// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/unittests/compiler/instruction-selector-unittest.h" #include "src/compiler/graph-inl.h" #include "src/flags.h" #include "test/unittests/compiler/compiler-test-utils.h" namespace v8 { namespace internal { namespace compiler { namespace { typedef RawMachineAssembler::Label MLabel; } // namespace InstructionSelectorTest::InstructionSelectorTest() : rng_(FLAG_random_seed) {} InstructionSelectorTest::~InstructionSelectorTest() {} InstructionSelectorTest::Stream InstructionSelectorTest::StreamBuilder::Build( InstructionSelector::Features features, InstructionSelectorTest::StreamBuilderMode mode) { Schedule* schedule = Export(); if (FLAG_trace_turbo) { OFStream out(stdout); out << "=== Schedule before instruction selection ===" << std::endl << *schedule; } size_t const node_count = graph()->NodeCount(); EXPECT_NE(0u, node_count); Linkage linkage(test_->isolate(), test_->zone(), call_descriptor()); InstructionBlocks* instruction_blocks = InstructionSequence::InstructionBlocksFor(test_->zone(), schedule); InstructionSequence sequence(test_->isolate(), test_->zone(), instruction_blocks); SourcePositionTable source_position_table(graph()); InstructionSelector selector(test_->zone(), node_count, &linkage, &sequence, schedule, &source_position_table, features); selector.SelectInstructions(); if (FLAG_trace_turbo) { OFStream out(stdout); PrintableInstructionSequence printable = { RegisterConfiguration::ArchDefault(), &sequence}; out << "=== Code sequence after instruction selection ===" << std::endl << printable; } Stream s; s.virtual_registers_ = selector.GetVirtualRegistersForTesting(); // Map virtual registers. for (Instruction* const instr : sequence) { if (instr->opcode() < 0) continue; if (mode == kTargetInstructions) { switch (instr->arch_opcode()) { #define CASE(Name) \ case k##Name: \ break; TARGET_ARCH_OPCODE_LIST(CASE) #undef CASE default: continue; } } if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) { continue; } for (size_t i = 0; i < instr->OutputCount(); ++i) { InstructionOperand* output = instr->OutputAt(i); EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind()); if (output->IsConstant()) { s.constants_.insert(std::make_pair( output->index(), sequence.GetConstant(output->index()))); } } for (size_t i = 0; i < instr->InputCount(); ++i) { InstructionOperand* input = instr->InputAt(i); EXPECT_NE(InstructionOperand::CONSTANT, input->kind()); if (input->IsImmediate()) { s.immediates_.insert(std::make_pair( input->index(), sequence.GetImmediate(input->index()))); } } s.instructions_.push_back(instr); } for (auto i : s.virtual_registers_) { int const virtual_register = i.second; if (sequence.IsDouble(virtual_register)) { EXPECT_FALSE(sequence.IsReference(virtual_register)); s.doubles_.insert(virtual_register); } if (sequence.IsReference(virtual_register)) { EXPECT_FALSE(sequence.IsDouble(virtual_register)); s.references_.insert(virtual_register); } } for (int i = 0; i < sequence.GetFrameStateDescriptorCount(); i++) { s.deoptimization_entries_.push_back(sequence.GetFrameStateDescriptor( InstructionSequence::StateId::FromInt(i))); } return s; } int InstructionSelectorTest::Stream::ToVreg(const Node* node) const { VirtualRegisters::const_iterator i = virtual_registers_.find(node->id()); CHECK(i != virtual_registers_.end()); return i->second; } bool InstructionSelectorTest::Stream::IsFixed(const InstructionOperand* operand, Register reg) const { if (!operand->IsUnallocated()) return false; const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand); if (!unallocated->HasFixedRegisterPolicy()) return false; const int index = Register::ToAllocationIndex(reg); return unallocated->fixed_register_index() == index; } bool InstructionSelectorTest::Stream::IsSameAsFirst( const InstructionOperand* operand) const { if (!operand->IsUnallocated()) return false; const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand); return unallocated->HasSameAsInputPolicy(); } bool InstructionSelectorTest::Stream::IsUsedAtStart( const InstructionOperand* operand) const { if (!operand->IsUnallocated()) return false; const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand); return unallocated->IsUsedAtStart(); } // ----------------------------------------------------------------------------- // Return. TARGET_TEST_F(InstructionSelectorTest, ReturnFloat32Constant) { const float kValue = 4.2f; StreamBuilder m(this, kMachFloat32); m.Return(m.Float32Constant(kValue)); Stream s = m.Build(kAllInstructions); ASSERT_EQ(3U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind()); EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0))); EXPECT_EQ(kArchRet, s[1]->arch_opcode()); EXPECT_EQ(1U, s[1]->InputCount()); } TARGET_TEST_F(InstructionSelectorTest, ReturnParameter) { StreamBuilder m(this, kMachInt32, kMachInt32); m.Return(m.Parameter(0)); Stream s = m.Build(kAllInstructions); ASSERT_EQ(3U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kArchRet, s[1]->arch_opcode()); EXPECT_EQ(1U, s[1]->InputCount()); } TARGET_TEST_F(InstructionSelectorTest, ReturnZero) { StreamBuilder m(this, kMachInt32); m.Return(m.Int32Constant(0)); Stream s = m.Build(kAllInstructions); ASSERT_EQ(3U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind()); EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0))); EXPECT_EQ(kArchRet, s[1]->arch_opcode()); EXPECT_EQ(1U, s[1]->InputCount()); } // ----------------------------------------------------------------------------- // Conversions. TARGET_TEST_F(InstructionSelectorTest, TruncateFloat64ToInt32WithParameter) { StreamBuilder m(this, kMachInt32, kMachFloat64); m.Return(m.TruncateFloat64ToInt32(m.Parameter(0))); Stream s = m.Build(kAllInstructions); ASSERT_EQ(4U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode()); EXPECT_EQ(1U, s[1]->InputCount()); EXPECT_EQ(1U, s[1]->OutputCount()); EXPECT_EQ(kArchRet, s[2]->arch_opcode()); } // ----------------------------------------------------------------------------- // Parameters. TARGET_TEST_F(InstructionSelectorTest, DoubleParameter) { StreamBuilder m(this, kMachFloat64, kMachFloat64); Node* param = m.Parameter(0); m.Return(param); Stream s = m.Build(kAllInstructions); EXPECT_TRUE(s.IsDouble(param)); } TARGET_TEST_F(InstructionSelectorTest, ReferenceParameter) { StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged); Node* param = m.Parameter(0); m.Return(param); Stream s = m.Build(kAllInstructions); EXPECT_TRUE(s.IsReference(param)); } // ----------------------------------------------------------------------------- // Finish. TARGET_TEST_F(InstructionSelectorTest, Finish) { StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged); Node* param = m.Parameter(0); Node* finish = m.NewNode(m.common()->Finish(1), param, m.graph()->start()); m.Return(finish); Stream s = m.Build(kAllInstructions); ASSERT_EQ(4U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->OutputCount()); ASSERT_TRUE(s[0]->Output()->IsUnallocated()); EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[0]->Output())); EXPECT_EQ(kArchNop, s[1]->arch_opcode()); ASSERT_EQ(1U, s[1]->InputCount()); ASSERT_TRUE(s[1]->InputAt(0)->IsUnallocated()); EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[1]->InputAt(0))); ASSERT_EQ(1U, s[1]->OutputCount()); ASSERT_TRUE(s[1]->Output()->IsUnallocated()); EXPECT_TRUE(UnallocatedOperand::cast(s[1]->Output())->HasSameAsInputPolicy()); EXPECT_EQ(s.ToVreg(finish), s.ToVreg(s[1]->Output())); EXPECT_TRUE(s.IsReference(finish)); } // ----------------------------------------------------------------------------- // Phi. typedef InstructionSelectorTestWithParam InstructionSelectorPhiTest; TARGET_TEST_P(InstructionSelectorPhiTest, Doubleness) { const MachineType type = GetParam(); StreamBuilder m(this, type, type, type); Node* param0 = m.Parameter(0); Node* param1 = m.Parameter(1); MLabel a, b, c; m.Branch(m.Int32Constant(0), &a, &b); m.Bind(&a); m.Goto(&c); m.Bind(&b); m.Goto(&c); m.Bind(&c); Node* phi = m.Phi(type, param0, param1); m.Return(phi); Stream s = m.Build(kAllInstructions); EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param0)); EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param1)); } TARGET_TEST_P(InstructionSelectorPhiTest, Referenceness) { const MachineType type = GetParam(); StreamBuilder m(this, type, type, type); Node* param0 = m.Parameter(0); Node* param1 = m.Parameter(1); MLabel a, b, c; m.Branch(m.Int32Constant(1), &a, &b); m.Bind(&a); m.Goto(&c); m.Bind(&b); m.Goto(&c); m.Bind(&c); Node* phi = m.Phi(type, param0, param1); m.Return(phi); Stream s = m.Build(kAllInstructions); EXPECT_EQ(s.IsReference(phi), s.IsReference(param0)); EXPECT_EQ(s.IsReference(phi), s.IsReference(param1)); } INSTANTIATE_TEST_CASE_P(InstructionSelectorTest, InstructionSelectorPhiTest, ::testing::Values(kMachFloat64, kMachInt8, kMachUint8, kMachInt16, kMachUint16, kMachInt32, kMachUint32, kMachInt64, kMachUint64, kMachPtr, kMachAnyTagged)); // ----------------------------------------------------------------------------- // ValueEffect. TARGET_TEST_F(InstructionSelectorTest, ValueEffect) { StreamBuilder