// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "debug.h" #include "runtime.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(void* buffer, int size) : Assembler(buffer, size), generating_stub_(false), allow_stub_calls_(true), code_object_(Heap::undefined_value()) { } // We always generate arm code, never thumb code, even if V8 is compiled to // thumb, so we require inter-working support #if defined(__thumb__) && !defined(USE_THUMB_INTERWORK) #error "flag -mthumb-interwork missing" #endif // We do not support thumb inter-working with an arm architecture not supporting // the blx instruction (below v5t). If you know what CPU you are compiling for // you can use -march=armv7 or similar. #if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS) # error "For thumb inter-working we require an architecture which supports blx" #endif // Using bx does not yield better code, so use it only when required #if defined(USE_THUMB_INTERWORK) #define USE_BX 1 #endif void MacroAssembler::Jump(Register target, Condition cond) { #if USE_BX bx(target, cond); #else mov(pc, Operand(target), LeaveCC, cond); #endif } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond) { #if USE_BX mov(ip, Operand(target, rmode), LeaveCC, cond); bx(ip, cond); #else mov(pc, Operand(target, rmode), LeaveCC, cond); #endif } void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode, Condition cond) { ASSERT(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast(target), rmode, cond); } void MacroAssembler::Jump(Handle code, RelocInfo::Mode rmode, Condition cond) { ASSERT(RelocInfo::IsCodeTarget(rmode)); // 'code' is always generated ARM code, never THUMB code Jump(reinterpret_cast(code.location()), rmode, cond); } void MacroAssembler::Call(Register target, Condition cond) { #if USE_BLX blx(target, cond); #else // set lr for return at current pc + 8 mov(lr, Operand(pc), LeaveCC, cond); mov(pc, Operand(target), LeaveCC, cond); #endif } void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode, Condition cond) { #if USE_BLX // On ARMv5 and after the recommended call sequence is: // ldr ip, [pc, #...] // blx ip { // NOLINT // The two instructions (ldr and blx) could be separated by a constant // pool and the code would still work. The issue comes from the // patching code which expect the ldr to be just above the blx. BlockConstPoolScope block_const_pool(this); // Statement positions are expected to be recorded when the target // address is loaded. The mov method will automatically record // positions when pc is the target, since this is not the case here // we have to do it explicitly. WriteRecordedPositions(); mov(ip, Operand(target, rmode), LeaveCC, cond); blx(ip, cond); } ASSERT(kCallTargetAddressOffset == 2 * kInstrSize); #else // Set lr for return at current pc + 8. mov(lr, Operand(pc), LeaveCC, cond); // Emit a ldr pc, [pc + offset of target in constant pool]. mov(pc, Operand(target, rmode), LeaveCC, cond); ASSERT(kCallTargetAddressOffset == kInstrSize); #endif } void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode, Condition cond) { ASSERT(!RelocInfo::IsCodeTarget(rmode)); Call(reinterpret_cast(target), rmode, cond); } void MacroAssembler::Call(Handle code, RelocInfo::Mode rmode, Condition cond) { ASSERT(RelocInfo::IsCodeTarget(rmode)); // 'code' is always generated ARM code, never THUMB code Call(reinterpret_cast(code.location()), rmode, cond); } void MacroAssembler::Ret(Condition cond) { #if USE_BX bx(lr, cond); #else mov(pc, Operand(lr), LeaveCC, cond); #endif } void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { LoadRoot(ip, Heap::kStackLimitRootIndex); cmp(sp, Operand(ip)); b(lo, on_stack_overflow); } void MacroAssembler::Drop(int count, Condition cond) { if (count > 0) { add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); } } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) { if (scratch.is(no_reg)) { eor(reg1, reg1, Operand(reg2)); eor(reg2, reg2, Operand(reg1)); eor(reg1, reg1, Operand(reg2)); } else { mov(scratch, reg1); mov(reg1, reg2); mov(reg2, scratch); } } void MacroAssembler::Call(Label* target) { bl(target); } void MacroAssembler::Move(Register dst, Handle value) { mov(dst, Operand(value)); } void MacroAssembler::Move(Register dst, Register src) { if (!dst.is(src)) { mov(dst, src); } } void MacroAssembler::SmiJumpTable(Register index, Vector targets) { // Empty the const pool. CheckConstPool(true, true); add(pc, pc, Operand(index, LSL, assembler::arm::Instr::kInstrSizeLog2 - kSmiTagSize)); BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize); nop(); // Jump table alignment. for (int i = 0; i < targets.length(); i++) { b(targets[i]); } } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, Condition cond) { ldr(destination, MemOperand(roots, index << kPointerSizeLog2), cond); } // Will clobber 4 registers: object, offset, scratch, ip. The // register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite(Register object, Register offset, Register scratch) { // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are cp. ASSERT(!object.is(cp) && !offset.is(cp) && !scratch.is(cp)); // This is how much we shift the remembered set bit offset to get the // offset of the word in the remembered set. We divide by kBitsPerInt (32, // shift right 5) and then multiply by kIntSize (4, shift left 2). const int kRSetWordShift = 3; Label fast, done; // First, test that the object is not in the new space. We cannot set // remembered set bits in the new space. // object: heap object pointer (with tag) // offset: offset to store location from the object and_(scratch, object, Operand(ExternalReference::new_space_mask())); cmp(scratch, Operand(ExternalReference::new_space_start())); b(eq, &done); // Compute the bit offset in the remembered set. // object: heap object pointer (with tag) // offset: offset to store location from the object mov(ip, Operand(Page::kPageAlignmentMask)); // load mask only once and_(scratch, object, Operand(ip)); // offset into page of the object add(offset, scratch, Operand(offset)); // add offset into the object mov(offset, Operand(offset, LSR, kObjectAlignmentBits)); // Compute the page address from the heap object pointer. // object: heap object pointer (with tag) // offset: bit offset of store position in the remembered set bic(object, object, Operand(ip)); // If the bit offset lies beyond the normal remembered set range, it is in // the extra remembered set area of a large object. // object: page start // offset: bit offset of store position in the remembered set cmp(offset, Operand(Page::kPageSize / kPointerSize)); b(lt, &fast); // Adjust the bit offset to be relative to the start of the extra // remembered set and the start address to be the address of the extra // remembered set. sub(offset, offset, Operand(Page::kPageSize / kPointerSize)); // Load the array length into 'scratch' and multiply by four to get the // size in bytes of the elements. ldr(scratch, MemOperand(object, Page::kObjectStartOffset + FixedArray::kLengthOffset)); mov(scratch, Operand(scratch, LSL, kObjectAlignmentBits)); // Add the page header (including remembered set), array header, and array // body size to the page address. add(object, object, Operand(Page::kObjectStartOffset + FixedArray::kHeaderSize)); add(object, object, Operand(scratch)); bind(&fast); // Get address of the rset word. // object: start of the remembered set (page start for the fast case) // offset: bit offset of store position in the remembered set bic(scratch, offset, Operand(kBitsPerInt - 1)); // clear the bit offset add(object, object, Operand(scratch, LSR, kRSetWordShift)); // Get bit offset in the rset word. // object: address of remembered set word // offset: bit offset of store position and_(offset, offset, Operand(kBitsPerInt - 1)); ldr(scratch, MemOperand(object)); mov(ip, Operand(1)); orr(scratch, scratch, Operand(ip, LSL, offset)); str(scratch, MemOperand(object)); bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. if (FLAG_debug_code) { mov(object, Operand(BitCast(kZapValue))); mov(offset, Operand(BitCast(kZapValue))); mov(scratch, Operand(BitCast(kZapValue))); } } void MacroAssembler::EnterFrame(StackFrame::Type type) { // r0-r3: preserved stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); mov(ip, Operand(Smi::FromInt(type))); push(ip); mov(ip, Operand(CodeObject())); push(ip); add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP. } void MacroAssembler::LeaveFrame(StackFrame::Type type) { // r0: preserved // r1: preserved // r2: preserved // Drop the execution stack down to the frame pointer and restore // the caller frame pointer and return address. mov(sp, fp); ldm(ia_w, sp, fp.bit() | lr.bit()); } void MacroAssembler::EnterExitFrame(ExitFrame::Mode mode) { // Compute the argv pointer and keep it in a callee-saved register. // r0 is argc. add(r6, sp, Operand(r0, LSL, kPointerSizeLog2)); sub(r6, r6, Operand(kPointerSize)); // Compute callee's stack pointer before making changes and save it as // ip register so that it is restored as sp register on exit, thereby // popping the args. // ip = sp + kPointerSize * #args; add(ip, sp, Operand(r0, LSL, kPointerSizeLog2)); // Prepare the stack to be aligned when calling into C. After this point there // are 5 pushes before the call into C, so the stack needs to be aligned after // 5 pushes. int frame_alignment = ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment != kPointerSize) { // The following code needs to be more general if this assert does not hold. ASSERT(frame_alignment == 2 * kPointerSize); // With 5 pushes left the frame must be unaligned at this point. mov(r7, Operand(Smi::FromInt(0))); tst(sp, Operand((frame_alignment - kPointerSize) & frame_alignment_mask)); push(r7, eq); // Push