// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/access-builder.h" #include "src/compiler/common-operator.h" #include "src/compiler/graph.h" #include "src/compiler/graph-visualizer.h" #include "src/compiler/js-operator.h" #include "src/compiler/node.h" #include "src/compiler/opcodes.h" #include "src/compiler/operator.h" #include "src/compiler/schedule.h" #include "src/compiler/scheduler.h" #include "src/compiler/simplified-operator.h" #include "src/compiler/verifier.h" #include "test/unittests/compiler/compiler-test-utils.h" #include "test/unittests/test-utils.h" namespace v8 { namespace internal { namespace compiler { class SchedulerTest : public TestWithZone { public: SchedulerTest() : graph_(zone()), common_(zone()), simplified_(zone()), js_(zone()) {} static Schedule* ComputeAndVerifySchedule(int expected, Graph* graph) { if (FLAG_trace_turbo) { OFStream os(stdout); os << AsDOT(*graph); } Schedule* schedule = Scheduler::ComputeSchedule(graph->zone(), graph); if (FLAG_trace_turbo_scheduler) { OFStream os(stdout); os << *schedule << std::endl; } ScheduleVerifier::Run(schedule); CHECK_EQ(expected, GetScheduledNodeCount(schedule)); return schedule; } static int GetScheduledNodeCount(const Schedule* schedule) { size_t node_count = 0; for (auto block : *schedule->rpo_order()) { node_count += block->NodeCount(); if (block->control() != BasicBlock::kNone) ++node_count; } return static_cast(node_count); } Graph* graph() { return &graph_; } CommonOperatorBuilder* common() { return &common_; } SimplifiedOperatorBuilder* simplified() { return &simplified_; } JSOperatorBuilder* js() { return &js_; } private: Graph graph_; CommonOperatorBuilder common_; SimplifiedOperatorBuilder simplified_; JSOperatorBuilder js_; }; class SchedulerRPOTest : public SchedulerTest { public: SchedulerRPOTest() {} // TODO(titzer): pull RPO tests out to their own file. static void CheckRPONumbers(BasicBlockVector* order, size_t expected, bool loops_allowed) { CHECK(expected == order->size()); for (int i = 0; i < static_cast(order->size()); i++) { CHECK(order->at(i)->rpo_number() == i); if (!loops_allowed) { CHECK_EQ(NULL, order->at(i)->loop_end()); CHECK_EQ(NULL, order->at(i)->loop_header()); } } } static void CheckLoop(BasicBlockVector* order, BasicBlock** blocks, int body_size) { BasicBlock* header = blocks[0]; BasicBlock* end = header->loop_end(); CHECK_NE(NULL, end); CHECK_GT(end->rpo_number(), 0); CHECK_EQ(body_size, end->rpo_number() - header->rpo_number()); for (int i = 0; i < body_size; i++) { CHECK_GE(blocks[i]->rpo_number(), header->rpo_number()); CHECK_LT(blocks[i]->rpo_number(), end->rpo_number()); CHECK(header->LoopContains(blocks[i])); CHECK(header->IsLoopHeader() || blocks[i]->loop_header() == header); } if (header->rpo_number() > 0) { CHECK_NE(order->at(header->rpo_number() - 1)->loop_header(), header); } if (end->rpo_number() < static_cast(order->size())) { CHECK_NE(order->at(end->rpo_number())->loop_header(), header); } } struct TestLoop { int count; BasicBlock** nodes; BasicBlock* header() { return nodes[0]; } BasicBlock* last() { return nodes[count - 1]; } ~TestLoop() { delete[] nodes; } void Check(BasicBlockVector* order) { CheckLoop(order, nodes, count); } }; static TestLoop* CreateLoop(Schedule* schedule, int count) { TestLoop* loop = new TestLoop(); loop->count = count; loop->nodes = new BasicBlock* [count]; for (int i = 0; i < count; i++) { loop->nodes[i] = schedule->NewBasicBlock(); if (i > 0) { schedule->AddSuccessorForTesting(loop->nodes[i - 1], loop->nodes[i]); } } schedule->AddSuccessorForTesting(loop->nodes[count - 1], loop->nodes[0]); return loop; } }; class SchedulerTestWithIsolate : public SchedulerTest, public TestWithIsolate { public: SchedulerTestWithIsolate() {} Unique GetUniqueUndefined() { Handle object = Handle(isolate()->heap()->undefined_value(), isolate()); return Unique::CreateUninitialized(object); } }; namespace { const Operator kIntAdd(IrOpcode::kInt32Add, Operator::kPure, "Int32Add", 2, 0, 0, 1, 0, 0); } // namespace TEST_F(SchedulerTest, BuildScheduleEmpty) { graph()->SetStart(graph()->NewNode(common()->Start(0))); graph()->SetEnd(graph()->NewNode(common()->End(), graph()->start())); USE(Scheduler::ComputeSchedule(zone(), graph())); } TEST_F(SchedulerTest, BuildScheduleOneParameter) { graph()->SetStart(graph()->NewNode(common()->Start(0))); Node* p1 = graph()->NewNode(common()->Parameter(0), graph()->start()); Node* ret = graph()->NewNode(common()->Return(), p1, graph()->start(), graph()->start()); graph()->SetEnd(graph()->NewNode(common()->End(), ret)); USE(Scheduler::ComputeSchedule(zone(), graph())); } TEST_F(SchedulerTest, BuildScheduleIfSplit) { graph()->SetStart(graph()->NewNode(common()->Start(3))); Node* p1 = graph()->NewNode(common()->Parameter(0), graph()->start()); Node* p2 = graph()->NewNode(common()->Parameter(1), graph()->start()); Node* p3 = graph()->NewNode(common()->Parameter(2), graph()->start()); Node* p4 = graph()->NewNode(common()->Parameter(3), graph()->start()); Node* p5 = graph()->NewNode(common()->Parameter(4), graph()->start()); Node* cmp = graph()->NewNode(js()->LessThanOrEqual(), p1, p2, p3, graph()->start(), graph()->start()); Node* branch = graph()->NewNode(common()->Branch(), cmp, graph()->start()); Node* true_branch = graph()->NewNode(common()->IfTrue(), branch); Node* false_branch = graph()->NewNode(common()->IfFalse(), branch); Node* ret1 = graph()->NewNode(common()->Return(), p4, graph()->start(), true_branch); Node* ret2 = graph()->NewNode(common()->Return(), p5, graph()->start(), false_branch); Node* merge = graph()->NewNode(common()->Merge(2), ret1, ret2); graph()->SetEnd(graph()->NewNode(common()->End(), merge)); ComputeAndVerifySchedule(13, graph()); } TEST_F(SchedulerRPOTest, Degenerate1) { Schedule schedule(zone()); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 1, false); CHECK_EQ(schedule.start(), order->at(0)); } TEST_F(SchedulerRPOTest, Degenerate2) { Schedule schedule(zone()); schedule.AddGoto(schedule.start(), schedule.end()); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 2, false); CHECK_EQ(schedule.start(), order->at(0)); CHECK_EQ(schedule.end(), order->at(1)); } TEST_F(SchedulerRPOTest, Line) { for (int i = 0; i < 10; i++) { Schedule schedule(zone()); BasicBlock* last = schedule.start(); for (int j = 0; j < i; j++) { BasicBlock* block = schedule.NewBasicBlock(); block->set_deferred(i & 1); schedule.AddGoto(last, block); last = block; } BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 1 + i, false); for (size_t i = 0; i < schedule.BasicBlockCount(); i++) { BasicBlock* block = schedule.GetBlockById(BasicBlock::Id::FromSize(i)); if (block->rpo_number() >= 0 && block->SuccessorCount() == 1) { CHECK(block->rpo_number() + 1 == block->SuccessorAt(0)->rpo_number()); } } } } TEST_F(SchedulerRPOTest, SelfLoop) { Schedule schedule(zone()); schedule.AddSuccessorForTesting(schedule.start(), schedule.start()); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 1, true); BasicBlock* loop[] = {schedule.start()}; CheckLoop(order, loop, 1); } TEST_F(SchedulerRPOTest, EntryLoop) { Schedule schedule(zone()); BasicBlock* body = schedule.NewBasicBlock(); schedule.AddSuccessorForTesting(schedule.start(), body); schedule.AddSuccessorForTesting(body, schedule.start()); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 2, true); BasicBlock* loop[] = {schedule.start(), body}; CheckLoop(order, loop, 2); } TEST_F(SchedulerRPOTest, EndLoop) { Schedule schedule(zone()); SmartPointer loop1(CreateLoop(&schedule, 2)); schedule.AddSuccessorForTesting(schedule.start(), loop1->header()); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 3, true); loop1->Check(order); } TEST_F(SchedulerRPOTest, EndLoopNested) { Schedule schedule(zone()); SmartPointer loop1(CreateLoop(&schedule, 2)); schedule.AddSuccessorForTesting(schedule.start(), loop1->header()); schedule.AddSuccessorForTesting(loop1->last(), schedule.start()); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 3, true); loop1->Check(order); } TEST_F(SchedulerRPOTest, Diamond) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* D = schedule.end(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(A, C); schedule.AddSuccessorForTesting(B, D); schedule.AddSuccessorForTesting(C, D); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 4, false); CHECK_EQ(0, A->rpo_number()); CHECK((B->rpo_number() == 1 && C->rpo_number() == 2) || (B->rpo_number() == 2 && C->rpo_number() == 1)); CHECK_EQ(3, D->rpo_number()); } TEST_F(SchedulerRPOTest, Loop1) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* D = schedule.end(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(B, C); schedule.AddSuccessorForTesting(C, B); schedule.AddSuccessorForTesting(C, D); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 4, true); BasicBlock* loop[] = {B, C}; CheckLoop(order, loop, 2); } TEST_F(SchedulerRPOTest, Loop2) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* D = schedule.end(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(B, C); schedule.AddSuccessorForTesting(C, B); schedule.AddSuccessorForTesting(B, D); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 4, true); BasicBlock* loop[] = {B, C}; CheckLoop(order, loop, 2); } TEST_F(SchedulerRPOTest, LoopN) { for (int i = 0; i < 11; i++) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* D = schedule.NewBasicBlock(); BasicBlock* E = schedule.NewBasicBlock(); BasicBlock* F = schedule.NewBasicBlock(); BasicBlock* G = schedule.end(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(B, C); schedule.AddSuccessorForTesting(C, D); schedule.AddSuccessorForTesting(D, E); schedule.AddSuccessorForTesting(E, F); schedule.AddSuccessorForTesting(F, B); schedule.AddSuccessorForTesting(B, G); // Throw in extra backedges from time to time. if (i == 1) schedule.AddSuccessorForTesting(B, B); if (i == 2) schedule.AddSuccessorForTesting(C, B); if (i == 3) schedule.AddSuccessorForTesting(D, B); if (i == 4) schedule.AddSuccessorForTesting(E, B); if (i == 5) schedule.AddSuccessorForTesting(F, B); // Throw in extra loop exits from time to time. if (i == 6) schedule.AddSuccessorForTesting(B, G); if (i == 7) schedule.AddSuccessorForTesting(C, G); if (i == 8) schedule.AddSuccessorForTesting(D, G); if (i == 9) schedule.AddSuccessorForTesting(E, G); if (i == 10) schedule.AddSuccessorForTesting(F, G); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 7, true); BasicBlock* loop[] = {B, C, D, E, F}; CheckLoop(order, loop, 5); } } TEST_F(SchedulerRPOTest, LoopNest1) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* D = schedule.NewBasicBlock(); BasicBlock* E = schedule.NewBasicBlock(); BasicBlock* F = schedule.end(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(B, C); schedule.AddSuccessorForTesting(C, D); schedule.AddSuccessorForTesting(D, C); schedule.AddSuccessorForTesting(D, E); schedule.AddSuccessorForTesting(E, B); schedule.AddSuccessorForTesting(E, F); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 6, true); BasicBlock* loop1[] = {B, C, D, E}; CheckLoop(order, loop1, 4); BasicBlock* loop2[] = {C, D}; CheckLoop(order, loop2, 2); } TEST_F(SchedulerRPOTest, LoopNest2) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* D = schedule.NewBasicBlock(); BasicBlock* E = schedule.NewBasicBlock(); BasicBlock* F = schedule.NewBasicBlock(); BasicBlock* G = schedule.NewBasicBlock(); BasicBlock* H = schedule.end(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(B, C); schedule.AddSuccessorForTesting(C, D); schedule.AddSuccessorForTesting(D, E); schedule.AddSuccessorForTesting(E, F); schedule.AddSuccessorForTesting(F, G); schedule.AddSuccessorForTesting(G, H); schedule.AddSuccessorForTesting(E, D); schedule.AddSuccessorForTesting(F, C); schedule.AddSuccessorForTesting(G, B); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 8, true); BasicBlock* loop1[] = {B, C, D, E, F, G}; CheckLoop(order, loop1, 6); BasicBlock* loop2[] = {C, D, E, F}; CheckLoop(order, loop2, 4); BasicBlock* loop3[] = {D, E}; CheckLoop(order, loop3, 2); } TEST_F(SchedulerRPOTest, LoopFollow1) { Schedule schedule(zone()); SmartPointer loop1(CreateLoop(&schedule, 1)); SmartPointer loop2(CreateLoop(&schedule, 1)); BasicBlock* A = schedule.start(); BasicBlock* E = schedule.end(); schedule.AddSuccessorForTesting(A, loop1->header()); schedule.AddSuccessorForTesting(loop1->header(), loop2->header()); schedule.AddSuccessorForTesting(loop2->last(), E); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CHECK_EQ(static_cast(schedule.BasicBlockCount()), static_cast(order->size())); loop1->Check(order); loop2->Check(order); } TEST_F(SchedulerRPOTest, LoopFollow2) { Schedule schedule(zone()); SmartPointer loop1(CreateLoop(&schedule, 1)); SmartPointer loop2(CreateLoop(&schedule, 1)); BasicBlock* A = schedule.start(); BasicBlock* S = schedule.NewBasicBlock(); BasicBlock* E = schedule.end(); schedule.AddSuccessorForTesting(A, loop1->header()); schedule.AddSuccessorForTesting(loop1->header(), S); schedule.AddSuccessorForTesting(S, loop2->header()); schedule.AddSuccessorForTesting(loop2->last(), E); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CHECK_EQ(static_cast(schedule.BasicBlockCount()), static_cast(order->size())); loop1->Check(order); loop2->Check(order); } TEST_F(SchedulerRPOTest, LoopFollowN) { for (int size = 1; size < 5; size++) { for (int exit = 0; exit < size; exit++) { Schedule schedule(zone()); SmartPointer loop1(CreateLoop(&schedule, size)); SmartPointer loop2(CreateLoop(&schedule, size)); BasicBlock* A = schedule.start(); BasicBlock* E = schedule.end(); schedule.AddSuccessorForTesting(A, loop1->header()); schedule.AddSuccessorForTesting(loop1->nodes[exit], loop2->header()); schedule.AddSuccessorForTesting(loop2->nodes[exit], E); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CHECK_EQ(static_cast(schedule.BasicBlockCount()), static_cast(order->size())); loop1->Check(order); loop2->Check(order); } } } TEST_F(SchedulerRPOTest, NestedLoopFollow1) { Schedule schedule(zone()); SmartPointer loop1(CreateLoop(&schedule, 1)); SmartPointer loop2(CreateLoop(&schedule, 1)); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* E = schedule.end(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(B, loop1->header()); schedule.AddSuccessorForTesting(loop1->header(), loop2->header()); schedule.AddSuccessorForTesting(loop2->last(), C); schedule.AddSuccessorForTesting(C, E); schedule.AddSuccessorForTesting(C, B); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CHECK_EQ(static_cast(schedule.BasicBlockCount()), static_cast(order->size())); loop1->Check(order); loop2->Check(order); BasicBlock* loop3[] = {B, loop1->nodes[0], loop2->nodes[0], C}; CheckLoop(order, loop3, 4); } TEST_F(SchedulerRPOTest, LoopBackedges1) { int size = 8; for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* E = schedule.end(); SmartPointer loop1(CreateLoop(&schedule, size)); schedule.AddSuccessorForTesting(A, loop1->header()); schedule.AddSuccessorForTesting(loop1->last(), E); schedule.AddSuccessorForTesting(loop1->nodes[i], loop1->header()); schedule.AddSuccessorForTesting(loop1->nodes[j], E); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, schedule.BasicBlockCount(), true); loop1->Check(order); } } } TEST_F(SchedulerRPOTest, LoopOutedges1) { int size = 8; for (int i = 0; i < size; i++) { for (int j = 0; j < size; j++) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* D = schedule.NewBasicBlock(); BasicBlock* E = schedule.end(); SmartPointer loop1(CreateLoop(&schedule, size)); schedule.AddSuccessorForTesting(A, loop1->header()); schedule.AddSuccessorForTesting(loop1->last(), E); schedule.AddSuccessorForTesting(loop1->nodes[i], loop1->header()); schedule.AddSuccessorForTesting(loop1->nodes[j], D); schedule.AddSuccessorForTesting(D, E); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, schedule.BasicBlockCount(), true); loop1->Check(order); } } } TEST_F(SchedulerRPOTest, LoopOutedges2) { int