m1(this, kMachInt32, kMachPtr); Node* p1 = m1.Parameter(0); m1.Return(m1.Load(kMachInt32, p1, m1.Int32Constant(0))); Stream s1 = m1.Build(kAllInstructions); StreamBuilder m2(this, kMachInt32, kMachPtr); Node* p2 = m2.Parameter(0); m2.Return(m2.NewNode(m2.machine()->Load(kMachInt32), p2, m2.Int32Constant(0), m2.NewNode(m2.common()->ValueEffect(1), p2))); Stream s2 = m2.Build(kAllInstructions); EXPECT_LE(3U, s1.size()); ASSERT_EQ(s1.size(), s2.size()); TRACED_FORRANGE(size_t, i, 0, s1.size() - 1) { const Instruction* i1 = s1[i]; const Instruction* i2 = s2[i]; EXPECT_EQ(i1->arch_opcode(), i2->arch_opcode()); EXPECT_EQ(i1->InputCount(), i2->InputCount()); EXPECT_EQ(i1->OutputCount(), i2->OutputCount()); } } // ----------------------------------------------------------------------------- // Calls with deoptimization. TARGET_TEST_F(InstructionSelectorTest, CallJSFunctionWithDeopt) { StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged); BailoutId bailout_id(42); Node* function_node = m.Parameter(0); Node* receiver = m.Parameter(1); Node* context = m.Parameter(2); Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(1)); Node* locals = m.NewNode(m.common()->StateValues(0)); Node* stack = m.NewNode(m.common()->StateValues(0)); Node* context_dummy = m.Int32Constant(0); Node* state_node = m.NewNode( m.common()->FrameState(JS_FRAME, bailout_id, OutputFrameStateCombine::Push()), parameters, locals, stack, context_dummy, m.UndefinedConstant()); Node* call = m.CallJS0(function_node, receiver, context, state_node); m.Return(call); Stream s = m.Build(kAllExceptNopInstructions); // Skip until kArchCallJSFunction. size_t index = 0; for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction; index++) { } // Now we should have two instructions: call and return. ASSERT_EQ(index + 2, s.size()); EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode()); EXPECT_EQ(kArchRet, s[index++]->arch_opcode()); // TODO(jarin) Check deoptimization table. } TARGET_TEST_F(InstructionSelectorTest, CallFunctionStubWithDeopt) { StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged); BailoutId bailout_id_before(42); // Some arguments for the call node. Node* function_node = m.Parameter(0); Node* receiver = m.Parameter(1); Node* context = m.Int32Constant(1); // Context is ignored. // Build frame state for the state before the call. Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(43)); Node* locals = m.NewNode(m.common()->StateValues(1), m.Float64Constant(0.5)); Node* stack = m.NewNode(m.common()->StateValues(1), m.UndefinedConstant()); Node* context_sentinel = m.Int32Constant(0); Node* frame_state_before = m.NewNode( m.common()->FrameState(JS_FRAME, bailout_id_before, OutputFrameStateCombine::Push()), parameters, locals, stack, context_sentinel, m.UndefinedConstant()); // Build the call. Node* call = m.CallFunctionStub0(function_node, receiver, context, frame_state_before, CALL_AS_METHOD); m.Return(call); Stream s = m.Build(kAllExceptNopInstructions); // Skip until kArchCallJSFunction. size_t index = 0; for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject; index++) { } // Now we should have two instructions: call, return. ASSERT_EQ(index + 2, s.size()); // Check the call instruction const Instruction* call_instr = s[index++]; EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode()); size_t num_operands = 1 + // Code object. 1 + 4 + // Frame state deopt id + one input for each value in frame state. 1 + // Function. 1; // Context. ASSERT_EQ(num_operands, call_instr->InputCount()); // Code object. EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate()); // Deoptimization id. int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1)); FrameStateDescriptor* desc_before = s.GetFrameStateDescriptor(deopt_id_before); EXPECT_EQ(bailout_id_before, desc_before->bailout_id()); EXPECT_EQ(OutputFrameStateCombine::kPushOutput, desc_before->state_combine().kind()); EXPECT_EQ(1u, desc_before->parameters_count()); EXPECT_EQ(1u, desc_before->locals_count()); EXPECT_EQ(1u, desc_before->stack_count()); EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(2))); EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(3))); // This should be a context. // We inserted 0 here. EXPECT_EQ(0.5, s.ToFloat64(call_instr->InputAt(4))); EXPECT_TRUE(s.ToHeapObject(call_instr->InputAt(5))->IsUndefined()); EXPECT_EQ(kMachInt32, desc_before->GetType(0)); EXPECT_EQ(kMachAnyTagged, desc_before->GetType(1)); // context is always // tagged/any. EXPECT_EQ(kMachFloat64, desc_before->GetType(2)); EXPECT_EQ(kMachAnyTagged, desc_before->GetType(3)); // Function. EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(6))); // Context. EXPECT_EQ(s.ToVreg(context), s.ToVreg(call_instr->InputAt(7))); EXPECT_EQ(kArchRet, s[index++]->arch_opcode()); EXPECT_EQ(index, s.size()); } TARGET_TEST_F(InstructionSelectorTest, CallFunctionStubDeoptRecursiveFrameState) { StreamBuilder m(this, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged, kMachAnyTagged); BailoutId bailout_id_before(42); BailoutId bailout_id_parent(62); // Some arguments for the call node. Node* function_node = m.Parameter(0); Node* receiver = m.Parameter(1); Node* context = m.Int32Constant(66); // Build frame state for the state before the call. Node* parameters = m.NewNode(m.common()->StateValues(1), m.Int32Constant(63)); Node* locals = m.NewNode(m.common()->StateValues(1), m.Int32Constant(64)); Node* stack = m.NewNode(m.common()->StateValues(1), m.Int32Constant(65)); Node* frame_state_parent = m.NewNode(m.common()->FrameState(JS_FRAME, bailout_id_parent, OutputFrameStateCombine::Ignore()), parameters, locals, stack, context, m.UndefinedConstant()); Node* context2 = m.Int32Constant(46); Node* parameters2 = m.NewNode(m.common()->StateValues(1), m.Int32Constant(43)); Node* locals2 = m.NewNode(m.common()->StateValues(1), m.Float64Constant(0.25)); Node* stack2 = m.NewNode(m.common()->StateValues(2), m.Int32Constant(44), m.Int32Constant(45)); Node* frame_state_before = m.NewNode(m.common()->FrameState(JS_FRAME, bailout_id_before, OutputFrameStateCombine::Push()), parameters2, locals2, stack2, context2, frame_state_parent); // Build the call. Node* call = m.CallFunctionStub0(function_node, receiver, context2, frame_state_before, CALL_AS_METHOD); m.Return(call); Stream s = m.Build(kAllExceptNopInstructions); // Skip until kArchCallJSFunction. size_t index = 0; for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject; index++) { } // Now we should have three instructions: call, return. EXPECT_EQ(index + 2, s.size()); // Check the call instruction const Instruction* call_instr = s[index++]; EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode()); size_t num_operands = 1 + // Code object. 1 + // Frame state deopt id 5 + // One input for each value in frame state + context. 4 + // One input for each value in the parent frame state + context. 1 + // Function. 1; // Context. EXPECT_EQ(num_operands, call_instr->InputCount()); // Code object. EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate()); // Deoptimization id. int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(1)); FrameStateDescriptor* desc_before = s.GetFrameStateDescriptor(deopt_id_before); FrameStateDescriptor* desc_before_outer = desc_before->outer_state(); EXPECT_EQ(bailout_id_before, desc_before->bailout_id()); EXPECT_EQ(1u, desc_before_outer->parameters_count()); EXPECT_EQ(1u, desc_before_outer->locals_count()); EXPECT_EQ(1u, desc_before_outer->stack_count()); // Values from parent environment. EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(2))); EXPECT_EQ(kMachInt32, desc_before_outer->GetType(0)); // Context: EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(3))); EXPECT_EQ(kMachAnyTagged, desc_before_outer->GetType(1)); EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(4))); EXPECT_EQ(kMachInt32, desc_before_outer->GetType(2)); EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(5))); EXPECT_EQ(kMachInt32, desc_before_outer->GetType(3)); // Values from the nested frame. EXPECT_EQ(1u, desc_before->parameters_count()); EXPECT_EQ(1u, desc_before->locals_count()); EXPECT_EQ(2u, desc_before->stack_count()); EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(6))); EXPECT_EQ(kMachInt32, desc_before->GetType(0)); EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(7))); EXPECT_EQ(kMachAnyTagged, desc_before->GetType(1)); EXPECT_EQ(0.25, s.ToFloat64(call_instr->InputAt(8))); EXPECT_EQ(kMachFloat64, desc_before->GetType(2)); EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(9))); EXPECT_EQ(kMachInt32, desc_before->GetType(3)); EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(10))); EXPECT_EQ(kMachInt32, desc_before->GetType(4)); // Function. EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(11))); // Context. EXPECT_EQ(s.ToVreg(context2), s.ToVreg(call_instr->InputAt(12))); // Continuation. EXPECT_EQ(kArchRet, s[index++]->arch_opcode()); EXPECT_EQ(index, s.size()); } } // namespace compiler } // namespace internal } // namespace v8