// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include // NOLINT(readability/streams) #include "src/base/utils/random-number-generator.h" #include "src/macro-assembler.h" #include "src/mips/macro-assembler-mips.h" #include "src/mips/simulator-mips.h" #include "src/v8.h" #include "test/cctest/cctest.h" using namespace v8::internal; typedef void* (*F)(int x, int y, int p2, int p3, int p4); typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4); #define __ masm-> static byte to_non_zero(int n) { return static_cast(n) % 255 + 1; } static bool all_zeroes(const byte* beg, const byte* end) { CHECK(beg); CHECK(beg <= end); while (beg < end) { if (*beg++ != 0) return false; } return true; } TEST(CopyBytes) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope handles(isolate); const int data_size = 1 * KB; size_t act_size; // Allocate two blocks to copy data between. byte* src_buffer = static_cast(v8::base::OS::Allocate(data_size, &act_size, 0)); CHECK(src_buffer); CHECK(act_size >= static_cast(data_size)); byte* dest_buffer = static_cast(v8::base::OS::Allocate(data_size, &act_size, 0)); CHECK(dest_buffer); CHECK(act_size >= static_cast(data_size)); // Storage for a0 and a1. byte* a0_; byte* a1_; MacroAssembler assembler(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; // Code to be generated: The stuff in CopyBytes followed by a store of a0 and // a1, respectively. __ CopyBytes(a0, a1, a2, a3); __ li(a2, Operand(reinterpret_cast(&a0_))); __ li(a3, Operand(reinterpret_cast(&a1_))); __ sw(a0, MemOperand(a2)); __ jr(ra); __ sw(a1, MemOperand(a3)); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); ::F f = FUNCTION_CAST< ::F>(code->entry()); // Initialise source data with non-zero bytes. for (int i = 0; i < data_size; i++) { src_buffer[i] = to_non_zero(i); } const int fuzz = 11; for (int size = 0; size < 600; size++) { for (const byte* src = src_buffer; src < src_buffer + fuzz; src++) { for (byte* dest = dest_buffer; dest < dest_buffer + fuzz; dest++) { memset(dest_buffer, 0, data_size); CHECK(dest + size < dest_buffer + data_size); (void)CALL_GENERATED_CODE(isolate, f, reinterpret_cast(src), reinterpret_cast(dest), size, 0, 0); // a0 and a1 should point at the first byte after the copied data. CHECK_EQ(src + size, a0_); CHECK_EQ(dest + size, a1_); // Check that we haven't written outside the target area. CHECK(all_zeroes(dest_buffer, dest)); CHECK(all_zeroes(dest + size, dest_buffer + data_size)); // Check the target area. CHECK_EQ(0, memcmp(src, dest, size)); } } } // Check that the source data hasn't been clobbered. for (int i = 0; i < data_size; i++) { CHECK(src_buffer[i] == to_non_zero(i)); } } static void TestNaN(const char *code) { // NaN value is different on MIPS and x86 architectures, and TEST(NaNx) // tests checks the case where a x86 NaN value is serialized into the // snapshot on the simulator during cross compilation. v8::HandleScope scope(CcTest::isolate()); v8::Local context = CcTest::NewContext(PRINT_EXTENSION); v8::Context::Scope context_scope(context); v8::Local script = v8::Script::Compile(context, v8_str(code)).ToLocalChecked(); v8::Local result = v8::Local::Cast(script->Run(context).ToLocalChecked()); i::Handle o = v8::Utils::OpenHandle(*result); i::Handle array1(reinterpret_cast(*o)); i::FixedDoubleArray* a = i::FixedDoubleArray::cast(array1->elements()); double value = a->get_scalar(0); CHECK(std::isnan(value) && bit_cast(value) == bit_cast(std::numeric_limits::quiet_NaN())); } TEST(NaN0) { TestNaN( "var result;" "for (var i = 0; i < 2; i++) {" " result = new Array(Number.NaN, Number.POSITIVE_INFINITY);" "}" "result;"); } TEST(NaN1) { TestNaN( "var result;" "for (var i = 0; i < 2; i++) {" " result = [NaN];" "}" "result;"); } TEST(jump_tables4) { // Similar to test-assembler-mips jump_tables1, with extra test for branch // trampoline required before emission of the dd table (where trampolines are // blocked), and proper transition to long-branch mode. // Regression test for v8:4294. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label near_start, end, done; __ Push(ra); __ mov(v0, zero_reg); __ Branch(&end); __ bind(&near_start); // Generate slightly less than 32K instructions, which will soon require // trampoline for branch distance fixup. for (int i = 0; i < 32768 - 256; ++i) { __ addiu(v0, v0, 1); } __ GenerateSwitchTable(a0, kNumCases, [&labels](size_t i) { return labels + i; }); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ li(v0, values[i]); __ Branch(&done); } __ bind(&done); __ Pop(ra); __ jr(ra); __ nop(); __ bind(&end); __ Branch(&near_start); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int res = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables5) { if (!IsMipsArchVariant(kMips32r6)) return; // Similar to test-assembler-mips jump_tables1, with extra test for emitting a // compact branch instruction before emission of the dd table. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; Label done; __ Push(ra); { __ BlockTrampolinePoolFor(kNumCases + 6 + 1); PredictableCodeSizeScope predictable( masm, kNumCases * kPointerSize + ((6 + 1) * Assembler::kInstrSize)); __ addiupc(at, 6 + 1); __ Lsa(at, at, a0, 2); __ lw(at, MemOperand(at)); __ jalr(at); __ nop(); // Branch delay slot nop. __ bc(&done); // A nop instruction must be generated by the forbidden slot guard // (Assembler::dd(Label*)). for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ li(v0, values[i]); __ jr(ra); __ nop(); } __ bind(&done); __ Pop(ra); __ jr(ra); __ nop(); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } static uint32_t run_lsa(uint32_t rt, uint32_t rs, int8_t sa) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; __ Lsa(v0, a0, a1, sa); __ jr(ra); __ nop(); CodeDesc desc; assembler.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F1 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, rt, rs, 0, 0, 0)); return res; } TEST(Lsa) { CcTest::InitializeVM(); struct TestCaseLsa { int32_t rt; int32_t rs; uint8_t sa; uint32_t expected_res; }; struct TestCaseLsa tc[] = {// rt, rs, sa, expected_res {0x4, 0x1, 1, 0x6}, {0x4, 0x1, 2, 0x8}, {0x4, 0x1, 3, 0xc}, {0x4, 0x1, 4, 0x14}, {0x4, 0x1, 5, 0x24}, {0x0, 0x1, 1, 0x2}, {0x0, 0x1, 2, 0x4}, {0x0, 0x1, 3, 0x8}, {0x0, 0x1, 4, 0x10}, {0x0, 0x1, 5, 0x20}, {0x4, 0x0, 1, 0x4}, {0x4, 0x0, 2, 0x4}, {0x4, 0x0, 3, 0x4}, {0x4, 0x0, 4, 0x4}, {0x4, 0x0, 5, 0x4}, // Shift overflow. {0x4, INT32_MAX, 1, 0x2}, {0x4, INT32_MAX >> 1, 2, 0x0}, {0x4, INT32_MAX >> 2, 3, 0xfffffffc}, {0x4, INT32_MAX >> 3, 4, 0xfffffff4}, {0x4, INT32_MAX >> 4, 5, 0xffffffe4}, // Signed addition overflow. {INT32_MAX - 1, 0x1, 1, 0x80000000}, {INT32_MAX - 3, 0x1, 2, 0x80000000}, {INT32_MAX - 7, 0x1, 3, 0x80000000}, {INT32_MAX - 15, 0x1, 4, 0x80000000}, {INT32_MAX - 31, 0x1, 5, 0x80000000}, // Addition overflow. {-2, 0x1, 1, 0x0}, {-4, 0x1, 2, 0x0}, {-8, 0x1, 3, 0x0}, {-16, 0x1, 4, 0x0}, {-32, 0x1, 5, 0x0}}; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLsa); for (size_t i = 0; i < nr_test_cases; ++i) { uint32_t res = run_lsa(tc[i].rt, tc[i].rs, tc[i].sa); PrintF("0x%x =? 0x%x == lsa(v0, %x, %x, %hhu)\n", tc[i].expected_res, res, tc[i].rt, tc[i].rs, tc[i].sa); CHECK_EQ(tc[i].expected_res, res); } } static const std::vector cvt_trunc_uint32_test_values() { static const uint32_t kValues[] = {0x00000000, 0x00000001, 0x00ffff00, 0x7fffffff, 0x80000000, 0x80000001, 0x80ffff00, 0x8fffffff, 0xffffffff}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector cvt_trunc_int32_test_values() { static const int32_t kValues[] = { static_cast(0x00000000), static_cast(0x00000001), static_cast(0x00ffff00), static_cast(0x7fffffff), static_cast(0x80000000), static_cast(0x80000001), static_cast(0x80ffff00), static_cast(0x8fffffff), static_cast(0xffffffff)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } // Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } #define FOR_INPUTS(ctype, itype, var, test_vector) \ std::vector var##_vec = test_vector(); \ for (std::vector::iterator var = var##_vec.begin(); \ var != var##_vec.end(); ++var) #define FOR_INPUTS2(ctype, itype, var, var2, test_vector) \ std::vector var##_vec = test_vector(); \ std::vector::iterator var; \ std::vector::reverse_iterator var2; \ for (var = var##_vec.begin(), var2 = var##_vec.rbegin(); \ var != var##_vec.end(); ++var, ++var2) #define FOR_ENUM_INPUTS(var, type, test_vector) \ FOR_INPUTS(enum type, type, var, test_vector) #define FOR_STRUCT_INPUTS(var, type, test_vector) \ FOR_INPUTS(struct type, type, var, test_vector) #define FOR_UINT32_INPUTS(var, test_vector) \ FOR_INPUTS(uint32_t, uint32, var, test_vector) #define FOR_INT32_INPUTS(var, test_vector) \ FOR_INPUTS(int32_t, int32, var, test_vector) #define FOR_INT32_INPUTS2(var, var2, test_vector) \ FOR_INPUTS2(int32_t, int32, var, var2, test_vector) #define FOR_UINT64_INPUTS(var, test_vector) \ FOR_INPUTS(uint64_t, uint32, var, test_vector) template RET_TYPE run_Cvt(IN_TYPE x, Func GenerateConvertInstructionFunc) { typedef RET_TYPE (*F_CVT)(IN_TYPE x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; __ mtc1(a0, f4); GenerateConvertInstructionFunc(masm); __ mfc1(v0, f2); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F_CVT f = FUNCTION_CAST(code->entry()); return reinterpret_cast( CALL_GENERATED_CODE(isolate, f, x, 0, 0, 0, 0)); } TEST(cvt_s_w_Trunc_uw_s) { CcTest::InitializeVM(); FOR_UINT32_INPUTS(i, cvt_trunc_uint32_test_values) { uint32_t input = *i; CHECK_EQ(static_cast(input), run_Cvt(input, [](MacroAssembler* masm) { __ cvt_s_w(f0, f4); __ Trunc_uw_s(f2, f0, f1); })); } } TEST(cvt_d_w_Trunc_w_d) { CcTest::InitializeVM(); FOR_INT32_INPUTS(i, cvt_trunc_int32_test_values) { int32_t input = *i; CHECK_EQ(static_cast(input), run_Cvt(input, [](MacroAssembler* masm) { __ cvt_d_w(f0, f4); __ Trunc_w_d(f2, f0); })); } } static const std::vector overflow_int32_test_values() { static const int32_t kValues[] = { static_cast(0xf0000000), static_cast(0x00000001), static_cast(0xff000000), static_cast(0x0000f000), static_cast(0x0f000000), static_cast(0x991234ab), static_cast(0xb0ffff01), static_cast(0x00006fff), static_cast(0xffffffff)}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } enum OverflowBranchType { kAddBranchOverflow, kSubBranchOverflow, }; struct OverflowRegisterCombination { Register dst; Register left; Register right; Register scratch; }; static const std::vector overflow_branch_type() { static const enum OverflowBranchType kValues[] = {kAddBranchOverflow, kSubBranchOverflow}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector overflow_register_combination() { static const struct OverflowRegisterCombination kValues[] = { {t0, t1, t2, t3}, {t0, t0, t2, t3}, {t0, t1, t0, t3}, {t0, t1, t1, t3}}; return std::vector( &kValues[0], &kValues[arraysize(kValues)]); } template static bool IsAddOverflow(T x, T y) { DCHECK(std::numeric_limits::is_integer); T max = std::numeric_limits::max(); T min = std::numeric_limits::min(); return (x > 0 && y > (max - x)) || (x < 0 && y < (min - x)); } template static bool IsSubOverflow(T x, T y) { DCHECK(std::numeric_limits::is_integer); T max = std::numeric_limits::max(); T min = std::numeric_limits::min(); return (y > 0 && x < (min + y)) || (y < 0 && x > (max + y)); } template static bool runOverflow(IN_TYPE valLeft, IN_TYPE valRight, Func GenerateOverflowInstructions) { typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; GenerateOverflowInstructions(masm, valLeft, valRight); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F_CVT f = FUNCTION_CAST(code->entry()); int32_t r = reinterpret_cast(CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); DCHECK(r == 0 || r == 1); return r; } TEST(BranchOverflowInt32BothLabels) { FOR_INT32_INPUTS(i, overflow_int32_test_values) { FOR_INT32_INPUTS(j, overflow_int32_test_values) { FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, overflow_register_combination) { int32_t