// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/unittests/test-utils.h" #include "src/handles.h" #include "src/objects-inl.h" #include "src/wasm/module-decoder.h" #include "src/wasm/wasm-limits.h" #include "src/wasm/wasm-opcodes.h" #include "test/common/wasm/flag-utils.h" #include "test/common/wasm/wasm-macro-gen.h" namespace v8 { namespace internal { namespace wasm { namespace module_decoder_unittest { #define WASM_INIT_EXPR_I32V_1(val) WASM_I32V_1(val), kExprEnd #define WASM_INIT_EXPR_I32V_2(val) WASM_I32V_2(val), kExprEnd #define WASM_INIT_EXPR_I32V_3(val) WASM_I32V_3(val), kExprEnd #define WASM_INIT_EXPR_I32V_4(val) WASM_I32V_4(val), kExprEnd #define WASM_INIT_EXPR_I32V_5(val) WASM_I32V_5(val), kExprEnd #define WASM_INIT_EXPR_F32(val) WASM_F32(val), kExprEnd #define WASM_INIT_EXPR_I64(val) WASM_I64(val), kExprEnd #define WASM_INIT_EXPR_F64(val) WASM_F64(val), kExprEnd #define WASM_INIT_EXPR_GLOBAL(index) WASM_GET_GLOBAL(index), kExprEnd #define SIZEOF_EMPTY_FUNCTION ((size_t)5) #define EMPTY_BODY 0 #define SIZEOF_EMPTY_BODY ((size_t)1) #define NOP_BODY 2, 0, kExprNop #define SIZEOF_NOP_BODY ((size_t)3) #define SIG_ENTRY_i_i SIG_ENTRY_x_x(kLocalI32, kLocalI32) #define UNKNOWN_SECTION(size) 0, U32V_1(size + 5), 4, 'l', 'u', 'l', 'z' #define SECTION(name, size) k##name##SectionCode, U32V_1(size) #define SIGNATURES_SECTION(count, ...) \ SECTION(Type, 1 + 3 * (count)), U32V_1(count), __VA_ARGS__ #define FUNCTION_SIGNATURES_SECTION(count, ...) \ SECTION(Function, 1 + (count)), U32V_1(count), __VA_ARGS__ #define FOO_STRING 3, 'f', 'o', 'o' #define NO_LOCAL_NAMES 0 #define EMPTY_SIGNATURES_SECTION SECTION(Type, 1), 0 #define EMPTY_FUNCTION_SIGNATURES_SECTION SECTION(Function, 1), 0 #define EMPTY_FUNCTION_BODIES_SECTION SECTION(Code, 1), 0 #define SECTION_NAMES(size) SECTION(Unknown, size + 5), 4, 'n', 'a', 'm', 'e' #define SECTION_EXCEPTIONS(size) SECTION(Exception, size) #define EMPTY_NAMES_SECTION SECTION_NAMES(1), 0 #define FAIL_IF_NO_EXPERIMENTAL_EH(data) \ do { \ ModuleResult result = DecodeModule((data), (data) + sizeof((data))); \ EXPECT_FALSE(result.ok()); \ EXPECT_EQ(0u, result.val->exceptions.size()); \ } while (0) #define X1(...) __VA_ARGS__ #define X2(...) __VA_ARGS__, __VA_ARGS__ #define X3(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__ #define X4(...) __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__ #define ONE_EMPTY_FUNCTION SECTION(Function, 1 + 1 * 1), 1, X1(0) #define TWO_EMPTY_FUNCTIONS SECTION(Function, 1 + 2 * 1), 2, X2(0) #define THREE_EMPTY_FUNCTIONS SECTION(Function, 1 + 3 * 1), 3, X3(0) #define FOUR_EMPTY_FUNCTIONS SECTION(Function, 1 + 4 * 1), 4, X4(0) #define ONE_EMPTY_BODY \ SECTION(Code, 1 + 1 * (1 + SIZEOF_EMPTY_BODY)) \ , 1, X1(SIZEOF_EMPTY_BODY, EMPTY_BODY) #define TWO_EMPTY_BODIES \ SECTION(Code, 1 + 2 * (1 + SIZEOF_EMPTY_BODY)) \ , 2, X2(SIZEOF_EMPTY_BODY, EMPTY_BODY) #define THREE_EMPTY_BODIES \ SECTION(Code, 1 + 3 * (1 + SIZEOF_EMPTY_BODY)) \ , 3, X3(SIZEOF_EMPTY_BODY, EMPTY_BODY) #define FOUR_EMPTY_BODIES \ SECTION(Code, 1 + 4 * (1 + SIZEOF_EMPTY_BODY)) \ , 4, X4(SIZEOF_EMPTY_BODY, EMPTY_BODY) #define SIGNATURES_SECTION_VOID_VOID \ SECTION(Type, 1 + SIZEOF_SIG_ENTRY_v_v), 1, SIG_ENTRY_v_v #define LINEAR_MEMORY_INDEX_0 0 #define EXPECT_VERIFIES(data) \ do { \ ModuleResult result = DecodeModule(data, data + sizeof(data)); \ EXPECT_TRUE(result.ok()); \ } while (false) #define EXPECT_FAILURE_LEN(data, length) \ do { \ ModuleResult result = DecodeModule(data, data + length); \ EXPECT_FALSE(result.ok()); \ } while (false) #define EXPECT_FAILURE(data) EXPECT_FAILURE_LEN(data, sizeof(data)) #define EXPECT_OFF_END_FAILURE(data, min, max) \ do { \ for (size_t length = min; length < max; length++) { \ EXPECT_FAILURE_LEN(data, length); \ } \ } while (false) #define EXPECT_OK(result) \ do { \ EXPECT_TRUE(result.ok()); \ if (!result.ok()) return; \ } while (false) static size_t SizeOfVarInt(size_t value) { size_t size = 0; do { size++; value = value >> 7; } while (value > 0); return size; } struct ValueTypePair { uint8_t code; ValueType type; } kValueTypes[] = {{kLocalI32, kWasmI32}, {kLocalI64, kWasmI64}, {kLocalF32, kWasmF32}, {kLocalF64, kWasmF64}}; class WasmModuleVerifyTest : public TestWithIsolateAndZone { public: ModuleResult DecodeModule(const byte* module_start, const byte* module_end) { // Add the wasm magic and version number automatically. size_t size = static_cast(module_end - module_start); byte header[] = {WASM_MODULE_HEADER}; size_t total = sizeof(header) + size; auto temp = new byte[total]; memcpy(temp, header, sizeof(header)); memcpy(temp + sizeof(header), module_start, size); ModuleResult result = SyncDecodeWasmModule(isolate(), temp, temp + total, false, kWasmOrigin); delete[] temp; return result; } ModuleResult DecodeModuleNoHeader(const byte* module_start, const byte* module_end) { return SyncDecodeWasmModule(isolate(), module_start, module_end, false, kWasmOrigin); } }; TEST_F(WasmModuleVerifyTest, WrongMagic) { for (uint32_t x = 1; x; x <<= 1) { const byte data[] = {U32_LE(kWasmMagic ^ x), U32_LE(kWasmVersion)}; ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data)); EXPECT_FALSE(result.ok()); } } TEST_F(WasmModuleVerifyTest, WrongVersion) { for (uint32_t x = 1; x; x <<= 1) { const byte data[] = {U32_LE(kWasmMagic), U32_LE(kWasmVersion ^ x)}; ModuleResult result = DecodeModuleNoHeader(data, data + sizeof(data)); EXPECT_FALSE(result.ok()); } } TEST_F(WasmModuleVerifyTest, DecodeEmpty) { ModuleResult result = DecodeModule(nullptr, 0); EXPECT_TRUE(result.ok()); } TEST_F(WasmModuleVerifyTest, OneGlobal) { static const byte data[] = { SECTION(Global, 6), // -- 1, kLocalI32, // local type 0, // immutable WASM_INIT_EXPR_I32V_1(13) // init }; { // Should decode to exactly one global. ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(1u, result.val->globals.size()); EXPECT_EQ(0u, result.val->functions.size()); EXPECT_EQ(0u, result.val->data_segments.size()); const WasmGlobal* global = &result.val->globals.back(); EXPECT_EQ(kWasmI32, global->type); EXPECT_EQ(0u, global->offset); EXPECT_FALSE(global->mutability); EXPECT_EQ(WasmInitExpr::kI32Const, global->init.kind); EXPECT_EQ(13, global->init.val.i32_const); } EXPECT_OFF_END_FAILURE(data, 1, sizeof(data)); } TEST_F(WasmModuleVerifyTest, Global_invalid_type) { static const byte data[] = { SECTION(Global, 6), // -- 1, 64, // invalid memory type 1, // mutable WASM_INIT_EXPR_I32V_1(33), // init }; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_FALSE(result.ok()); } TEST_F(WasmModuleVerifyTest, Global_invalid_type2) { static const byte data[] = { SECTION(Global, 6), // -- 1, kLocalVoid, // invalid memory type 1, // mutable WASM_INIT_EXPR_I32V_1(33), // init }; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_FALSE(result.ok()); } TEST_F(WasmModuleVerifyTest, ZeroGlobals) { static const byte data[] = { SECTION(Global, 1), // -- 0, // declare 0 globals }; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); } TEST_F(WasmModuleVerifyTest, ExportMutableGlobal) { { static const byte data[] = { SECTION(Global, 6), // -- 1, kLocalI32, // local type 0, // immutable WASM_INIT_EXPR_I32V_1(13), // init SECTION(Export, 8), // -- 1, // Export count 4, // name length 'n', // -- 'a', // -- 'm', // -- 'e', // -- kExternalGlobal, // global 0, // global index }; EXPECT_VERIFIES(data); } { static const byte data[] = { SECTION(Global, 6), // -- 1, // -- kLocalI32, // local type 1, // mutable WASM_INIT_EXPR_I32V_1(13), // init SECTION(Export, 8), // -- 1, // Export count 4, // name length 'n', // -- 'a', // -- 'm', // -- 'e', // -- kExternalGlobal, // global 0, // global index }; EXPECT_FAILURE(data); } } static void AppendUint32v(std::vector& buffer, uint32_t val) { while (true) { uint32_t next = val >> 7; uint32_t out = val & 0x7F; if (next) { buffer.push_back(static_cast(0x80 | out)); val = next; } else { buffer.push_back(static_cast(out)); break; } } } TEST_F(WasmModuleVerifyTest, NGlobals) { static const byte data[] = { kLocalF32, // memory type 0, // immutable WASM_INIT_EXPR_F32(7.7), // init }; for (uint32_t i = 0; i < kV8MaxWasmGlobals; i = i * 13 + 1) { std::vector buffer; size_t size = SizeOfVarInt(i) + i * sizeof(data); const byte globals[] = {kGlobalSectionCode, U32V_5(size)}; for (size_t g = 0; g != sizeof(globals); ++g) { buffer.push_back(globals[g]); } AppendUint32v(buffer, i); // Number of globals. for (uint32_t j = 0; j < i; j++) { buffer.insert(buffer.end(), data, data + sizeof(data)); } ModuleResult result = DecodeModule(&buffer[0], &buffer[0] + buffer.size()); EXPECT_OK(result); } } TEST_F(WasmModuleVerifyTest, GlobalWithInvalidMemoryType) { static const byte data[] = {SECTION(Global, 7), 33, // memory type 0, // exported WASM_INIT_EXPR_I32V_1(1)}; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, TwoGlobals) { static const byte data[] = { SECTION(Global, 21), 2, kLocalF32, // type 0, // immutable WASM_INIT_EXPR_F32(22.0), kLocalF64, // type 1, // mutable WASM_INIT_EXPR_F64(23.0), }; { // Should decode to exactly two globals. ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(2u, result.val->globals.size()); EXPECT_EQ(0u, result.val->functions.size()); EXPECT_EQ(0u, result.val->data_segments.size()); const WasmGlobal* g0 = &result.val->globals[0]; EXPECT_EQ(kWasmF32, g0->type); EXPECT_EQ(0u, g0->offset); EXPECT_FALSE(g0->mutability); EXPECT_EQ(WasmInitExpr::kF32Const, g0->init.kind); const WasmGlobal* g1 = &result.val->globals[1]; EXPECT_EQ(kWasmF64, g1->type); EXPECT_EQ(8u, g1->offset); EXPECT_TRUE(g1->mutability); EXPECT_EQ(WasmInitExpr::kF64Const, g1->init.kind); } EXPECT_OFF_END_FAILURE(data, 1, sizeof(data)); } TEST_F(WasmModuleVerifyTest, ZeroExceptions) { static const byte data[] = { SECTION_EXCEPTIONS(1), 0, }; FAIL_IF_NO_EXPERIMENTAL_EH(data); EXPERIMENTAL_FLAG_SCOPE(eh); ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(0u, result.val->exceptions.size()); } TEST_F(WasmModuleVerifyTest, OneI32Exception) { static const byte data[] = { SECTION_EXCEPTIONS(3), 1, // except[0] (i32) 1, kLocalI32, }; FAIL_IF_NO_EXPERIMENTAL_EH(data); EXPERIMENTAL_FLAG_SCOPE(eh); ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(1u, result.val->exceptions.size()); const WasmException& e0 = result.val->exceptions.front(); EXPECT_EQ(1u, e0.sig->parameter_count()); EXPECT_EQ(MachineRepresentation::kWord32, e0.sig->GetParam(0)); } TEST_F(WasmModuleVerifyTest, TwoExceptions) { static const byte data[] = {SECTION_EXCEPTIONS(6), 2, // except[0] (f32, i64) 2, kLocalF32, kLocalI64, // except[1] (i32) 1, kLocalI32}; FAIL_IF_NO_EXPERIMENTAL_EH(data); EXPERIMENTAL_FLAG_SCOPE(eh); ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(2u, result.val->exceptions.size()); const WasmException& e0 = result.val->exceptions.front(); EXPECT_EQ(2u, e0.sig->parameter_count()); EXPECT_EQ(MachineRepresentation::kFloat32, e0.sig->GetParam(0)); EXPECT_EQ(MachineRepresentation::kWord64, e0.sig->GetParam(1)); const WasmException& e1 = result.val->exceptions.back(); EXPECT_EQ(MachineRepresentation::kWord32, e1.sig->GetParam(0)); } TEST_F(WasmModuleVerifyTest, Exception_invalid_type) { static const byte data[] = {SECTION_EXCEPTIONS(3), 1, // except[0] (?) 