size = 8; for (int i = 0; i < size; i++) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* E = schedule.end(); SmartPointer loop1(CreateLoop(&schedule, size)); schedule.AddSuccessorForTesting(A, loop1->header()); schedule.AddSuccessorForTesting(loop1->last(), E); for (int j = 0; j < size; j++) { BasicBlock* O = schedule.NewBasicBlock(); schedule.AddSuccessorForTesting(loop1->nodes[j], O); schedule.AddSuccessorForTesting(O, E); } BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, schedule.BasicBlockCount(), true); loop1->Check(order); } } TEST_F(SchedulerRPOTest, LoopOutloops1) { int size = 8; for (int i = 0; i < size; i++) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* E = schedule.end(); SmartPointer loop1(CreateLoop(&schedule, size)); schedule.AddSuccessorForTesting(A, loop1->header()); schedule.AddSuccessorForTesting(loop1->last(), E); TestLoop** loopN = new TestLoop* [size]; for (int j = 0; j < size; j++) { loopN[j] = CreateLoop(&schedule, 2); schedule.AddSuccessorForTesting(loop1->nodes[j], loopN[j]->header()); schedule.AddSuccessorForTesting(loopN[j]->last(), E); } BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, schedule.BasicBlockCount(), true); loop1->Check(order); for (int j = 0; j < size; j++) { loopN[j]->Check(order); delete loopN[j]; } delete[] loopN; } } TEST_F(SchedulerRPOTest, LoopMultibackedge) { Schedule schedule(zone()); BasicBlock* A = schedule.start(); BasicBlock* B = schedule.NewBasicBlock(); BasicBlock* C = schedule.NewBasicBlock(); BasicBlock* D = schedule.NewBasicBlock(); BasicBlock* E = schedule.NewBasicBlock(); schedule.AddSuccessorForTesting(A, B); schedule.AddSuccessorForTesting(B, C); schedule.AddSuccessorForTesting(B, D); schedule.AddSuccessorForTesting(B, E); schedule.AddSuccessorForTesting(C, B); schedule.AddSuccessorForTesting(D, B); schedule.AddSuccessorForTesting(E, B); BasicBlockVector* order = Scheduler::ComputeSpecialRPO(zone(), &schedule); CheckRPONumbers(order, 5, true); BasicBlock* loop1[] = {B, C, D, E}; CheckLoop(order, loop1, 4); } TEST_F(SchedulerTestWithIsolate, BuildScheduleIfSplitWithEffects) { const Operator* op; // Manually transcripted code for: // function turbo_fan_test(a, b, c, y) { // if (a < b) { // return a + b - c * c - a + y; // } else { // return c * c - a; // } // } op = common()->Start(0); Node* n0 = graph()->NewNode(op); USE(n0); Node* nil = graph()->NewNode(common()->Dead()); op = common()->End(); Node* n23 = graph()->NewNode(op, nil); USE(n23); op = common()->Merge(2); Node* n22 = graph()->NewNode(op, nil, nil); USE(n22); op = common()->Return(); Node* n16 = graph()->NewNode(op, nil, nil, nil); USE(n16); op = js()->Add(); Node* n15 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n15); op = js()->Subtract(); Node* n14 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n14); op = js()->Subtract(); Node* n13 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n13); op = js()->Add(); Node* n11 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n11); op = common()->Parameter(0); Node* n2 = graph()->NewNode(op, n0); USE(n2); n11->ReplaceInput(0, n2); op = common()->Parameter(0); Node* n3 = graph()->NewNode(op, n0); USE(n3); n11->ReplaceInput(1, n3); op = common()->HeapConstant(GetUniqueUndefined()); Node* n7 = graph()->NewNode(op); USE(n7); n11->ReplaceInput(2, n7); op = js()->LessThan(); Node* n8 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n8); n8->ReplaceInput(0, n2); n8->ReplaceInput(1, n3); n8->ReplaceInput(2, n7); n8->ReplaceInput(3, n0); n8->ReplaceInput(4, n0); n11->ReplaceInput(3, n8); op = common()->IfTrue(); Node* n10 = graph()->NewNode(op, nil); USE(n10); op = common()->Branch(); Node* n9 = graph()->NewNode(op, nil, nil); USE(n9); n9->ReplaceInput(0, n8); n9->ReplaceInput(1, n0); n10->ReplaceInput(0, n9); n11->ReplaceInput(4, n10); n13->ReplaceInput(0, n11); op = js()->Multiply(); Node* n12 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n12); op = common()->Parameter(0); Node* n4 = graph()->NewNode(op, n0); USE(n4); n12->ReplaceInput(0, n4); n12->ReplaceInput(1, n4); n12->ReplaceInput(2, n7); n12->ReplaceInput(3, n11); n12->ReplaceInput(4, n10); n13->ReplaceInput(1, n12); n13->ReplaceInput(2, n7); n13->ReplaceInput(3, n12); n13->ReplaceInput(4, n10); n14->ReplaceInput(0, n13); n14->ReplaceInput(1, n2); n14->ReplaceInput(2, n7); n14->ReplaceInput(3, n13); n14->ReplaceInput(4, n10); n15->ReplaceInput(0, n14); op = common()->Parameter(0); Node* n5 = graph()->NewNode(op, n0); USE(n5); n15->ReplaceInput(1, n5); n15->ReplaceInput(2, n7); n15->ReplaceInput(3, n14); n15->ReplaceInput(4, n10); n16->ReplaceInput(0, n15); n16->ReplaceInput(1, n15); n16->ReplaceInput(2, n10); n22->ReplaceInput(0, n16); op = common()->Return(); Node* n21 = graph()->NewNode(op, nil, nil, nil); USE(n21); op = js()->Subtract(); Node* n20 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n20); op = js()->Multiply(); Node* n19 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n19); n19->ReplaceInput(0, n4); n19->ReplaceInput(1, n4); n19->ReplaceInput(2, n7); n19->ReplaceInput(3, n8); op = common()->IfFalse(); Node* n18 = graph()->NewNode(op, nil); USE(n18); n18->ReplaceInput(0, n9); n19->ReplaceInput(4, n18); n20->ReplaceInput(0, n19); n20->ReplaceInput(1, n2); n20->ReplaceInput(2, n7); n20->ReplaceInput(3, n19); n20->ReplaceInput(4, n18); n21->ReplaceInput(0, n20); n21->ReplaceInput(1, n20); n21->ReplaceInput(2, n18); n22->ReplaceInput(1, n21); n23->ReplaceInput(0, n22); graph()->SetStart(n0); graph()->SetEnd(n23); ComputeAndVerifySchedule(20, graph()); } TEST_F(SchedulerTestWithIsolate, BuildScheduleSimpleLoop) { const Operator* op; // Manually transcripted code for: // function turbo_fan_test(a, b) { // while (a < b) { // a++; // } // return a; // } op = common()->Start(0); Node* n0 = graph()->NewNode(op); USE(n0); Node* nil = graph()->NewNode(common()->Dead()); op = common()->End(); Node* n20 = graph()->NewNode(op, nil); USE(n20); op = common()->Return(); Node* n19 = graph()->NewNode(op, nil, nil, nil); USE(n19); op = common()->Phi(kMachAnyTagged, 2); Node* n8 = graph()->NewNode(op, nil, nil, nil); USE(n8); op = common()->Parameter(0); Node* n2 = graph()->NewNode(op, n0); USE(n2); n8->ReplaceInput(0, n2); op = js()->Add(); Node* n18 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n18); op = js()->ToNumber(); Node* n16 = graph()->NewNode(op, nil, nil, nil, nil); USE(n16); n16->ReplaceInput(0, n8); op = common()->HeapConstant(GetUniqueUndefined()); Node* n5 = graph()->NewNode(op); USE(n5); n16->ReplaceInput(1, n5); op = js()->LessThan(); Node* n12 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n12); n12->ReplaceInput(0, n8); op = common()->Phi(kMachAnyTagged, 2); Node* n9 = graph()->NewNode(op, nil, nil, nil); USE(n9); op = common()->Parameter(0); Node* n3 = graph()->NewNode(op, n0); USE(n3); n9->ReplaceInput(0, n3); n9->ReplaceInput(1, n9); op = common()->Loop(2); Node* n6 = graph()->NewNode(op, nil, nil); USE(n6); n6->ReplaceInput(0, n0); op = common()->IfTrue(); Node* n14 = graph()->NewNode(op, nil); USE(n14); op = common()->Branch(); Node* n13 = graph()->NewNode(op, nil, nil); USE(n13); n13->ReplaceInput(0, n12); n13->ReplaceInput(1, n6); n14->ReplaceInput(0, n13); n6->ReplaceInput(1, n14); n9->ReplaceInput(2, n6); n12->ReplaceInput(1, n9); n12->ReplaceInput(2, n5); op = common()->Phi(kMachAnyTagged, 2); Node* n10 = graph()->NewNode(op, nil, nil, nil); USE(n10); n10->ReplaceInput(0, n0); n10->ReplaceInput(1, n18); n10->ReplaceInput(2, n6); n12->ReplaceInput(3, n10); n12->ReplaceInput(4, n6); n16->ReplaceInput(2, n12); n16->ReplaceInput(3, n14); n18->ReplaceInput(0, n16); op = common()->NumberConstant(0); Node* n17 = graph()->NewNode(op); USE(n17); n18->ReplaceInput(1, n17); n18->ReplaceInput(2, n5); n18->ReplaceInput(3, n16); n18->ReplaceInput(4, n14); n8->ReplaceInput(1, n18); n8->ReplaceInput(2, n6); n19->ReplaceInput(0, n8); n19->ReplaceInput(1, n12); op = common()->IfFalse(); Node* n15 = graph()->NewNode(op, nil); USE(n15); n15->ReplaceInput(0, n13); n19->ReplaceInput(2, n15); n20->ReplaceInput(0, n19); graph()->SetStart(n0); graph()->SetEnd(n20); ComputeAndVerifySchedule(19, graph()); } TEST_F(SchedulerTestWithIsolate, BuildScheduleComplexLoops) { const Operator* op; // Manually transcripted code for: // function turbo_fan_test(a, b, c) { // while (a < b) { // a++; // while (c < b) { // c++; // } // } // while (a < b) { // a += 2; // } // return a; // } op = common()->Start(0); Node* n0 = graph()->NewNode(op); USE(n0); Node* nil = graph()->NewNode(common()->Dead()); op = common()->End(); Node* n46 = graph()->NewNode(op, nil); USE(n46); op = common()->Return(); Node* n45 = graph()->NewNode(op, nil, nil, nil); USE(n45); op = common()->Phi(kMachAnyTagged, 2); Node* n35 = graph()->NewNode(op, nil, nil, nil); USE(n35); op = common()->Phi(kMachAnyTagged, 2); Node* n9 = graph()->NewNode(op, nil, nil, nil); USE(n9); op = common()->Parameter(0); Node* n2 = graph()->NewNode(op, n0); USE(n2); n9->ReplaceInput(0, n2); op = common()->Phi(kMachAnyTagged, 2); Node* n23 = graph()->NewNode(op, nil, nil, nil); USE(n23); op = js()->Add(); Node* n20 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n20); op = js()->ToNumber(); Node* n18 = graph()->NewNode(op, nil, nil, nil, nil); USE(n18); n18->ReplaceInput(0, n9); op = common()->HeapConstant(GetUniqueUndefined()); Node* n6 = graph()->NewNode(op); USE(n6); n18->ReplaceInput(1, n6); op = js()->LessThan(); Node* n14 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n14); n14->ReplaceInput(0, n9); op = common()->Phi(kMachAnyTagged, 2); Node* n10 = graph()->NewNode(op, nil, nil, nil); USE(n10); op = common()->Parameter(0); Node* n3 = graph()->NewNode(op, n0); USE(n3); n10->ReplaceInput(0, n3); op = common()->Phi(kMachAnyTagged, 2); Node* n24 = graph()->NewNode(op, nil, nil, nil); USE(n24); n24->ReplaceInput(0, n10); n24->ReplaceInput(1, n24); op = common()->Loop(2); Node* n21 = graph()->NewNode(op, nil, nil); USE(n21); op = common()->IfTrue(); Node* n16 = graph()->NewNode(op, nil); USE(n16); op = common()->Branch(); Node* n15 = graph()->NewNode(op, nil, nil); USE(n15); n15->ReplaceInput(0, n14); op = common()->Loop(2); Node* n7 = graph()->NewNode(op, nil, nil); USE(n7); n7->ReplaceInput(0, n0); op = common()->IfFalse(); Node* n30 = graph()->NewNode(op, nil); USE(n30); op = common()->Branch(); Node* n28 = graph()->NewNode(op, nil, nil); USE(n28); op = js()->LessThan(); Node* n27 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n27); op = common()->Phi(kMachAnyTagged, 2); Node* n25 = graph()->NewNode(op, nil, nil, nil); USE(n25); op = common()->Phi(kMachAnyTagged, 2); Node* n11 = graph()->NewNode(op, nil, nil, nil); USE(n11); op = common()->Parameter(0); Node* n4 = graph()->NewNode(op, n0); USE(n4); n11->ReplaceInput(0, n4); n11->ReplaceInput(1, n25); n11->ReplaceInput(2, n7); n25->ReplaceInput(0, n11); op = js()->Add(); Node* n32 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n32); op = js()->ToNumber(); Node* n31 = graph()->NewNode(op, nil, nil, nil, nil); USE(n31); n31->ReplaceInput(0, n25); n31->ReplaceInput(1, n6); n31->ReplaceInput(2, n27); op = common()->IfTrue(); Node* n29 = graph()->NewNode(op, nil); USE(n29); n29->ReplaceInput(0, n28); n31->ReplaceInput(3, n29); n32->ReplaceInput(0, n31); op = common()->NumberConstant(0); Node* n19 = graph()->NewNode(op); USE(n19); n32->ReplaceInput(1, n19); n32->ReplaceInput(2, n6); n32->ReplaceInput(3, n31); n32->ReplaceInput(4, n29); n25->ReplaceInput(1, n32); n25->ReplaceInput(2, n21); n27->ReplaceInput(0, n25); n27->ReplaceInput(1, n24); n27->ReplaceInput(2, n6); op = common()->Phi(kMachAnyTagged, 2); Node* n26 = graph()->NewNode(op, nil, nil, nil); USE(n26); n26->ReplaceInput(0, n20); n26->ReplaceInput(1, n32); n26->ReplaceInput(2, n21); n27->ReplaceInput(3, n26); n27->ReplaceInput(4, n21); n28->ReplaceInput(0, n27); n28->ReplaceInput(1, n21); n30->ReplaceInput(0, n28); n7->ReplaceInput(1, n30); n15->ReplaceInput(1, n7); n16->ReplaceInput(0, n15); n21->ReplaceInput(0, n16); n21->ReplaceInput(1, n29); n24->ReplaceInput(2, n21); n10->ReplaceInput(1, n24); n10->ReplaceInput(2, n7); n14->ReplaceInput(1, n10); n14->ReplaceInput(2, n6); op = common()->Phi(kMachAnyTagged, 2); Node* n12 = graph()->NewNode(op, nil, nil, nil); USE(n12); n12->ReplaceInput(0, n0); n12->ReplaceInput(1, n27); n12->ReplaceInput(2, n7); n14->ReplaceInput(3, n12); n14->ReplaceInput(4, n7); n18->ReplaceInput(2, n14); n18->ReplaceInput(3, n16); n20->ReplaceInput(0, n18); n20->ReplaceInput(1, n19); n20->ReplaceInput(2, n6); n20->ReplaceInput(3, n18); n20->ReplaceInput(4, n16); n23->ReplaceInput(0, n20); n23->ReplaceInput(1, n23); n23->ReplaceInput(2, n21); n9->ReplaceInput(1, n23); n9->ReplaceInput(2, n7); n35->ReplaceInput(0, n9); op = js()->Add(); Node* n44 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n44); n44->ReplaceInput(0, n35); op = common()->NumberConstant(0); Node* n43 = graph()->NewNode(op); USE(n43); n44->ReplaceInput(1, n43); n44->ReplaceInput(2, n6); op = js()->LessThan(); Node* n39 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n39); n39->ReplaceInput(0, n35); op = common()->Phi(kMachAnyTagged, 2); Node* n36 = graph()->NewNode(op, nil, nil, nil); USE(n36); n36->ReplaceInput(0, n10); n36->ReplaceInput(1, n36); op = common()->Loop(2); Node* n33 = graph()->NewNode(op, nil, nil); USE(n33); op = common()->IfFalse(); Node* n17 = graph()->NewNode(op, nil); USE(n17); n17->ReplaceInput(0, n15); n33->ReplaceInput(0, n17); op = common()->IfTrue(); Node* n41 = graph()->NewNode(op, nil); USE(n41); op = common()->Branch(); Node* n40 = graph()->NewNode(op, nil, nil); USE(n40); n40->ReplaceInput(0, n39); n40->ReplaceInput(1, n33); n41->ReplaceInput(0, n40); n33->ReplaceInput(1, n41); n36->ReplaceInput(2, n33); n39->ReplaceInput(1, n36); n39->ReplaceInput(2, n6); op = common()->Phi(kMachAnyTagged, 2); Node* n38 = graph()->NewNode(op, nil, nil, nil); USE(n38); n38->ReplaceInput(0, n14); n38->ReplaceInput(1, n44); n38->ReplaceInput(2, n33); n39->ReplaceInput(3, n38); n39->ReplaceInput(4, n33); n44->ReplaceInput(3, n39); n44->ReplaceInput(4, n41); n35->ReplaceInput(1, n44); n35->ReplaceInput(2, n33); n45->ReplaceInput(0, n35); n45->ReplaceInput(1, n39); op = common()->IfFalse(); Node* n42 = graph()->NewNode(op, nil); USE(n42); n42->ReplaceInput(0, n40); n45->ReplaceInput(2, n42); n46->ReplaceInput(0, n45); graph()->SetStart(n0); graph()->SetEnd(n46); ComputeAndVerifySchedule(46, graph()); } TEST_F(SchedulerTestWithIsolate, BuildScheduleBreakAndContinue) { const Operator* op; // Manually transcripted code for: // function turbo_fan_test(a, b, c) { // var d = 0; // while (a < b) { // a++; // while (c < b) { // c++; // if (d == 0) break; // a++; // } // if (a == 1) continue; // d++; // } // return a + d; // } op = common()->Start(0); Node* n0 = graph()->NewNode(op); USE(n0); Node* nil = graph()->NewNode(common()->Dead()); op = common()->End(); Node* n58 = graph()->NewNode(op, nil); USE(n58); op = common()->Return(); Node* n57 = graph()->NewNode(op, nil, nil, nil); USE(n57); op = js()->Add(); Node* n56 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n56); op = common()->Phi(kMachAnyTagged, 2); Node* n10 = graph()->NewNode(op, nil, nil, nil); USE(n10); op = common()->Parameter(0); Node* n2 = graph()->NewNode(op, n0); USE(n2); n10->ReplaceInput(0, n2); op = common()->Phi(kMachAnyTagged, 2); Node* n25 = graph()->NewNode(op, nil, nil, nil); USE(n25); op = js()->Add(); Node* n22 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n22); op = js()->ToNumber(); Node* n20 = graph()->NewNode(op, nil, nil, nil, nil); USE(n20); n20->ReplaceInput(0, n10); op = common()->HeapConstant(GetUniqueUndefined()); Node* n6 = graph()->NewNode(op); USE(n6); n20->ReplaceInput(1, n6); op = js()->LessThan(); Node* n16 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n16); n16->ReplaceInput(0, n10); op = common()->Phi(kMachAnyTagged, 