ii = *i; int32_t jj = *j; enum OverflowBranchType branchType = *br; struct OverflowRegisterCombination rc = *regComb; // If left and right register are same then left and right // test values must also be same, otherwise we skip the test if (rc.left.code() == rc.right.code()) { if (ii != jj) { continue; } } bool res1 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, no_overflow, end; __ li(rc.left, valLeft); __ li(rc.right, valRight); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, &no_overflow, rc.scratch); break; } __ li(v0, 2); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); bool res2 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, no_overflow, end; __ li(rc.left, valLeft); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, &no_overflow, rc.scratch); break; } __ li(v0, 2); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); switch (branchType) { case kAddBranchOverflow: CHECK_EQ(IsAddOverflow(ii, jj), res1); CHECK_EQ(IsAddOverflow(ii, jj), res2); break; case kSubBranchOverflow: CHECK_EQ(IsSubOverflow(ii, jj), res1); CHECK_EQ(IsSubOverflow(ii, jj), res2); break; default: UNREACHABLE(); } } } } } } TEST(BranchOverflowInt32LeftLabel) { FOR_INT32_INPUTS(i, overflow_int32_test_values) { FOR_INT32_INPUTS(j, overflow_int32_test_values) { FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, overflow_register_combination) { int32_t ii = *i; int32_t jj = *j; enum OverflowBranchType branchType = *br; struct OverflowRegisterCombination rc = *regComb; // If left and right register are same then left and right // test values must also be same, otherwise we skip the test if (rc.left.code() == rc.right.code()) { if (ii != jj) { continue; } } bool res1 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, end; __ li(rc.left, valLeft); __ li(rc.right, valRight); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, rc.right, &overflow, NULL, rc.scratch); break; } __ li(v0, 0); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ bind(&end); }); bool res2 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label overflow, end; __ li(rc.left, valLeft); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, NULL, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), &overflow, NULL, rc.scratch); break; } __ li(v0, 0); __ Branch(&end); __ bind(&overflow); __ li(v0, 1); __ bind(&end); }); switch (branchType) { case kAddBranchOverflow: CHECK_EQ(IsAddOverflow(ii, jj), res1); CHECK_EQ(IsAddOverflow(ii, jj), res2); break; case kSubBranchOverflow: CHECK_EQ(IsSubOverflow(ii, jj), res1); CHECK_EQ(IsSubOverflow(ii, jj), res2); break; default: UNREACHABLE(); } } } } } } TEST(BranchOverflowInt32RightLabel) { FOR_INT32_INPUTS(i, overflow_int32_test_values) { FOR_INT32_INPUTS(j, overflow_int32_test_values) { FOR_ENUM_INPUTS(br, OverflowBranchType, overflow_branch_type) { FOR_STRUCT_INPUTS(regComb, OverflowRegisterCombination, overflow_register_combination) { int32_t ii = *i; int32_t jj = *j; enum OverflowBranchType branchType = *br; struct OverflowRegisterCombination rc = *regComb; // If left and right register are same then left and right // test values must also be same, otherwise we skip the test if (rc.left.code() == rc.right.code()) { if (ii != jj) { continue; } } bool res1 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label no_overflow, end; __ li(rc.left, valLeft); __ li(rc.right, valRight); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, rc.right, NULL, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, rc.right, NULL, &no_overflow, rc.scratch); break; } __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); bool res2 = runOverflow( ii, jj, [branchType, rc](MacroAssembler* masm, int32_t valLeft, int32_t valRight) { Label no_overflow, end; __ li(rc.left, valLeft); switch (branchType) { case kAddBranchOverflow: __ AddBranchOvf(rc.dst, rc.left, Operand(valRight), NULL, &no_overflow, rc.scratch); break; case kSubBranchOverflow: __ SubBranchOvf(rc.dst, rc.left, Operand(valRight), NULL, &no_overflow, rc.scratch); break; } __ li(v0, 1); __ Branch(&end); __ bind(&no_overflow); __ li(v0, 0); __ bind(&end); }); switch (branchType) { case kAddBranchOverflow: CHECK_EQ(IsAddOverflow(ii, jj), res1); CHECK_EQ(IsAddOverflow(ii, jj), res2); break; case kSubBranchOverflow: CHECK_EQ(IsSubOverflow(ii, jj), res1); CHECK_EQ(IsSubOverflow(ii, jj), res2); break; default: UNREACHABLE(); } } } } } } TEST(min_max_nan) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assembler(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assembler; struct TestFloat { double a; double b; double c; double d; float e; float f; float g; float h; }; TestFloat test; const double dnan = std::numeric_limits::quiet_NaN(); const double dinf = std::numeric_limits::infinity(); const double dminf = -std::numeric_limits::infinity(); const float fnan = std::numeric_limits::quiet_NaN(); const float finf = std::numeric_limits::infinity(); const float fminf = std::numeric_limits::infinity(); const int kTableLength = 13; double inputsa[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, dinf, dminf, dinf, dnan, 3.0, dinf, dnan, dnan}; double inputsb[kTableLength] = {3.0, 2.0, 0.0, -0.0, dinf, 42.0, dinf, dminf, 3.0, dnan, dnan, dinf, dnan}; double outputsdmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, dminf, dminf, dnan, dnan, dnan, dnan, dnan}; double outputsdmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dnan, dnan, dnan, dnan, dnan}; float inputse[kTableLength] = {2.0, 3.0, -0.0, 0.0, 42.0, finf, fminf, finf, fnan, 3.0, finf, fnan, fnan}; float inputsf[kTableLength] = {3.0, 2.0, 0.0, -0.0, finf, 42.0, finf, fminf, 3.0, fnan, fnan, finf, fnan}; float outputsfmin[kTableLength] = {2.0, 2.0, -0.0, -0.0, 42.0, 42.0, fminf, fminf, fnan, fnan, fnan, fnan, fnan}; float outputsfmax[kTableLength] = {3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, fnan, fnan, fnan, fnan, fnan}; auto handle_dnan = [masm](FPURegister dst, Label* nan, Label* back) { __ bind(nan); __ LoadRoot(at, Heap::kNanValueRootIndex); __ ldc1(dst, FieldMemOperand(at, HeapNumber::kValueOffset)); __ Branch(back); }; auto handle_snan = [masm, fnan](FPURegister dst, Label* nan, Label* back) { __ bind(nan); __ Move(dst, fnan); __ Branch(back); }; Label handle_mind_nan, handle_maxd_nan, handle_mins_nan, handle_maxs_nan; Label back_mind_nan, back_maxd_nan, back_mins_nan, back_maxs_nan; __ push(s6); __ InitializeRootRegister(); __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e))); __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f))); __ MinNaNCheck_d(f10, f4, f8, &handle_mind_nan); __ bind(&back_mind_nan); __ MaxNaNCheck_d(f12, f4, f8, &handle_maxd_nan); __ bind(&back_maxd_nan); __ MinNaNCheck_s(f14, f2, f6, &handle_mins_nan); __ bind(&back_mins_nan); __ MaxNaNCheck_s(f16, f2, f6, &handle_maxs_nan); __ bind(&back_maxs_nan); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d))); __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g))); __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h))); __ pop(s6); __ jr(ra); __ nop(); handle_dnan(f10, &handle_mind_nan, &back_mind_nan); handle_dnan(f12, &handle_maxd_nan, &back_maxd_nan); handle_snan(f14, &handle_mins_nan, &back_mins_nan); handle_snan(f16, &handle_maxs_nan, &back_maxs_nan); CodeDesc desc; masm->GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); ::F3 f = FUNCTION_CAST<::F3>(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.e = inputse[i]; test.f = inputsf[i]; CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0); CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); } } template bool run_Unaligned(char* memory_buffer, int32_t in_offset, int32_t out_offset, IN_TYPE value, Func GenerateUnalignedInstructionFunc) { typedef int32_t (*F_CVT)(char* x0, int x1, int x2, int x3, int x4); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); MacroAssembler* masm = &assm; IN_TYPE