1, 64}; FAIL_IF_NO_EXPERIMENTAL_EH(data); // Should fail decoding exception section. EXPERIMENTAL_FLAG_SCOPE(eh); ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_FALSE(result.ok()); } TEST_F(WasmModuleVerifyTest, OneSignature) { { static const byte data[] = {SIGNATURES_SECTION_VOID_VOID}; EXPECT_VERIFIES(data); } { static const byte data[] = {SECTION(Type, 1 + SIZEOF_SIG_ENTRY_x_x), 1, SIG_ENTRY_i_i}; EXPECT_VERIFIES(data); } } TEST_F(WasmModuleVerifyTest, MultipleSignatures) { static const byte data[] = { SECTION(Type, 1 + SIZEOF_SIG_ENTRY_v_v + SIZEOF_SIG_ENTRY_x_x + SIZEOF_SIG_ENTRY_x_xx), // -- 3, // -- SIG_ENTRY_v_v, // void -> void SIG_ENTRY_x_x(kLocalI32, kLocalF32), // f32 -> i32 SIG_ENTRY_x_xx(kLocalI32, kLocalF64, kLocalF64), // f64,f64 -> i32 }; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(3u, result.val->signatures.size()); if (result.val->signatures.size() == 3) { EXPECT_EQ(0u, result.val->signatures[0]->return_count()); EXPECT_EQ(1u, result.val->signatures[1]->return_count()); EXPECT_EQ(1u, result.val->signatures[2]->return_count()); EXPECT_EQ(0u, result.val->signatures[0]->parameter_count()); EXPECT_EQ(1u, result.val->signatures[1]->parameter_count()); EXPECT_EQ(2u, result.val->signatures[2]->parameter_count()); } EXPECT_OFF_END_FAILURE(data, 1, sizeof(data)); } TEST_F(WasmModuleVerifyTest, DataSegmentWithImmutableImportedGlobal) { // Import 2 globals so that we can initialize data with a global index != 0. const byte data[] = { SECTION(Import, 15), // section header 2, // number of imports NAME_LENGTH(1), // -- 'm', // module name NAME_LENGTH(1), // -- 'f', // global name kExternalGlobal, // import kind kLocalI32, // type 0, // mutability NAME_LENGTH(1), // -- 'n', // module name NAME_LENGTH(1), // -- 'g', // global name kExternalGlobal, // import kind kLocalI32, // type 0, // mutability SECTION(Memory, 4), ENTRY_COUNT(1), kHasMaximumFlag, 28, 28, SECTION(Data, 9), ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_GLOBAL(1), // dest addr U32V_1(3), // source size 'a', 'b', 'c' // data bytes }; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); WasmInitExpr expr = result.val->data_segments.back().dest_addr; EXPECT_EQ(WasmInitExpr::kGlobalIndex, expr.kind); EXPECT_EQ(1u, expr.val.global_index); } TEST_F(WasmModuleVerifyTest, DataSegmentWithMutableImportedGlobal) { // Only an immutable imported global can be used as an init_expr. const byte data[] = { SECTION(Import, 8), // section header 1, // number of imports NAME_LENGTH(1), // -- 'm', // module name NAME_LENGTH(1), // -- 'f', // global name kExternalGlobal, // import kind kLocalI32, // type 1, // mutability SECTION(Memory, 4), ENTRY_COUNT(1), kHasMaximumFlag, 28, 28, SECTION(Data, 9), ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_GLOBAL(0), // dest addr U32V_1(3), // source size 'a', 'b', 'c' // data bytes }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, DataSegmentWithImmutableGlobal) { // Only an immutable imported global can be used as an init_expr. const byte data[] = { SECTION(Memory, 4), ENTRY_COUNT(1), kHasMaximumFlag, 28, 28, SECTION(Global, 8), // -- 1, kLocalI32, // local type 0, // immutable WASM_INIT_EXPR_I32V_3(0x9BBAA), // init SECTION(Data, 9), ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_GLOBAL(0), // dest addr U32V_1(3), // source size 'a', 'b', 'c' // data bytes }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, OneDataSegment) { const byte kDataSegmentSourceOffset = 24; const byte data[] = { SECTION(Memory, 4), ENTRY_COUNT(1), kHasMaximumFlag, 28, 28, SECTION(Data, 11), ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_I32V_3(0x9BBAA), // dest addr U32V_1(3), // source size 'a', 'b', 'c' // data bytes }; { EXPECT_VERIFIES(data); ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(0u, result.val->globals.size()); EXPECT_EQ(0u, result.val->functions.size()); EXPECT_EQ(1u, result.val->data_segments.size()); const WasmDataSegment* segment = &result.val->data_segments.back(); EXPECT_EQ(WasmInitExpr::kI32Const, segment->dest_addr.kind); EXPECT_EQ(0x9BBAA, segment->dest_addr.val.i32_const); EXPECT_EQ(kDataSegmentSourceOffset, segment->source.offset()); EXPECT_EQ(3u, segment->source.length()); } EXPECT_OFF_END_FAILURE(data, 14, sizeof(data)); } TEST_F(WasmModuleVerifyTest, TwoDataSegments) { const byte kDataSegment0SourceOffset = 24; const byte kDataSegment1SourceOffset = kDataSegment0SourceOffset + 11; const byte data[] = { SECTION(Memory, 4), ENTRY_COUNT(1), kHasMaximumFlag, 28, 28, SECTION(Data, 29), ENTRY_COUNT(2), // segment count LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_I32V_3(0x7FFEE), // #0: dest addr U32V_1(4), // source size 1, 2, 3, 4, // data bytes LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_I32V_3(0x6DDCC), // #1: dest addr U32V_1(10), // source size 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 // data bytes }; { ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(0u, result.val->globals.size()); EXPECT_EQ(0u, result.val->functions.size()); EXPECT_EQ(2u, result.val->data_segments.size()); const WasmDataSegment* s0 = &result.val->data_segments[0]; const WasmDataSegment* s1 = &result.val->data_segments[1]; EXPECT_EQ(WasmInitExpr::kI32Const, s0->dest_addr.kind); EXPECT_EQ(0x7FFEE, s0->dest_addr.val.i32_const); EXPECT_EQ(kDataSegment0SourceOffset, s0->source.offset()); EXPECT_EQ(4u, s0->source.length()); EXPECT_EQ(WasmInitExpr::kI32Const, s1->dest_addr.kind); EXPECT_EQ(0x6DDCC, s1->dest_addr.val.i32_const); EXPECT_EQ(kDataSegment1SourceOffset, s1->source.offset()); EXPECT_EQ(10u, s1->source.length()); } EXPECT_OFF_END_FAILURE(data, 14, sizeof(data)); } TEST_F(WasmModuleVerifyTest, DataWithoutMemory) { const byte data[] = { SECTION(Data, 11), ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_I32V_3(0x9BBAA), // dest addr U32V_1(3), // source size 'a', 'b', 'c' // data bytes }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, MaxMaximumMemorySize) { { const byte data[] = { SECTION(Memory, 6), ENTRY_COUNT(1), kHasMaximumFlag, 0, U32V_3(65536), }; EXPECT_VERIFIES(data); } { const byte data[] = { SECTION(Memory, 6), ENTRY_COUNT(1), kHasMaximumFlag, 0, U32V_3(65537), }; EXPECT_FAILURE(data); } } TEST_F(WasmModuleVerifyTest, DataSegment_wrong_init_type) { const