(masm_, "Stack slot"); Slot* slot = rewrite->AsSlot(); ASSERT(slot != NULL); if (expr->location().is_temporary()) { __ push(Operand(rbp, SlotOffset(slot))); } else { ASSERT(expr->location().is_nowhere()); } } } void FastCodeGenerator::VisitLiteral(Literal* expr) { if (expr->location().is_temporary()) { __ Push(expr->handle()); } else { ASSERT(expr->location().is_nowhere()); } } void FastCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Label boilerplate_exists; __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ movq(rax, FieldOperand(rbx, literal_offset)); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, &boilerplate_exists); // Create boilerplate if it does not exist. // Literal array (0). __ push(rbx); // Literal index (1). __ Push(Smi::FromInt(expr->literal_index())); // Constant properties (2). __ Push(expr->constant_properties()); __ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3); __ bind(&boilerplate_exists); // rax contains boilerplate. // Clone boilerplate. __ push(rax); if (expr->depth() == 1) { __ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1); } else { __ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1); } // If result_saved == true: the result is saved on top of the stack. // If result_saved == false: the result is not on the stack, just in rax. bool result_saved = false; for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); Literal* key = property->key(); Expression* value = property->value(); if (property->kind() == ObjectLiteral::Property::CONSTANT) continue; if (property->kind() == ObjectLiteral::Property::MATERIALIZED_LITERAL && CompileTimeValue::IsCompileTimeValue(value)) { continue; } if (!result_saved) { __ push(rax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::MATERIALIZED_LITERAL: // fall through ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { Visit(value); ASSERT(value->location().is_temporary()); __ pop(rax); __ Move(rcx, key->handle()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // StoreIC leaves the receiver on the stack. break; } // fall through case ObjectLiteral::Property::PROTOTYPE: __ push(rax); Visit(key); ASSERT(key->location().is_temporary()); Visit(value); ASSERT(value->location().is_temporary()); __ CallRuntime(Runtime::kSetProperty, 3); __ movq(rax, Operand(rsp, 0)); // Restore result into rax. break; case ObjectLiteral::Property::SETTER: // fall through case ObjectLiteral::Property::GETTER: __ push(rax); Visit(key); ASSERT(key->location.is_temporary()); __ Push(property->kind() == ObjectLiteral::Property::SETTER ? Smi::FromInt(1) : Smi::FromInt(0)); Visit(value); ASSERT(value->location().is_temporary()); __ CallRuntime(Runtime::kDefineAccessor, 4); __ movq(rax, Operand(rsp, 0)); // Restore result into rax. break; default: UNREACHABLE(); } } if (expr->location().is_nowhere() && result_saved) { __ addq(rsp, Immediate(kPointerSize)); } else if (expr->location().is_temporary() && !result_saved) { __ push(rax); } } void FastCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExp Literal"); Label done; // Registers will be used as follows: // rdi = JS function. // rbx = literals array. // rax = regexp literal. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ movq(rax, FieldOperand(rbx, literal_offset)); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, &done); // Create regexp literal using runtime function // Result will be in rax. __ push(rbx); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->pattern()); __ Push(expr->flags()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); // Label done: __ bind(&done); if (expr->location().is_temporary()) { __ push(rax); } else { ASSERT(expr->location().is_nowhere()); } } void FastCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); Label make_clone; // Fetch the function's literals array. __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rbx, FieldOperand(rbx, JSFunction::kLiteralsOffset)); // Check if the literal's boilerplate has been instantiated. int offset = FixedArray::kHeaderSize + (expr->literal_index() * kPointerSize); __ movq(rax, FieldOperand(rbx, offset)); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, &make_clone); // Instantiate the boilerplate. __ push(rbx); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->literals()); __ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3); __ bind(&make_clone); // Clone the boilerplate. __ push(rax); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCloneLiteralBoilerplate, 1); } else { __ CallRuntime(Runtime::kCloneShallowLiteralBoilerplate, 1); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. ZoneList* subexprs = expr->values(); for (int i = 0, len = subexprs->length(); i < len; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(rax); result_saved = true; } Visit(subexpr); ASSERT(subexpr->location().is_temporary()); // Store the subexpression value in the array's elements. __ pop(rax); // Subexpression value. __ movq(rbx, Operand(rsp, 0)); // Copy of array literal. __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ movq(FieldOperand(rbx, offset), rax); // Update the write barrier for the array store. __ RecordWrite(rbx, offset, rax, rcx); } Location destination = expr->location(); if (destination.is_nowhere() && result_saved) { __ addq(rsp, Immediate(kPointerSize)); } else if (destination.is_temporary() && !result_saved) { __ push(rax); } } void FastCodeGenerator::VisitAssignment(Assignment* expr) { Comment cmnt(masm_, "[ Assignment"); ASSERT(expr->op() == Token::ASSIGN || expr->op() == Token::INIT_VAR); // Left-hand side can only be a global or a (parameter or local) slot. Variable* var = expr->target()->AsVariableProxy()->AsVariable(); ASSERT(var != NULL); ASSERT(var->is_global() || var->slot() != NULL); Expression* rhs = expr->value(); Location destination = expr->location(); if (var->is_global()) { // Assignment to a global variable, use inline caching. Right-hand-side // value is passed in rax, variable name in rcx, and the global object // on the stack. // Code for the right-hand-side expression depends on its type. if (rhs->AsLiteral() != NULL) { __ Move(rax, rhs->AsLiteral()->handle()); } else { ASSERT(rhs->location().is_temporary()); Visit(rhs); __ pop(rax); } __ Move(rcx, var->name()); __ push(CodeGenerator::GlobalObject()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Overwrite the global object on the stack with the result if needed. if (destination.is_temporary()) { __ movq(Operand(rsp, 0), rax); } else { __ addq(rsp, Immediate(kPointerSize)); } } else { // Local or parameter assignment. // Code for the right-hand-side expression depends on its type. if (rhs->AsLiteral() != NULL) { // Two cases: 'temp <- (var = constant)', or 'var = constant' with a // discarded result. Always perform the assignment. __ Move(kScratchRegister, rhs->AsLiteral()->handle()); __ movq(Operand(rbp, SlotOffset(var->slot())), kScratchRegister); if (destination.is_temporary()) { // Case 'temp <- (var = constant)'. Save result. __ push(kScratchRegister); } } else { ASSERT(rhs->location().is_temporary()); Visit(rhs); if (destination.is_temporary()) { // Case 'temp1 <- (var = temp0)'. Preserve right-hand-side temporary // on the stack. __ movq(kScratchRegister, Operand(rsp, 0)); __ movq(Operand(rbp, SlotOffset(var->slot())), kScratchRegister); } else { ASSERT(destination.is_nowhere()); // Case 'var = temp'. Discard right-hand-side temporary. __ pop(Operand(rbp, SlotOffset(var->slot()))); } } } } void FastCodeGenerator::VisitCall(Call* expr) { Expression* fun = expr->expression(); ZoneList* args = expr->arguments(); Variable* var = fun->AsVariableProxy()->AsVariable(); ASSERT(var != NULL && !var->is_this() && var->is_global()); ASSERT(!var->is_possibly_eval()); __ Push(var->name()); // Push global object (receiver). __ push(CodeGenerator::GlobalObject()); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Visit(args->at(i)); ASSERT(args->at(i)->location().is_temporary()); } // Record source position for debugger SetSourcePosition(expr->position()); // Call the IC initialization code. Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, NOT_IN_LOOP); __ call(ic, RelocInfo::CODE_TARGET_CONTEXT); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. if (expr->location().is_temporary()) { __ movq(Operand(rsp, 0), rax); } else { ASSERT(expr->location().is_nowhere()); __ addq(rsp, Immediate(kPointerSize)); } } void FastCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Comment cmnt(masm_, "[ CallRuntime"); ZoneList* args = expr->arguments(); Runtime::Function* function = expr->function(); ASSERT(function != NULL); // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Visit(args->at(i)); ASSERT(args->at(i)->location().is_temporary()); } __ CallRuntime(function, arg_count); if (expr->location().is_temporary()) { __ push(rax); } else { ASSERT(expr->location().is_nowhere()); } } void FastCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { // Compile a short-circuited boolean or operation in a non-test // context. ASSERT(expr->op() == Token::OR); // Compile (e0 || e1) as if it were // (let (temp = e0) temp ? temp : e1). Label eval_right, done; Location destination = expr->location(); Expression* left = expr->left(); Expression* right = expr->right(); // Use the shared ToBoolean stub to find the boolean value of the // left-hand subexpression. Load the value into rax to perform some // inlined checks assumed by the stub. // Compile the left-hand value into rax. Put it on the stack if we may // need it as the value of the whole expression. if (left->AsLiteral() != NULL) { __ Move(rax, left->AsLiteral()->handle()); if (destination.is_temporary()) __ push(rax); } else { Visit(left); ASSERT(left->location().is_temporary()); if (destination.is_temporary()) { // Copy the left-hand value into rax because we may need it as the // final result. __ movq(rax, Operand(rsp, 0)); } else { // Pop the left-hand value into rax because we will not need it as the // final result. __ pop(rax); } } // The left-hand value is in rax. It is also on the stack iff the // destination location is temporary. // Perform fast checks assumed by the stub. // The undefined value is false. __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, &eval_right); __ CompareRoot(rax, Heap::kTrueValueRootIndex); // True is true. __ j(equal, &done); __ CompareRoot(rax, Heap::kFalseValueRootIndex); // False is false. __ j(equal, &eval_right); ASSERT(kSmiTag == 0); __ SmiCompare(rax, Smi::FromInt(0)); // The smi zero is false. __ j(equal, &eval_right); Condition is_smi = masm_->CheckSmi(rax); // All other smis are true. __ j(is_smi, &done); // Call the stub for all other cases. __ push(rax); ToBooleanStub stub; __ CallStub(&stub); __ testq(rax, rax); // The stub returns nonzero for true. __ j(not_zero, &done); __ bind(&eval_right); // Discard the left-hand value if present on the stack. if (destination.is_temporary()) { __ addq(rsp, Immediate(kPointerSize)); } // Save or discard the right-hand value as needed. if (right->AsLiteral() != NULL) { if (destination.is_temporary()) { __ Push(right->AsLiteral()->handle()); } else { ASSERT(destination.is_nowhere()); } } else { Visit(right); ASSERT(right->location().is_temporary()); if (destination.is_nowhere()) { __ addq(rsp, Immediate(kPointerSize)); } else { ASSERT(destination.is_temporary()); } } __ bind(&done); } } } // namespace v8::internal