if aligned to make it unaligned. } // Push in reverse order: caller_fp, sp_on_exit, and caller_pc. stm(db_w, sp, fp.bit() | ip.bit() | lr.bit()); mov(fp, Operand(sp)); // Setup new frame pointer. mov(ip, Operand(CodeObject())); push(ip); // Accessed from ExitFrame::code_slot. // Save the frame pointer and the context in top. mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); str(fp, MemOperand(ip)); mov(ip, Operand(ExternalReference(Top::k_context_address))); str(cp, MemOperand(ip)); // Setup argc and the builtin function in callee-saved registers. mov(r4, Operand(r0)); mov(r5, Operand(r1)); #ifdef ENABLE_DEBUGGER_SUPPORT // Save the state of all registers to the stack from the memory // location. This is needed to allow nested break points. if (mode == ExitFrame::MODE_DEBUG) { // Use sp as base to push. CopyRegistersFromMemoryToStack(sp, kJSCallerSaved); } #endif } int MacroAssembler::ActivationFrameAlignment() { #if defined(V8_HOST_ARCH_ARM) // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one ARM // platform for another ARM platform with a different alignment. return OS::ActivationFrameAlignment(); #else // defined(V8_HOST_ARCH_ARM) // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // defined(V8_HOST_ARCH_ARM) } void MacroAssembler::LeaveExitFrame(ExitFrame::Mode mode) { #ifdef ENABLE_DEBUGGER_SUPPORT // Restore the memory copy of the registers by digging them out from // the stack. This is needed to allow nested break points. if (mode == ExitFrame::MODE_DEBUG) { // This code intentionally clobbers r2 and r3. const int kCallerSavedSize = kNumJSCallerSaved * kPointerSize; const int kOffset = ExitFrameConstants::kCodeOffset - kCallerSavedSize; add(r3, fp, Operand(kOffset)); CopyRegistersFromStackToMemory(r3, r2, kJSCallerSaved); } #endif // Clear top frame. mov(r3, Operand(0)); mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); str(r3, MemOperand(ip)); // Restore current context from top and clear it in debug mode. mov(ip, Operand(ExternalReference(Top::k_context_address))); ldr(cp, MemOperand(ip)); #ifdef DEBUG str(r3, MemOperand(ip)); #endif // Pop the arguments, restore registers, and return. mov(sp, Operand(fp)); // respect ABI stack constraint ldm(ia, sp, fp.bit() | sp.bit() | pc.bit()); } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_reg, Label* done, InvokeFlag flag) { bool definitely_matches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // r0: actual arguments count // r1: function (passed through to callee) // r2: expected arguments count // r3: callee code entry // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. ASSERT(actual.is_immediate() || actual.reg().is(r0)); ASSERT(expected.is_immediate() || expected.reg().is(r2)); ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3)); if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { mov(r0, Operand(actual.immediate())); const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { mov(r2, Operand(expected.immediate())); } } } else { if (actual.is_immediate()) { cmp(expected.reg(), Operand(actual.immediate())); b(eq, ®ular_invoke); mov(r0, Operand(actual.immediate())); } else { cmp(expected.reg(), Operand(actual.reg())); b(eq, ®ular_invoke); } } if (!definitely_matches) { if (!code_constant.is_null()) { mov(r3, Operand(code_constant)); add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); } Handle adaptor = Handle(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); if (flag == CALL_FUNCTION) { Call(adaptor, RelocInfo::CODE_TARGET); b(done); } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, Handle::null(), code, &done, flag); if (flag == CALL_FUNCTION) { Call(code); } else { ASSERT(flag == JUMP_FUNCTION); Jump(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag) { Label done; InvokePrologue(expected, actual, code, no_reg, &done, flag); if (flag == CALL_FUNCTION) { Call(code, rmode); } else { Jump(code, rmode); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual, InvokeFlag flag) { // Contract with called JS functions requires that function is passed in r1. ASSERT(fun.is(r1)); Register expected_reg = r2; Register code_reg = r3; ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); ldr(expected_reg, FieldMemOperand(code_reg, SharedFunctionInfo::kFormalParameterCountOffset)); ldr(code_reg, MemOperand(code_reg, SharedFunctionInfo::kCodeOffset - kHeapObjectTag)); add(code_reg, code_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); ParameterCount expected(expected_reg); InvokeCode(code_reg, expected, actual, flag); } void MacroAssembler::InvokeFunction(JSFunction* function, const ParameterCount& actual, InvokeFlag flag) { ASSERT(function->is_compiled()); // Get the function and setup the context. mov(r1, Operand(Handle(function))); ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // Invoke the cached code. Handle code(function->code()); ParameterCount expected(function->shared()->formal_parameter_count()); InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::SaveRegistersToMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of registers to memory location. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); str(reg, MemOperand(ip)); } } } void MacroAssembler::RestoreRegistersFromMemory(RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of memory location to registers. for (int i = kNumJSCallerSaved; --i >= 0;) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { Register reg = { r }; mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); ldr(reg, MemOperand(ip)); } } } void MacroAssembler::CopyRegistersFromMemoryToStack(Register base, RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the memory location to the stack and adjust base. for (int i = kNumJSCallerSaved; --i >= 0;) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); ldr(ip, MemOperand(ip)); str(ip, MemOperand(base, 4, NegPreIndex)); } } } void MacroAssembler::CopyRegistersFromStackToMemory(Register base, Register scratch, RegList regs) { ASSERT((regs & ~kJSCallerSaved) == 0); // Copy the content of the stack to the memory location and adjust base. for (int i = 0; i < kNumJSCallerSaved; i++) { int r = JSCallerSavedCode(i); if ((regs & (1 << r)) != 0) { mov(ip, Operand(ExternalReference(Debug_Address::Register(i)))); ldr(scratch, MemOperand(base, 4, PostIndex)); str(scratch, MemOperand(ip)); } } } void MacroAssembler::DebugBreak() { ASSERT(allow_stub_calls()); mov(r0, Operand(0)); mov(r1, Operand(ExternalReference(Runtime::kDebugBreak))); CEntryStub ces(1); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } #endif void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // The pc (return address) is passed in register lr. if (try_location == IN_JAVASCRIPT) { if (type == TRY_CATCH_HANDLER) { mov(r3, Operand(StackHandler::TRY_CATCH)); } else { mov(r3, Operand(StackHandler::TRY_FINALLY)); } ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize && StackHandlerConstants::kFPOffset == 2 * kPointerSize && StackHandlerConstants::kPCOffset == 3 * kPointerSize); stm(db_w, sp, r3.bit() | fp.bit() | lr.bit()); // Save the current handler as the next handler. mov(r3, Operand(ExternalReference(Top::k_handler_address))); ldr(r1, MemOperand(r3)); ASSERT(StackHandlerConstants::kNextOffset == 0); push(r1); // Link this handler as the new current one. str(sp, MemOperand(r3)); } else { // Must preserve r0-r4, r5-r7 are available. ASSERT(try_location == IN_JS_ENTRY); // The frame pointer does not point to a JS frame so we save NULL // for fp. We expect the code throwing an exception to check fp // before dereferencing it to restore the context. mov(ip, Operand(0)); // To save a NULL frame pointer. mov(r6, Operand(StackHandler::ENTRY)); ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize && StackHandlerConstants::kFPOffset == 2 * kPointerSize && StackHandlerConstants::kPCOffset == 3 * kPointerSize); stm(db_w, sp, r6.bit() | ip.bit() | lr.bit()); // Save the current handler as the next handler. mov(r7, Operand(ExternalReference(Top::k_handler_address))); ldr(r6, MemOperand(r7)); ASSERT(StackHandlerConstants::kNextOffset == 0); push(r6); // Link this handler as the new current one. str(sp, MemOperand(r7)); } } void MacroAssembler::PopTryHandler() { ASSERT_EQ(0, StackHandlerConstants::kNextOffset); pop(r1); mov(ip, Operand(ExternalReference(Top::k_handler_address))); add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); str(r1, MemOperand(ip)); } Register MacroAssembler::CheckMaps(JSObject* object, Register object_reg, JSObject* holder, Register holder_reg, Register scratch, Label* miss) { // Make sure there's no overlap between scratch and the other // registers. ASSERT(!scratch.is(object_reg) && !scratch.is(holder_reg)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 1; // Check the maps in the prototype chain. // Traverse the prototype chain from the object and do map checks. while (object != holder) { depth++; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Get the map of the current object. ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); cmp(scratch, Operand(Handle(object->map()))); // Branch on the result of the map check. b(ne, miss); // Check access rights to the global object. This has to happen // after the map check so that we know that the object is // actually a global object. if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); // Restore scratch register to be the map of the object. In the // new space case below, we load the prototype from the map in // the scratch register. ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); } reg = holder_reg; // from now the object is in holder_reg JSObject* prototype = JSObject::cast(object->GetPrototype()); if (Heap::InNewSpace(prototype)) { // The prototype is in new space; we cannot store a reference // to it in the code. Load it from the map. ldr(reg, FieldMemOperand(scratch, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. mov(reg, Operand(Handle(prototype))); } // Go to the next object in the prototype chain. object = prototype; } // Check the holder map. ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset)); cmp(scratch, Operand(Handle(object->map()))); b(ne, miss); // Log the check depth. LOG(IntEvent("check-maps-depth", depth)); // Perform security check for access to the global object and return // the holder register. ASSERT(object == holder); ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); if (object->IsJSGlobalProxy()) { CheckAccessGlobalProxy(reg, scratch, miss); } return reg; } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); ASSERT(!holder_reg.is(ip)); ASSERT(!scratch.is(ip)); // Load current lexical context from the stack frame. ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); // In debug mode, make sure the lexical context is set. #ifdef DEBUG cmp(scratch, Operand(0)); Check(ne, "we should not have an empty lexical context"); #endif // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; ldr(scratch, FieldMemOperand(scratch, offset)); ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (FLAG_debug_code) { // TODO(119): avoid push(holder_reg)/pop(holder_reg) // Cannot use ip as a temporary in this verification code. Due to the fact // that ip is clobbered as part of cmp with an object Operand. push(holder_reg); // Temporarily save holder on the stack. // Read the first word and compare to the global_context_map. ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); LoadRoot(ip, Heap::kGlobalContextMapRootIndex); cmp(holder_reg, ip); Check(eq, "JSGlobalObject::global_context should be a global context."); pop(holder_reg); // Restore holder. } // Check if both contexts are the same. ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); cmp(scratch, Operand(ip)); b(eq, &same_contexts); // Check the context is a global context. if (FLAG_debug_code) { // TODO(119): avoid push(holder_reg)/pop(holder_reg) // Cannot use ip as a temporary in this verification code. Due to the fact // that ip is clobbered as part of cmp with an object Operand. push(holder_reg); // Temporarily save holder on the stack. mov(holder_reg, ip); // Move ip to its holding place. LoadRoot(ip, Heap::kNullValueRootIndex); cmp(holder_reg, ip); Check(ne, "JSGlobalProxy::context() should not be null."); ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); LoadRoot(ip, Heap::kGlobalContextMapRootIndex); cmp(holder_reg, ip); Check(eq, "JSGlobalObject::global_context should be a global context."); // Restore ip is not needed. ip is reloaded below. pop(holder_reg); // Restore holder. // Restore ip to holder's context. ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); } // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; ldr(scratch, FieldMemOperand(scratch, token_offset)); ldr(ip, FieldMemOperand(ip, token_offset)); cmp(scratch, Operand(ip)); b(ne, miss); bind(&same_contexts); } void MacroAssembler::AllocateInNewSpace(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { ASSERT(!result.is(scratch1)); ASSERT(!scratch1.is(scratch2)); // Load address of new object into result and allocation top address into // scratch1. ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); mov(scratch1, Operand(new_space_allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { ldr(result, MemOperand(scratch1)); } else if (FLAG_debug_code) { // Assert that result actually contains top on entry. scratch2 is used // immediately below so this use of scratch2 does not cause difference with // respect to register content between debug and release mode. ldr(scratch2, MemOperand(scratch1)); cmp(result, scratch2); Check(eq, "Unexpected allocation top"); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); mov(scratch2, Operand(new_space_allocation_limit)); ldr(scratch2, MemOperand(scratch2)); add(result, result, Operand(object_size * kPointerSize)); cmp(result, Operand(scratch2)); b(hi, gc_required); // Update allocation top. result temporarily holds the new top. if (FLAG_debug_code) { tst(result, Operand(kObjectAlignmentMask)); Check(eq, "Unaligned allocation in new space"); } str(result, MemOperand(scratch1)); // Tag and adjust back to start of new object. if ((flags & TAG_OBJECT) != 0) { sub(result, result, Operand((object_size * kPointerSize) - kHeapObjectTag)); } else { sub(result, result, Operand(object_size * kPointerSize)); } } void MacroAssembler::AllocateInNewSpace(Register object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { ASSERT(!result.is(scratch1)); ASSERT(!scratch1.is(scratch2)); // Load address of new object into result and allocation top address into // scratch1. ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); mov(scratch1, Operand(new_space_allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { ldr(result, MemOperand(scratch1)); } else if (FLAG_debug_code) { // Assert that result actually contains top on entry. scratch2 is used // immediately below so this use of scratch2 does not cause difference with // respect to register content between debug and release mode. ldr(scratch2, MemOperand(scratch1)); cmp(result, scratch2); Check(eq, "Unexpected allocation top"); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Object size is in words so a shift is required to // get the number of bytes ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(); mov(scratch2, Operand(new_space_allocation_limit)); ldr(scratch2, MemOperand(scratch2)); add(result, result, Operand(object_size, LSL, kPointerSizeLog2)); cmp(result, Operand(scratch2)); b(hi, gc_required); // Update allocation top. result temporarily holds the new top. if (FLAG_debug_code) { tst(result, Operand(kObjectAlignmentMask)); Check(eq, "Unaligned allocation in new space"); } str(result, MemOperand(scratch1)); // Adjust back to start of new object. sub(result, result, Operand(object_size, LSL, kPointerSizeLog2)); // Tag object if requested. if ((flags & TAG_OBJECT) != 0) { add(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::UndoAllocationInNewSpace(Register object, Register scratch) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(); // Make sure the object has no tag before resetting top. and_(object, object, Operand(~kHeapObjectTagMask)); #ifdef DEBUG // Check that the object un-allocated is below the current top. mov(scratch, Operand(new_space_allocation_top)); ldr(scratch, MemOperand(scratch)); cmp(object, scratch); Check(lt, "Undo allocation of non allocated memory"); #endif // Write the address of the object to un-allocate as the current top. mov(scratch, Operand(new_space_allocation_top)); str(object, MemOperand(scratch)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars. add(scratch1, scratch1, Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); // AllocateInNewSpace expects the size in words, so we can round down // to kObjectAlignment and divide by kPointerSize in the same shift. ASSERT_EQ(kPointerSize, kObjectAlignmentMask + 1); mov(scratch1, Operand(scratch1, ASR, kPointerSizeLog2)); // Allocate two-byte string in new space. AllocateInNewSpace(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(scratch1, Heap::kStringMapRootIndex); str(length, FieldMemOperand(result, String::kLengthOffset)); str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); mov(scratch2, Operand(String::kEmptyHashField)); str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); } void MacroAssembler::AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); ASSERT(kCharSize == 1); add(scratch1, length, Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize)); // AllocateInNewSpace expects the size in words, so we can round down // to kObjectAlignment and divide by kPointerSize in the same shift. ASSERT_EQ(kPointerSize, kObjectAlignmentMask + 1); mov(scratch1, Operand(scratch1, ASR, kPointerSizeLog2)); // Allocate ASCII string in new space. AllocateInNewSpace(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. LoadRoot(scratch1, Heap::kAsciiStringMapRootIndex); mov(scratch1, Operand(Factory::ascii_string_map())); str(length, FieldMemOperand(result, String::kLengthOffset)); str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); mov(scratch2, Operand(String::kEmptyHashField)); str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(ConsString::kSize / kPointerSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); LoadRoot(scratch1, Heap::kConsStringMapRootIndex); mov(scratch2, Operand(String::kEmptyHashField)); str(length, FieldMemOperand(result, String::kLengthOffset)); str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); } void MacroAssembler::AllocateAsciiConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(ConsString::kSize / kPointerSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); LoadRoot(scratch1, Heap::kConsAsciiStringMapRootIndex); mov(scratch2, Operand(String::kEmptyHashField)); str(length, FieldMemOperand(result, String::kLengthOffset)); str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); str(scratch2, FieldMemOperand(result, String::kHashFieldOffset)); } void MacroAssembler::CompareObjectType(Register function, Register map, Register type_reg, InstanceType type) { ldr(map, FieldMemOperand(function, HeapObject::kMapOffset)); CompareInstanceType(map, type_reg, type); } void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); cmp(type_reg, Operand(type)); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle map, Label* fail, bool is_heap_object) { if (!is_heap_object) { BranchOnSmi(obj, fail); } ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); mov(ip, Operand(map)); cmp(scratch, ip); b(ne, fail); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss) { // Check