byte data[] = { SECTION(Memory, 4), ENTRY_COUNT(1), kHasMaximumFlag, 28, 28, SECTION(Data, 11), ENTRY_COUNT(1), LINEAR_MEMORY_INDEX_0, WASM_INIT_EXPR_F64(9.9), // dest addr U32V_1(3), // source size 'a', 'b', 'c' // data bytes }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, DataSegmentEndOverflow) { const byte data[] = { SECTION(Memory, 4), // memory section ENTRY_COUNT(1), kHasMaximumFlag, 28, 28, SECTION(Data, 10), // data section ENTRY_COUNT(1), // one entry LINEAR_MEMORY_INDEX_0, // mem index WASM_INIT_EXPR_I32V_1(0), // offset U32V_5(0xFFFFFFFF) // size }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, OneIndirectFunction) { static const byte data[] = { // sig#0 --------------------------------------------------------------- SIGNATURES_SECTION_VOID_VOID, // funcs --------------------------------------------------------------- ONE_EMPTY_FUNCTION, // table declaration --------------------------------------------------- SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1}; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); if (result.ok()) { EXPECT_EQ(1u, result.val->signatures.size()); EXPECT_EQ(1u, result.val->functions.size()); EXPECT_EQ(1u, result.val->function_tables.size()); EXPECT_EQ(1u, result.val->function_tables[0].initial_size); } } TEST_F(WasmModuleVerifyTest, ElementSectionWithInternalTable) { static const byte data[] = { // table --------------------------------------------------------------- SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1, // elements ------------------------------------------------------------ SECTION(Element, 1), 0 // entry count }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, ElementSectionWithImportedTable) { static const byte data[] = { // imports ------------------------------------------------------------- SECTION(Import, 9), ENTRY_COUNT(1), NAME_LENGTH(1), // -- 'm', // module name NAME_LENGTH(1), // -- 't', // table name kExternalTable, // import kind kWasmAnyFunctionTypeCode, // elem_type 0, // no maximum field 1, // initial size // elements ------------------------------------------------------------ SECTION(Element, 1), 0 // entry count }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, ElementSectionWithoutTable) { // Test that an element section without a table causes a validation error. static const byte data[] = { // elements ------------------------------------------------------------ SECTION(Element, 4), 1, // entry count 0, // table index 0, // offset 0 // number of elements }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, Regression_735887) { // Test with an invalid function index in the element section. static const byte data[] = { // sig#0 --------------------------------------------------------------- SIGNATURES_SECTION_VOID_VOID, // funcs --------------------------------------------------------------- ONE_EMPTY_FUNCTION, // table declaration --------------------------------------------------- SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1, // elements ------------------------------------------------------------ SECTION(Element, 7), 1, // entry count TABLE_INDEX(0), WASM_INIT_EXPR_I32V_1(0), 1, // elements count 0x9A // invalid I32V as function index }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, OneIndirectFunction_one_entry) { static const byte data[] = { // sig#0 --------------------------------------------------------------- SIGNATURES_SECTION_VOID_VOID, // funcs --------------------------------------------------------------- ONE_EMPTY_FUNCTION, // table declaration --------------------------------------------------- SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 1, // elements ------------------------------------------------------------ SECTION(Element, 7), 1, // entry count TABLE_INDEX(0), WASM_INIT_EXPR_I32V_1(0), 1, // elements count FUNC_INDEX(0)}; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); if (result.ok()) { EXPECT_EQ(1u, result.val->signatures.size()); EXPECT_EQ(1u, result.val->functions.size()); EXPECT_EQ(1u, result.val->function_tables.size()); EXPECT_EQ(1u, result.val->function_tables[0].initial_size); } } TEST_F(WasmModuleVerifyTest, MultipleIndirectFunctions) { static const byte data[] = { // sig#0 ------------------------------------------------------- SECTION(Type, 1 + SIZEOF_SIG_ENTRY_v_v + SIZEOF_SIG_ENTRY_v_x), 2, // -- SIG_ENTRY_v_v, // void -> void SIG_ENTRY_v_x(kLocalI32), // void -> i32 // funcs ------------------------------------------------------ FOUR_EMPTY_FUNCTIONS, // table declaration ------------------------------------------- SECTION(Table, 4), ENTRY_COUNT(1), kWasmAnyFunctionTypeCode, 0, 8, // table elements ---------------------------------------------- SECTION(Element, 14), 1, // entry count TABLE_INDEX(0), WASM_INIT_EXPR_I32V_1(0), 8, // elements count FUNC_INDEX(0), // -- FUNC_INDEX(1), // -- FUNC_INDEX(2), // -- FUNC_INDEX(3), // -- FUNC_INDEX(0), // -- FUNC_INDEX(1), // -- FUNC_INDEX(2), // -- FUNC_INDEX(3), // -- FOUR_EMPTY_BODIES}; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); if (result.ok()) { EXPECT_EQ(2u, result.val->signatures.size()); EXPECT_EQ(4u, result.val->functions.size()); EXPECT_EQ(1u, result.val->function_tables.size()); EXPECT_EQ(8u, result.val->function_tables[0].initial_size); } } TEST_F(WasmModuleVerifyTest, IndirectFunctionNoFunctions) { static const byte data[] = { // sig#0 ------------------------------------------------------- SIGNATURES_SECTION_VOID_VOID, // indirect table ---------------------------------------------- SECTION(Table, 4), ENTRY_COUNT(1), 1, 0, 0, }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, IndirectFunctionInvalidIndex) { static const byte data[] = { // sig#0 ------------------------------------------------------- SIGNATURES_SECTION_VOID_VOID, // functions --------------------------------------------------- ONE_EMPTY_FUNCTION, // indirect table ---------------------------------------------- SECTION(Table, 4), ENTRY_COUNT(1), 1, 1, 0, }; EXPECT_FAILURE(data); } class WasmSignatureDecodeTest : public TestWithZone {}; TEST_F(WasmSignatureDecodeTest, Ok_v_v) { static const byte data[] = {SIG_ENTRY_v_v}; v8::internal::AccountingAllocator allocator; Zone zone(&allocator, ZONE_NAME); FunctionSig* sig = DecodeWasmSignatureForTesting(&zone, data, data + sizeof(data)); EXPECT_TRUE(sig != nullptr); EXPECT_EQ(0u, sig->parameter_count()); EXPECT_EQ(0u, sig->return_count()); } TEST_F(WasmSignatureDecodeTest, Ok_t_v) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueTypePair ret_type = kValueTypes[i]; const byte data[] = {SIG_ENTRY_x(ret_type.code)}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_TRUE(sig != nullptr); EXPECT_EQ(0u, sig->parameter_count()); EXPECT_EQ(1u, sig->return_count()); EXPECT_EQ(ret_type.type, sig->GetReturn()); } } TEST_F(WasmSignatureDecodeTest, Ok_v_t) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueTypePair param_type = kValueTypes[i]; const byte data[] = {SIG_ENTRY_v_x(param_type.code)}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_TRUE(sig != nullptr); EXPECT_EQ(1u, sig->parameter_count()); EXPECT_EQ(0u, sig->return_count()); EXPECT_EQ(param_type.type, sig->GetParam(0)); } } TEST_F(WasmSignatureDecodeTest, Ok_t_t) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueTypePair ret_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueTypePair param_type = kValueTypes[j]; const byte data[] = {SIG_ENTRY_x_x(ret_type.code, param_type.code)}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_TRUE(sig != nullptr); EXPECT_EQ(1u, sig->parameter_count()); EXPECT_EQ(1u, sig->return_count()); EXPECT_EQ(param_type.type, sig->GetParam(0)); EXPECT_EQ(ret_type.type, sig->GetReturn()); } } } TEST_F(WasmSignatureDecodeTest, Ok_i_tt) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueTypePair p0_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueTypePair p1_type = kValueTypes[j]; const byte data[] = { SIG_ENTRY_x_xx(kLocalI32, p0_type.code, p1_type.code)}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_TRUE(sig != nullptr); EXPECT_EQ(2u, sig->parameter_count()); EXPECT_EQ(1u, sig->return_count()); EXPECT_EQ(p0_type.type, sig->GetParam(0)); EXPECT_EQ(p1_type.type, sig->GetParam(1)); } } } TEST_F(WasmSignatureDecodeTest, TooManyParams) { static const byte data[] = {kWasmFunctionTypeCode, WASM_I32V_3(kV8MaxWasmFunctionParams + 1), kLocalI32, 0}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_FALSE(sig != nullptr); } TEST_F(WasmSignatureDecodeTest, TooManyReturns) { for (int i = 0; i < 2; i++) { FlagScope flag_scope(&FLAG_experimental_wasm_mv, i != 0); const int max_return_count = static_cast( FLAG_experimental_wasm_mv ? kV8MaxWasmFunctionMultiReturns : kV8MaxWasmFunctionReturns); byte data[] = {kWasmFunctionTypeCode, 0, WASM_I32V_3(max_return_count + 1), kLocalI32}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_EQ(nullptr, sig); } } TEST_F(WasmSignatureDecodeTest, Fail_off_end) { byte data[256]; for (int p = 0; p <= 255; p = p + 1 + p * 3) { for (int i = 0; i <= p; i++) data[i] = kLocalI32; data[0] = static_cast(p); for (int i = 0; i < p + 1; i++) { // Should fall off the end for all signatures. FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + i); EXPECT_EQ(nullptr, sig); } } } TEST_F(WasmSignatureDecodeTest, Fail_invalid_type) { byte kInvalidType = 76; for (size_t i = 0; i < SIZEOF_SIG_ENTRY_x_xx; i++) { byte data[] = {SIG_ENTRY_x_xx(kLocalI32, kLocalI32, kLocalI32)}; data[i] = kInvalidType; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_EQ(nullptr, sig); } } TEST_F(WasmSignatureDecodeTest, Fail_invalid_ret_type1) { static const byte data[] = {SIG_ENTRY_x_x(kLocalVoid, kLocalI32)}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_EQ(nullptr, sig); } TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type1) { static const byte data[] = {SIG_ENTRY_x_x(kLocalI32, kLocalVoid)}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_EQ(nullptr, sig); } TEST_F(WasmSignatureDecodeTest, Fail_invalid_param_type2) { static const byte data[] = {SIG_ENTRY_x_xx(kLocalI32, kLocalI32, kLocalVoid)}; FunctionSig* sig = DecodeWasmSignatureForTesting(zone(), data, data + sizeof(data)); EXPECT_EQ(nullptr, sig); } class WasmFunctionVerifyTest : public TestWithIsolateAndZone { public: WasmFunctionVerifyTest() {} virtual ~WasmFunctionVerifyTest() {} WasmModule module; Vector bytes; DISALLOW_COPY_AND_ASSIGN(WasmFunctionVerifyTest); }; TEST_F(WasmFunctionVerifyTest, Ok_v_v_empty) { static const byte data[] = { SIG_ENTRY_v_v, // signature entry 4, // locals 3, kLocalI32, // -- 4, kLocalI64, // -- 5, kLocalF32, // -- 6, kLocalF64, // -- kExprEnd // body }; FunctionResult result = SyncDecodeWasmFunction( isolate(), zone(), bytes, &module, data, data + sizeof(data)); EXPECT_OK(result); if (result.val && result.ok()) { WasmFunction* function = result.val.get(); EXPECT_EQ(0u, function->sig->parameter_count()); EXPECT_EQ(0u, function->sig->return_count()); EXPECT_EQ(0u, function->name.offset()); EXPECT_EQ(static_cast(SIZEOF_SIG_ENTRY_v_v), function->code.offset()); EXPECT_EQ(sizeof(data), function->code.end_offset()); // TODO(titzer): verify encoding of local declarations } } TEST_F(WasmModuleVerifyTest, SectionWithoutNameLength) { const byte data[] = {1}; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, TheLoneliestOfValidModulesTheTrulyEmptyOne) { const byte data[] = { 0, // unknown section code. 0, // Empty section name. // No section name, no content, nothing but sadness. 