res; GenerateUnalignedInstructionFunc(masm, in_offset, out_offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F_CVT f = FUNCTION_CAST(code->entry()); MemCopy(memory_buffer + in_offset, &value, sizeof(IN_TYPE)); CALL_GENERATED_CODE(isolate, f, memory_buffer, 0, 0, 0, 0); MemCopy(&res, memory_buffer + out_offset, sizeof(IN_TYPE)); return res == value; } static const std::vector unsigned_test_values() { static const uint64_t kValues[] = { 0x2180f18a06384414, 0x000a714532102277, 0xbc1acccf180649f0, 0x8000000080008000, 0x0000000000000001, 0xffffffffffffffff, }; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector unsigned_test_offset() { static const int32_t kValues[] = {// value, offset -132 * KB, -21 * KB, 0, 19 * KB, 135 * KB}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } static const std::vector unsigned_test_offset_increment() { static const int32_t kValues[] = {-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5}; return std::vector(&kValues[0], &kValues[arraysize(kValues)]); } TEST(Ulh) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulh(v0, MemOperand(a0, in_offset)); __ Ush(v0, MemOperand(a0, out_offset), v0); })); CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ulh(a0, MemOperand(a0, in_offset)); __ Ush(a0, MemOperand(t0, out_offset), v0); })); CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ulhu(a0, MemOperand(a0, in_offset)); __ Ush(a0, MemOperand(t0, out_offset), t1); })); CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulhu(v0, MemOperand(a0, in_offset)); __ Ush(v0, MemOperand(a0, out_offset), t1); })); } } } } TEST(Ulh_bitextension) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint16_t value = static_cast(*i & 0xFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { Label success, fail, end, different; __ Ulh(t0, MemOperand(a0, in_offset)); __ Ulhu(t1, MemOperand(a0, in_offset)); __ Branch(&different, ne, t0, Operand(t1)); // If signed and unsigned values are same, check // the upper bits to see if they are zero __ sra(t0, t0, 15); __ Branch(&success, eq, t0, Operand(zero_reg)); __ Branch(&fail); // If signed and unsigned values are different, // check that the upper bits are complementary __ bind(&different); __ sra(t1, t1, 15); __ Branch(&fail, ne, t1, Operand(1)); __ sra(t0, t0, 15); __ addiu(t0, t0, 1); __ Branch(&fail, ne, t0, Operand(zero_reg)); // Fall through to success __ bind(&success); __ Ulh(t0, MemOperand(a0, in_offset)); __ Ush(t0, MemOperand(a0, out_offset), v0); __ Branch(&end); __ bind(&fail); __ Ush(zero_reg, MemOperand(a0, out_offset), v0); __ bind(&end); })); } } } } TEST(Ulw) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { uint32_t value = static_cast(*i & 0xFFFFFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulw(v0, MemOperand(a0, in_offset)); __ Usw(v0, MemOperand(a0, out_offset)); })); CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, (uint32_t)value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ mov(t0, a0); __ Ulw(a0, MemOperand(a0, in_offset)); __ Usw(a0, MemOperand(t0, out_offset)); })); } } } } TEST(Ulwc1) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { float value = static_cast(*i & 0xFFFFFFFF); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Ulwc1(f0, MemOperand(a0, in_offset), t0); __ Uswc1(f0, MemOperand(a0, out_offset), t0); })); } } } } TEST(Uldc1) { CcTest::InitializeVM(); static const int kBufferSize = 300 * KB; char memory_buffer[kBufferSize]; char* buffer_middle = memory_buffer + (kBufferSize / 2); FOR_UINT64_INPUTS(i, unsigned_test_values) { FOR_INT32_INPUTS2(j1, j2, unsigned_test_offset) { FOR_INT32_INPUTS2(k1, k2, unsigned_test_offset_increment) { double value = static_cast(*i); int32_t in_offset = *j1 + *k1; int32_t out_offset = *j2 + *k2; CHECK_EQ(true, run_Unaligned( buffer_middle, in_offset, out_offset, value, [](MacroAssembler* masm, int32_t in_offset, int32_t out_offset) { __ Uldc1(f0, MemOperand(a0, in_offset), t0); __ Usdc1(f0, MemOperand(a0, out_offset), t0); })); } } } } #undef __