that the receiver isn't a smi. BranchOnSmi(function, miss); // Check that the function really is a function. Load map into result reg. CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); b(ne, miss); // Make sure that the function has an instance prototype. Label non_instance; ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); tst(scratch, Operand(1 << Map::kHasNonInstancePrototype)); b(ne, &non_instance); // Get the prototype or initial map from the function. ldr(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. LoadRoot(ip, Heap::kTheHoleValueRootIndex); cmp(result, ip); b(eq, miss); // If the function does not have an initial map, we're done. Label done; CompareObjectType(result, scratch, scratch, MAP_TYPE); b(ne, &done); // Get the prototype from the initial map. ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::CallStub(CodeStub* stub, Condition cond) { ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); if (argc > 1) { add(sp, sp, Operand((argc - 1) * kPointerSize)); } Ret(); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { add(sp, sp, Operand(num_arguments * kPointerSize)); } LoadRoot(r0, Heap::kUndefinedValueRootIndex); } void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg, Register outHighReg, Register outLowReg) { // ARMv7 VFP3 instructions to implement integer to double conversion. mov(r7, Operand(inReg, ASR, kSmiTagSize)); vmov(s15, r7); vcvt_f64_s32(d7, s15); vmov(outLowReg, outHighReg, d7); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { if (CpuFeatures::IsSupported(ARMv7)) { ubfx(dst, src, Operand(kSmiTagSize), Operand(num_least_bits - 1)); } else { mov(dst, Operand(src, ASR, kSmiTagSize)); and_(dst, dst, Operand((1 << num_least_bits) - 1)); } } void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { // All parameters are on the stack. r0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(num_arguments)); mov(r1, Operand(ExternalReference(f))); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { CallRuntime(Runtime::FunctionForId(fid), num_arguments); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { mov(r0, Operand(num_arguments)); mov(r1, Operand(ext)); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(num_arguments)); JumpToExternalReference(ext); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid), num_arguments, result_size); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { #if defined(__thumb__) // Thumb mode builtin. ASSERT((reinterpret_cast(builtin.address()) & 1) == 1); #endif mov(r1, Operand(builtin)); CEntryStub stub(1); Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags) { GetBuiltinEntry(r2, id); if (flags == CALL_JS) { Call(r2); } else { ASSERT(flags == JUMP_JS); Jump(r2); } } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { ASSERT(!target.is(r1)); // Load the builtins object into target register. ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); // Load the JavaScript builtin function from the builtins object. ldr(r1, FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); // Load the code entry point from the builtins object. ldr(target, FieldMemOperand(target, JSBuiltinsObject::OffsetOfCodeWithId(id))); if (FLAG_debug_code) { // Make sure the code objects in the builtins object and in the // builtin function are the same. push(r1); ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); ldr(r1, FieldMemOperand(r1, SharedFunctionInfo::kCodeOffset)); cmp(r1, target); Assert(eq, "Builtin code object changed"); pop(r1); } add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag)); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch1, Operand(value)); mov(scratch2, Operand(ExternalReference(counter))); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); ldr(scratch1, MemOperand(scratch2)); add(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); ldr(scratch1, MemOperand(scratch2)); sub(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::Assert(Condition cc, const char* msg) { if (FLAG_debug_code) Check(cc, msg); } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; b(cc, &L); Abort(msg); // will not return here bind(&L); } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif // Disable stub call restrictions to always allow calls to abort. set_allow_stub_calls(true); mov(r0, Operand(p0)); push(r0); mov(r0, Operand(Smi::FromInt(p1 - p0))); push(r0); CallRuntime(Runtime::kAbort, 2); // will not return here } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. ldr(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX))); // Load the function context (which is the incoming, outer context). ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); for (int i = 1; i < context_chain_length; i++) { ldr(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); } // The context may be an intermediate context, not a function context. ldr(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); } else { // Slot is in the current function context. // The context may be an intermediate context, not a function context. ldr(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX))); } } void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { ASSERT_EQ(0, kSmiTag); tst(reg1, Operand(kSmiTagMask)); tst(reg2, Operand(kSmiTagMask), eq); b(ne, on_not_both_smi); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { ASSERT_EQ(0, kSmiTag); tst(reg1, Operand(kSmiTagMask)); tst(reg2, Operand(kSmiTagMask), ne); b(eq, on_either_smi); } void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Test that both first and second are sequential ASCII strings. // Assume that they are non-smis. ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Check that neither is a smi. ASSERT_EQ(0, kSmiTag); and_(scratch1, first, Operand(second)); tst(scratch1, Operand(kSmiTagMask)); b(eq, failure); JumpIfNonSmisNotBothSequentialAsciiStrings(first, second, scratch1, scratch2, failure); } // Allocates a heap number or jumps to the need_gc label if the young space // is full and a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate an object in the heap for the heap number and tag it as a heap // object. AllocateInNewSpace(HeapNumber::kSize / kPointerSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Get heap number map and store it in the allocated object. LoadRoot(scratch1, Heap::kHeapNumberMapRootIndex); str(scratch1, FieldMemOperand(result, HeapObject::kMapOffset)); } void MacroAssembler::CountLeadingZeros(Register source, Register scratch, Register zeros) { #ifdef CAN_USE_ARMV5_INSTRUCTIONS clz(zeros, source); // This instruction is only supported after ARM5. #else mov(zeros, Operand(0)); mov(scratch, source); // Top 16. tst(scratch, Operand(0xffff0000)); add(zeros, zeros, Operand(16), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq); // Top 8. tst(scratch, Operand(0xff000000)); add(zeros, zeros, Operand(8), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq); // Top 4. tst(scratch, Operand(0xf0000000)); add(zeros, zeros, Operand(4), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq); // Top 2. tst(scratch, Operand(0xc0000000)); add(zeros, zeros, Operand(2), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq); // Top bit. tst(scratch, Operand(0x80000000u)); add(zeros, zeros, Operand(1), LeaveCC, eq); #endif } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { int kFlatAsciiStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; int kFlatAsciiStringTag = ASCII_STRING_TYPE; and_(scratch1, first, Operand(kFlatAsciiStringMask)); and_(scratch2, second, Operand(kFlatAsciiStringMask)); cmp(scratch1, Operand(kFlatAsciiStringTag)); // Ignore second test if first test failed. cmp(scratch2, Operand(kFlatAsciiStringTag), eq); b(ne, failure); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, Register scratch, Label* failure) { int kFlatAsciiStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; int kFlatAsciiStringTag = ASCII_STRING_TYPE; and_(scratch, type, Operand(kFlatAsciiStringMask)); cmp(scratch, Operand(kFlatAsciiStringTag)); b(ne, failure); } void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); // Up to four simple arguments are passed in registers r0..r3. int stack_passed_arguments = (num_arguments <= 4) ? 0 : num_arguments - 4; if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); ASSERT(IsPowerOf2(frame_alignment)); and_(sp, sp, Operand(-frame_alignment)); str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { sub(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { mov(ip, Operand(function)); CallCFunction(ip, num_arguments); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. #if defined(V8_HOST_ARCH_ARM) if (FLAG_debug_code) { int frame_alignment = OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { ASSERT(IsPowerOf2(frame_alignment)); Label alignment_as_expected; tst(sp, Operand(frame_alignment_mask)); b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop("Unexpected alignment"); bind(&alignment_as_expected); } } #endif // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. Call(function); int stack_passed_arguments = (num_arguments <= 4) ? 0 : num_arguments - 4; if (OS::ActivationFrameAlignment() > kPointerSize) { ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); } } #ifdef ENABLE_DEBUGGER_SUPPORT CodePatcher::CodePatcher(byte* address, int instructions) : address_(address), instructions_(instructions), size_(instructions * Assembler::kInstrSize), masm_(address, size_ + Assembler::kGap) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void CodePatcher::Emit(Instr x) { masm()->emit(x); } void CodePatcher::Emit(Address addr) { masm()->emit(reinterpret_cast(addr)); } #endif // ENABLE_DEBUGGER_SUPPORT } } // namespace v8::internal