0, // No section content. }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionEmpty) { const byte data[] = { UNKNOWN_SECTION(0), }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, OnlyUnknownSectionNonEmpty) { const byte data[] = { UNKNOWN_SECTION(5), 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // section data }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, SignatureFollowedByEmptyUnknownSection) { const byte data[] = { // signatures SIGNATURES_SECTION_VOID_VOID, // ----------------------------------------------------------- UNKNOWN_SECTION(0)}; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, SignatureFollowedByUnknownSection) { const byte data[] = { // signatures SIGNATURES_SECTION_VOID_VOID, // ----------------------------------------------------------- UNKNOWN_SECTION(5), 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, UnknownSectionOverflow) { static const byte data[] = { UNKNOWN_SECTION(9), 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, // 10 byte section }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, UnknownSectionUnderflow) { static const byte data[] = { UNKNOWN_SECTION(333), 1, 2, 3, 4, // 4 byte section }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, UnknownSectionSkipped) { static const byte data[] = { UNKNOWN_SECTION(1), 0, // one byte section SECTION(Global, 6), 1, kLocalI32, // memory type 0, // exported WASM_INIT_EXPR_I32V_1(33), // init }; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(1u, result.val->globals.size()); EXPECT_EQ(0u, result.val->functions.size()); EXPECT_EQ(0u, result.val->data_segments.size()); const WasmGlobal* global = &result.val->globals.back(); EXPECT_EQ(kWasmI32, global->type); EXPECT_EQ(0u, global->offset); } TEST_F(WasmModuleVerifyTest, ImportTable_empty) { static const byte data[] = {SECTION(Type, 1), 0, SECTION(Import, 1), 0}; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, ImportTable_nosigs1) { static const byte data[] = {SECTION(Import, 1), 0}; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, ImportTable_mutable_global) { { static const byte data[] = { SECTION(Import, 8), // section header 1, // number of imports NAME_LENGTH(1), // -- 'm', // module name NAME_LENGTH(1), // -- 'f', // global name kExternalGlobal, // import kind kLocalI32, // type 0, // mutability }; EXPECT_VERIFIES(data); } { static const byte data[] = { SECTION(Import, 8), // section header 1, // sig table NAME_LENGTH(1), // -- 'm', // module name NAME_LENGTH(1), // -- 'f', // global name kExternalGlobal, // import kind kLocalI32, // type 1, // mutability }; EXPECT_FAILURE(data); } } TEST_F(WasmModuleVerifyTest, ImportTable_mutability_malformed) { static const byte data[] = { SECTION(Import, 8), 1, // -- NAME_LENGTH(1), // -- 'm', // module name NAME_LENGTH(1), // -- 'g', // global name kExternalGlobal, // import kind kLocalI32, // type 2, // invalid mutability }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, ImportTable_nosigs2) { static const byte data[] = { SECTION(Import, 6), 1, // sig table NAME_LENGTH(1), 'm', // module name NAME_LENGTH(1), 'f', // function name kExternalFunction, // import kind IMPORT_SIG_INDEX(0), // sig index }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, ImportTable_invalid_sig) { static const byte data[] = { SECTION(Type, 1), 0, // -- SECTION(Import, 6), 1, // -- NAME_LENGTH(1), 'm', // module name NAME_LENGTH(1), 'f', // function name kExternalFunction, // import kind IMPORT_SIG_INDEX(0), // sig index }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, ImportTable_one_sig) { static const byte data[] = { // signatures SIGNATURES_SECTION_VOID_VOID, SECTION(Import, 7), 1, // -- NAME_LENGTH(1), 'm', // module name NAME_LENGTH(1), 'f', // function name kExternalFunction, // import kind IMPORT_SIG_INDEX(0), // sig index }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, ImportTable_invalid_module) { static const byte data[] = { // signatures SIGNATURES_SECTION_VOID_VOID, // -- SECTION(Import, 7), // -- 1, // -- NO_NAME, // module name NAME_LENGTH(1), // -- 'f', // function name kExternalFunction, // import kind IMPORT_SIG_INDEX(0), // sig index }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, ImportTable_off_end) { static const byte data[] = { // signatures SIGNATURES_SECTION_VOID_VOID, SECTION(Import, 6), 1, NAME_LENGTH(1), 'm', // module name NAME_LENGTH(1), 'f', // function name kExternalFunction, // import kind IMPORT_SIG_INDEX(0), // sig index }; EXPECT_OFF_END_FAILURE(data, 16, sizeof(data)); } TEST_F(WasmModuleVerifyTest, ExportTable_empty1) { static const byte data[] = { // signatures SIGNATURES_SECTION_VOID_VOID, // -- ONE_EMPTY_FUNCTION, SECTION(Export, 1), // -- 0, // -- ONE_EMPTY_BODY}; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(1u, result.val->functions.size()); EXPECT_EQ(0u, result.val->export_table.size()); } TEST_F(WasmModuleVerifyTest, ExportTable_empty2) { static const byte data[] = { SECTION(Type, 1), 0, SECTION(Export, 1), 0 // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, ExportTable_NoFunctions2) { static const byte data[] = {SECTION(Export, 1), 0}; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, ExportTableOne) { static const byte data[] = {// signatures SIGNATURES_SECTION_VOID_VOID, ONE_EMPTY_FUNCTION, SECTION(Export, 4), 1, // exports NO_NAME, // -- kExternalFunction, // -- FUNC_INDEX(0), // -- ONE_EMPTY_BODY}; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(1u, result.val->functions.size()); EXPECT_EQ(1u, result.val->export_table.size()); } TEST_F(WasmModuleVerifyTest, ExportNameWithInvalidStringLength) { static const byte data[] = {// signatures SIGNATURES_SECTION_VOID_VOID, ONE_EMPTY_FUNCTION, SECTION(Export, 12), 1, // exports NAME_LENGTH(84), // invalid string length 'e', // -- kExternalFunction, // -- FUNC_INDEX(0)}; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, ExportTableTwo) { static const byte data[] = {// signatures SIGNATURES_SECTION_VOID_VOID, ONE_EMPTY_FUNCTION, SECTION(Export, 14), 2, // exports NAME_LENGTH(4), 'n', 'a', 'm', 'e', // -- kExternalFunction, FUNC_INDEX(0), // -- NAME_LENGTH(3), 'n', 'o', 'm', // -- kExternalFunction, // -- FUNC_INDEX(0), // -- ONE_EMPTY_BODY}; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(1u, result.val->functions.size()); EXPECT_EQ(2u, result.val->export_table.size()); } TEST_F(WasmModuleVerifyTest, ExportTableThree) { static const byte data[] = {// signatures SIGNATURES_SECTION_VOID_VOID, THREE_EMPTY_FUNCTIONS, SECTION(Export, 13), 3, // exports NAME_LENGTH(1), 'a', // -- kExternalFunction, FUNC_INDEX(0), // -- NAME_LENGTH(1), 'b', // -- kExternalFunction, FUNC_INDEX(1), // -- NAME_LENGTH(1), 'c', // -- kExternalFunction, FUNC_INDEX(2), // -- THREE_EMPTY_BODIES}; ModuleResult result = DecodeModule(data, data + sizeof(data)); EXPECT_OK(result); EXPECT_EQ(3u, result.val->functions.size()); EXPECT_EQ(3u, result.val->export_table.size()); } TEST_F(WasmModuleVerifyTest, ExportTableThreeOne) { for (int i = 0; i < 6; i++) { const byte data[] = {// signatures SIGNATURES_SECTION_VOID_VOID, THREE_EMPTY_FUNCTIONS, SECTION(Export, 6), 1, // exports NAME_LENGTH(2), 'e', 'x', // -- kExternalFunction, FUNC_INDEX(i), // -- THREE_EMPTY_BODIES}; if (i < 3) { EXPECT_VERIFIES(data); } else { EXPECT_FAILURE(data); } } } TEST_F(WasmModuleVerifyTest, ExportTableOne_off_end) { static const byte data[] = { // signatures SIGNATURES_SECTION_VOID_VOID, ONE_EMPTY_FUNCTION, SECTION(Export, 1 + 6), 1, // exports NO_NAME, // -- kExternalFunction, FUNC_INDEX(0), // -- }; for (size_t length = 33; length < sizeof(data); length++) { ModuleResult result = DecodeModule(data, data + length); EXPECT_FALSE(result.ok()); } } TEST_F(WasmModuleVerifyTest, FunctionSignatures_empty) { static const byte data[] = { SECTION(Type, 1), 0, // -- SECTION(Function, 1), 0 // -- }; // -- EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, FunctionSignatures_one) { static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(1, 0) // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, Regression_648070) { static const byte data[] = { SECTION(Type, 1), 0, // -- SECTION(Function, 5), // -- U32V_5(3500228624) // function count = 3500228624 }; // -- EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, Regression_738097) { // The function body size caused an integer overflow in the module decoder. static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(1, 0), // -- SECTION(Code, 1 + 5 + 1), // -- 1, // -- U32V_5(0xFFFFFFFF), // function size, 0 // No real body }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, FunctionBodySizeLimit) { const uint32_t delta = 3; for (uint32_t body_size = kV8MaxWasmFunctionSize - delta; body_size < kV8MaxWasmFunctionSize + delta; body_size++) { byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(1, 0), // -- kCodeSectionCode, // code section U32V_5(1 + body_size + 5), // section size 1, // # functions U32V_5(body_size) // body size }; size_t total = sizeof(data) + body_size; byte* buffer = reinterpret_cast(calloc(1, total)); memcpy(buffer, data, sizeof(data)); ModuleResult result = DecodeModule(buffer, buffer + total); if (body_size <= kV8MaxWasmFunctionSize) { EXPECT_TRUE(result.ok()); } else { EXPECT_FALSE(result.ok()); } free(buffer); } } TEST_F(WasmModuleVerifyTest, FunctionBodies_empty) { static const byte data[] = { EMPTY_SIGNATURES_SECTION, // -- EMPTY_FUNCTION_SIGNATURES_SECTION, // -- EMPTY_FUNCTION_BODIES_SECTION // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, FunctionBodies_one_empty) { static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(1, 0), // -- SECTION(Code, 1 + SIZEOF_EMPTY_BODY), 1, EMPTY_BODY // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, FunctionBodies_one_nop) { static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(1, 0), // -- SECTION(Code, 1 + SIZEOF_NOP_BODY), 1, NOP_BODY // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch1) { static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(2, 0, 0), // -- SECTION(Code, 1 + SIZEOF_EMPTY_BODY), 1, // -- EMPTY_BODY // -- }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, FunctionBodies_count_mismatch2) { static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(1, 0), // -- SECTION(Code, 1 + 2 * SIZEOF_NOP_BODY), // -- ENTRY_COUNT(2), // -- NOP_BODY, // -- NOP_BODY // -- }; EXPECT_FAILURE(data); } TEST_F(WasmModuleVerifyTest, Names_empty) { static const byte data[] = { EMPTY_SIGNATURES_SECTION, EMPTY_FUNCTION_SIGNATURES_SECTION, EMPTY_FUNCTION_BODIES_SECTION, EMPTY_NAMES_SECTION}; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, Names_one_empty) { static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(1, 0), // -- SECTION(Code, 1 + SIZEOF_EMPTY_BODY), ENTRY_COUNT(1), EMPTY_BODY, // -- SECTION_NAMES(1 + 5), ENTRY_COUNT(1), FOO_STRING, NO_LOCAL_NAMES // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, Names_two_empty) { static const byte data[] = { SIGNATURES_SECTION(1, SIG_ENTRY_v_v), // -- FUNCTION_SIGNATURES_SECTION(2, 0, 0), // -- SECTION(Code, 1 + 2 * SIZEOF_EMPTY_BODY), // -- ENTRY_COUNT(2), EMPTY_BODY, EMPTY_BODY, // -- SECTION_NAMES(1 + 10), ENTRY_COUNT(2), // -- FOO_STRING, NO_LOCAL_NAMES, // -- FOO_STRING, NO_LOCAL_NAMES, // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, Regression684855) { static const byte data[] = { SECTION_NAMES(12), 0xFB, // functions count 0x27, // | 0x00, // function name length 0xFF, // local names count 0xFF, // | 0xFF, // | 0xFF, // | 0xFF, // | 0xFF, // error: "varint too large" 0xFF, // | 0x00, // -- 0x00 // -- }; EXPECT_VERIFIES(data); } #define EXPECT_INIT_EXPR(Type, type, value, ...) \ { \ static const byte data[] = {__VA_ARGS__, kExprEnd}; \ WasmInitExpr expr = \ DecodeWasmInitExprForTesting(data, data + sizeof(data)); \ EXPECT_EQ(WasmInitExpr::k##Type##Const, expr.kind); \ EXPECT_EQ(value, expr.val.type##_const); \ } TEST_F(WasmModuleVerifyTest, InitExpr_i32) { EXPECT_INIT_EXPR(I32, i32, 33, WASM_I32V_1(33)); EXPECT_INIT_EXPR(I32, i32, -21, WASM_I32V_1(-21)); EXPECT_INIT_EXPR(I32, i32, 437, WASM_I32V_2(437)); EXPECT_INIT_EXPR(I32, i32, 77777, WASM_I32V_3(77777)); } TEST_F(WasmModuleVerifyTest, InitExpr_f32) { EXPECT_INIT_EXPR(F32, f32, static_cast(13.1), WASM_F32(13.1)); EXPECT_INIT_EXPR(F32, f32, static_cast(-21.1), WASM_F32(-21.1)); EXPECT_INIT_EXPR(F32, f32, static_cast(437.2), WASM_F32(437.2)); EXPECT_INIT_EXPR(F32, f32, static_cast(77777.3), WASM_F32(77777.3)); } TEST_F(WasmModuleVerifyTest, InitExpr_i64) { EXPECT_INIT_EXPR(I64, i64, 33, WASM_I64V_1(33)); EXPECT_INIT_EXPR(I64, i64, -21, WASM_I64V_2(-21)); EXPECT_INIT_EXPR(I64, i64, 437, WASM_I64V_5(437)); EXPECT_INIT_EXPR(I64, i64, 77777, WASM_I64V_7(77777)); } TEST_F(WasmModuleVerifyTest, InitExpr_f64) { EXPECT_INIT_EXPR(F64, f64, 83.22, WASM_F64(83.22)); EXPECT_INIT_EXPR(F64, f64, -771.3, WASM_F64(-771.3)); EXPECT_INIT_EXPR(F64, f64, 43703.0, WASM_F64(43703.0)); EXPECT_INIT_EXPR(F64, f64, 77999.1, WASM_F64(77999.1)); } #undef EXPECT_INIT_EXPR #define EXPECT_INIT_EXPR_FAIL(...) \ { \ static const byte data[] = {__VA_ARGS__, kExprEnd}; \ WasmInitExpr expr = \ DecodeWasmInitExprForTesting(data, data + sizeof(data)); \ EXPECT_EQ(WasmInitExpr::kNone, expr.kind); \ } TEST_F(WasmModuleVerifyTest, InitExpr_illegal) { EXPECT_INIT_EXPR_FAIL(WASM_I32V_1(0), WASM_I32V_1(0)); EXPECT_INIT_EXPR_FAIL(WASM_GET_LOCAL(0)); EXPECT_INIT_EXPR_FAIL(WASM_SET_LOCAL(0, WASM_I32V_1(0))); EXPECT_INIT_EXPR_FAIL(WASM_I32_ADD(WASM_I32V_1(0), WASM_I32V_1(0))); EXPECT_INIT_EXPR_FAIL(WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)); } #undef EXPECT_INIT_EXPR_FAIL TEST_F(WasmModuleVerifyTest, Multiple_Named_Sections) { static const byte data[] = { SECTION(Unknown, 4), 1, 'X', 17, 18, // -- SECTION(Unknown, 9), 3, 'f', 'o', 'o', 5, 6, 7, 8, 9, // -- SECTION(Unknown, 8), 5, 'o', 't', 'h', 'e', 'r', 7, 8, // -- }; EXPECT_VERIFIES(data); } TEST_F(WasmModuleVerifyTest, Section_Name_No_UTF8) { static const byte data[] = {SECTION(Unknown, 4), 1, 0xFF, 17, 18}; EXPECT_FAILURE(data); } class WasmModuleCustomSectionTest : public TestWithIsolateAndZone { public: void CheckSections(const byte* module_start, const byte* module_end, const CustomSectionOffset* expected, size_t num_expected) { // Add the WASM magic and version number automatically. size_t size = static_cast(module_end - module_start); byte header[] = {WASM_MODULE_HEADER}; size_t total = sizeof(header) + size; auto temp = new byte[total]; memcpy(temp, header, sizeof(header)); memcpy(temp + sizeof(header), module_start, size); std::vector custom_sections = DecodeCustomSections(module_start, module_end); CHECK_EQ(num_expected, custom_sections.size()); for (size_t i = 0; i < num_expected; i++) { EXPECT_EQ(expected[i].section.offset(), custom_sections[i].section.offset()); EXPECT_EQ(expected[i].section.length(), custom_sections[i].section.length()); EXPECT_EQ(expected[i].name.offset(), custom_sections[i].name.offset()); EXPECT_EQ(expected[i].name.length(), custom_sections[i].name.length()); EXPECT_EQ(expected[i].payload.offset(), custom_sections[i].payload.offset()); EXPECT_EQ(expected[i].payload.length(), custom_sections[i].payload.length()); } } }; TEST_F(WasmModuleCustomSectionTest, ThreeUnknownSections) { static constexpr byte data[] = { U32_LE(kWasmMagic), // -- U32_LE(kWasmVersion), // -- SECTION(Unknown, 4), 1, 'X', 17, 18, // -- SECTION(Unknown, 9), 3, 'f', 'o', 'o', 5, 6, 7, 8, 9, // -- SECTION(Unknown, 8), 5, 'o', 't', 'h', 'e', 'r', 7, 8, // -- }; static const CustomSectionOffset expected[] = { // section, name, payload {{10, 4}, {11, 1}, {12, 2}}, // -- {{16, 9}, {17, 3}, {20, 5}}, // -- {{27, 8}, {28, 5}, {33, 2}}, // -- }; CheckSections(data, data + sizeof(data), expected, arraysize(expected)); } TEST_F(WasmModuleCustomSectionTest, TwoKnownTwoUnknownSections) { static const byte data[] = { U32_LE(kWasmMagic), // -- U32_LE(kWasmVersion), // -- SIGNATURES_SECTION(2, SIG_ENTRY_v_v, SIG_ENTRY_v_v), // -- SECTION(Unknown, 4), 1, 'X', 17, 18, // -- ONE_EMPTY_FUNCTION, SECTION(Unknown, 8), 5, 'o', 't', 'h', 'e', 'r', 7, 8, // -- }; static const CustomSectionOffset expected[] = { // section, name, payload {{19, 4}, {20, 1}, {21, 2}}, // -- {{29, 8}, {30, 5}, {35, 2}}, // -- }; CheckSections(data, data + sizeof(data), expected, arraysize(expected)); } #undef WASM_INIT_EXPR_I32V_1 #undef WASM_INIT_EXPR_I32V_2 #undef WASM_INIT_EXPR_I32V_3 #undef WASM_INIT_EXPR_I32V_4 #undef WASM_INIT_EXPR_I32V_5 #undef WASM_INIT_EXPR_F32 #undef WASM_INIT_EXPR_I64 #undef WASM_INIT_EXPR_F64 #undef WASM_INIT_EXPR_GLOBAL #undef SIZEOF_EMPTY_FUNCTION #undef EMPTY_BODY #undef SIZEOF_EMPTY_BODY #undef NOP_BODY #undef SIZEOF_NOP_BODY #undef SIG_ENTRY_i_i #undef UNKNOWN_SECTION #undef SECTION #undef SIGNATURES_SECTION #undef FUNCTION_SIGNATURES_SECTION #undef FOO_STRING #undef NO_LOCAL_NAMES #undef EMPTY_SIGNATURES_SECTION #undef EMPTY_FUNCTION_SIGNATURES_SECTION #undef EMPTY_FUNCTION_BODIES_SECTION #undef SECTION_NAMES #undef SECTION_EXCEPTIONS #undef EMPTY_NAMES_SECTION #undef FAIL_IF_NO_EXPERIMENTAL_EH #undef X1 #undef X2 #undef X3 #undef X4 #undef ONE_EMPTY_FUNCTION #undef TWO_EMPTY_FUNCTIONS #undef THREE_EMPTY_FUNCTIONS #undef FOUR_EMPTY_FUNCTIONS #undef ONE_EMPTY_BODY #undef TWO_EMPTY_BODIES #undef THREE_EMPTY_BODIES #undef FOUR_EMPTY_BODIES #undef SIGNATURES_SECTION_VOID_VOID #undef LINEAR_MEMORY_INDEX_0 #undef EXPECT_VERIFIES #undef EXPECT_FAILURE_LEN #undef EXPECT_FAILURE #undef EXPECT_OFF_END_FAILURE #undef EXPECT_OK } // namespace module_decoder_unittest } // namespace wasm } // namespace internal } // namespace v8