2); Node* n11 = graph()->NewNode(op, nil, nil, nil); USE(n11); op = common()->Parameter(0); Node* n3 = graph()->NewNode(op, n0); USE(n3); n11->ReplaceInput(0, n3); op = common()->Phi(kMachAnyTagged, 2); Node* n26 = graph()->NewNode(op, nil, nil, nil); USE(n26); n26->ReplaceInput(0, n11); n26->ReplaceInput(1, n26); op = common()->Loop(2); Node* n23 = graph()->NewNode(op, nil, nil); USE(n23); op = common()->IfTrue(); Node* n18 = graph()->NewNode(op, nil); USE(n18); op = common()->Branch(); Node* n17 = graph()->NewNode(op, nil, nil); USE(n17); n17->ReplaceInput(0, n16); op = common()->Loop(2); Node* n8 = graph()->NewNode(op, nil, nil); USE(n8); n8->ReplaceInput(0, n0); op = common()->Merge(2); Node* n53 = graph()->NewNode(op, nil, nil); USE(n53); op = common()->IfTrue(); Node* n49 = graph()->NewNode(op, nil); USE(n49); op = common()->Branch(); Node* n48 = graph()->NewNode(op, nil, nil); USE(n48); op = js()->Equal(); Node* n47 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n47); n47->ReplaceInput(0, n25); op = common()->NumberConstant(0); Node* n46 = graph()->NewNode(op); USE(n46); n47->ReplaceInput(1, n46); n47->ReplaceInput(2, n6); op = common()->Phi(kMachAnyTagged, 2); Node* n42 = graph()->NewNode(op, nil, nil, nil); USE(n42); op = js()->LessThan(); Node* n30 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n30); op = common()->Phi(kMachAnyTagged, 2); Node* n27 = graph()->NewNode(op, nil, nil, nil); USE(n27); op = common()->Phi(kMachAnyTagged, 2); Node* n12 = graph()->NewNode(op, nil, nil, nil); USE(n12); op = common()->Parameter(0); Node* n4 = graph()->NewNode(op, n0); USE(n4); n12->ReplaceInput(0, n4); op = common()->Phi(kMachAnyTagged, 2); Node* n41 = graph()->NewNode(op, nil, nil, nil); USE(n41); n41->ReplaceInput(0, n27); op = js()->Add(); Node* n35 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n35); op = js()->ToNumber(); Node* n34 = graph()->NewNode(op, nil, nil, nil, nil); USE(n34); n34->ReplaceInput(0, n27); n34->ReplaceInput(1, n6); n34->ReplaceInput(2, n30); op = common()->IfTrue(); Node* n32 = graph()->NewNode(op, nil); USE(n32); op = common()->Branch(); Node* n31 = graph()->NewNode(op, nil, nil); USE(n31); n31->ReplaceInput(0, n30); n31->ReplaceInput(1, n23); n32->ReplaceInput(0, n31); n34->ReplaceInput(3, n32); n35->ReplaceInput(0, n34); op = common()->NumberConstant(0); Node* n21 = graph()->NewNode(op); USE(n21); n35->ReplaceInput(1, n21); n35->ReplaceInput(2, n6); n35->ReplaceInput(3, n34); n35->ReplaceInput(4, n32); n41->ReplaceInput(1, n35); op = common()->Merge(2); Node* n40 = graph()->NewNode(op, nil, nil); USE(n40); op = common()->IfFalse(); Node* n33 = graph()->NewNode(op, nil); USE(n33); n33->ReplaceInput(0, n31); n40->ReplaceInput(0, n33); op = common()->IfTrue(); Node* n39 = graph()->NewNode(op, nil); USE(n39); op = common()->Branch(); Node* n38 = graph()->NewNode(op, nil, nil); USE(n38); op = js()->Equal(); Node* n37 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n37); op = common()->Phi(kMachAnyTagged, 2); Node* n28 = graph()->NewNode(op, nil, nil, nil); USE(n28); op = common()->Phi(kMachAnyTagged, 2); Node* n13 = graph()->NewNode(op, nil, nil, nil); USE(n13); op = common()->NumberConstant(0); Node* n7 = graph()->NewNode(op); USE(n7); n13->ReplaceInput(0, n7); op = common()->Phi(kMachAnyTagged, 2); Node* n54 = graph()->NewNode(op, nil, nil, nil); USE(n54); n54->ReplaceInput(0, n28); op = js()->Add(); Node* n52 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n52); op = js()->ToNumber(); Node* n51 = graph()->NewNode(op, nil, nil, nil, nil); USE(n51); n51->ReplaceInput(0, n28); n51->ReplaceInput(1, n6); n51->ReplaceInput(2, n47); op = common()->IfFalse(); Node* n50 = graph()->NewNode(op, nil); USE(n50); n50->ReplaceInput(0, n48); n51->ReplaceInput(3, n50); n52->ReplaceInput(0, n51); n52->ReplaceInput(1, n21); n52->ReplaceInput(2, n6); n52->ReplaceInput(3, n51); n52->ReplaceInput(4, n50); n54->ReplaceInput(1, n52); n54->ReplaceInput(2, n53); n13->ReplaceInput(1, n54); n13->ReplaceInput(2, n8); n28->ReplaceInput(0, n13); n28->ReplaceInput(1, n28); n28->ReplaceInput(2, n23); n37->ReplaceInput(0, n28); op = common()->NumberConstant(0); Node* n36 = graph()->NewNode(op); USE(n36); n37->ReplaceInput(1, n36); n37->ReplaceInput(2, n6); n37->ReplaceInput(3, n35); n37->ReplaceInput(4, n32); n38->ReplaceInput(0, n37); n38->ReplaceInput(1, n32); n39->ReplaceInput(0, n38); n40->ReplaceInput(1, n39); n41->ReplaceInput(2, n40); n12->ReplaceInput(1, n41); n12->ReplaceInput(2, n8); n27->ReplaceInput(0, n12); n27->ReplaceInput(1, n35); n27->ReplaceInput(2, n23); n30->ReplaceInput(0, n27); n30->ReplaceInput(1, n26); n30->ReplaceInput(2, n6); op = common()->Phi(kMachAnyTagged, 2); Node* n29 = graph()->NewNode(op, nil, nil, nil); USE(n29); n29->ReplaceInput(0, n22); op = js()->Add(); Node* n45 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n45); op = js()->ToNumber(); Node* n44 = graph()->NewNode(op, nil, nil, nil, nil); USE(n44); n44->ReplaceInput(0, n25); n44->ReplaceInput(1, n6); n44->ReplaceInput(2, n37); op = common()->IfFalse(); Node* n43 = graph()->NewNode(op, nil); USE(n43); n43->ReplaceInput(0, n38); n44->ReplaceInput(3, n43); n45->ReplaceInput(0, n44); n45->ReplaceInput(1, n21); n45->ReplaceInput(2, n6); n45->ReplaceInput(3, n44); n45->ReplaceInput(4, n43); n29->ReplaceInput(1, n45); n29->ReplaceInput(2, n23); n30->ReplaceInput(3, n29); n30->ReplaceInput(4, n23); n42->ReplaceInput(0, n30); n42->ReplaceInput(1, n37); n42->ReplaceInput(2, n40); n47->ReplaceInput(3, n42); n47->ReplaceInput(4, n40); n48->ReplaceInput(0, n47); n48->ReplaceInput(1, n40); n49->ReplaceInput(0, n48); n53->ReplaceInput(0, n49); n53->ReplaceInput(1, n50); n8->ReplaceInput(1, n53); n17->ReplaceInput(1, n8); n18->ReplaceInput(0, n17); n23->ReplaceInput(0, n18); n23->ReplaceInput(1, n43); n26->ReplaceInput(2, n23); n11->ReplaceInput(1, n26); n11->ReplaceInput(2, n8); n16->ReplaceInput(1, n11); n16->ReplaceInput(2, n6); op = common()->Phi(kMachAnyTagged, 2); Node* n14 = graph()->NewNode(op, nil, nil, nil); USE(n14); n14->ReplaceInput(0, n0); op = common()->Phi(kMachAnyTagged, 2); Node* n55 = graph()->NewNode(op, nil, nil, nil); USE(n55); n55->ReplaceInput(0, n47); n55->ReplaceInput(1, n52); n55->ReplaceInput(2, n53); n14->ReplaceInput(1, n55); n14->ReplaceInput(2, n8); n16->ReplaceInput(3, n14); n16->ReplaceInput(4, n8); n20->ReplaceInput(2, n16); n20->ReplaceInput(3, n18); n22->ReplaceInput(0, n20); n22->ReplaceInput(1, n21); n22->ReplaceInput(2, n6); n22->ReplaceInput(3, n20); n22->ReplaceInput(4, n18); n25->ReplaceInput(0, n22); n25->ReplaceInput(1, n45); n25->ReplaceInput(2, n23); n10->ReplaceInput(1, n25); n10->ReplaceInput(2, n8); n56->ReplaceInput(0, n10); n56->ReplaceInput(1, n13); n56->ReplaceInput(2, n6); n56->ReplaceInput(3, n16); op = common()->IfFalse(); Node* n19 = graph()->NewNode(op, nil); USE(n19); n19->ReplaceInput(0, n17); n56->ReplaceInput(4, n19); n57->ReplaceInput(0, n56); n57->ReplaceInput(1, n56); n57->ReplaceInput(2, n19); n58->ReplaceInput(0, n57); graph()->SetStart(n0); graph()->SetEnd(n58); ComputeAndVerifySchedule(62, graph()); } TEST_F(SchedulerTestWithIsolate, BuildScheduleSimpleLoopWithCodeMotion) { const Operator* op; // Manually transcripted code for: // function turbo_fan_test(a, b, c) { // while (a < b) { // a += b + c; // } // return a; // } op = common()->Start(0); Node* n0 = graph()->NewNode(op); USE(n0); Node* nil = graph()->NewNode(common()->Dead()); op = common()->End(); Node* n22 = graph()->NewNode(op, nil); USE(n22); op = common()->Return(); Node* n21 = graph()->NewNode(op, nil, nil, nil); USE(n21); op = common()->Phi(kMachAnyTagged, 2); Node* n9 = graph()->NewNode(op, nil, nil, nil); USE(n9); op = common()->Parameter(0); Node* n2 = graph()->NewNode(op, n0); USE(n2); n9->ReplaceInput(0, n2); op = js()->Add(); Node* n20 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n20); n20->ReplaceInput(0, n9); op = &kIntAdd; Node* n19 = graph()->NewNode(op, nil, nil); USE(n19); op = common()->Phi(kMachAnyTagged, 2); Node* n10 = graph()->NewNode(op, nil, nil, nil); USE(n10); op = common()->Parameter(0); Node* n3 = graph()->NewNode(op, n0); USE(n3); n10->ReplaceInput(0, n3); n10->ReplaceInput(1, n10); op = common()->Loop(2); Node* n7 = graph()->NewNode(op, nil, nil); USE(n7); n7->ReplaceInput(0, n0); op = common()->IfTrue(); Node* n17 = graph()->NewNode(op, nil); USE(n17); op = common()->Branch(); Node* n16 = graph()->NewNode(op, nil, nil); USE(n16); op = js()->ToBoolean(); Node* n15 = graph()->NewNode(op, nil, nil, nil, nil); USE(n15); op = js()->LessThan(); Node* n14 = graph()->NewNode(op, nil, nil, nil, nil, nil); USE(n14); n14->ReplaceInput(0, n9); n14->ReplaceInput(1, n10); op = common()->HeapConstant(GetUniqueUndefined()); Node* n6 = graph()->NewNode(op); USE(n6); n14->ReplaceInput(2, n6); op = common()->Phi(kMachAnyTagged, 2); Node* n12 = graph()->NewNode(op, nil, nil, nil); USE(n12); n12->ReplaceInput(0, n0); n12->ReplaceInput(1, n20); n12->ReplaceInput(2, n7); n14->ReplaceInput(3, n12); n14->ReplaceInput(4, n7); n15->ReplaceInput(0, n14); n15->ReplaceInput(1, n6); n15->ReplaceInput(2, n14); n15->ReplaceInput(3, n7); n16->ReplaceInput(0, n15); n16->ReplaceInput(1, n7); n17->ReplaceInput(0, n16); n7->ReplaceInput(1, n17); n10->ReplaceInput(2, n7); n19->ReplaceInput(0, n2); op = common()->Phi(kMachAnyTagged, 2); Node* n11 = graph()->NewNode(op, nil, nil, nil); USE(n11); op = common()->Parameter(0); Node* n4 = graph()->NewNode(op, n0); USE(n4); n11->ReplaceInput(0, n4); n11->ReplaceInput(1, n11); n11->ReplaceInput(2, n7); n19->ReplaceInput(1, n3); n20->ReplaceInput(1, n19); n20->ReplaceInput(2, n6); n20->ReplaceInput(3, n19); n20->ReplaceInput(4, n17); n9->ReplaceInput(1, n20); n9->ReplaceInput(2, n7); n21->ReplaceInput(0, n9); n21->ReplaceInput(1, n15); op = common()->IfFalse(); Node* n18 = graph()->NewNode(op, nil); USE(n18); n18->ReplaceInput(0, n16); n21->ReplaceInput(2, n18); n22->ReplaceInput(0, n21); graph()->SetStart(n0); graph()->SetEnd(n22); Schedule* schedule = ComputeAndVerifySchedule(19, graph()); // Make sure the integer-only add gets hoisted to a different block that the // JSAdd. CHECK(schedule->block(n19) != schedule->block(n20)); } namespace { Node* CreateDiamond(Graph* graph, CommonOperatorBuilder* common, Node* cond) { Node* tv = graph->NewNode(common->Int32Constant(6)); Node* fv = graph->NewNode(common->Int32Constant(7)); Node* br = graph->NewNode(common->Branch(), cond, graph->start()); Node* t = graph->NewNode(common->IfTrue(), br); Node* f = graph->NewNode(common->IfFalse(), br); Node* m = graph->NewNode(common->Merge(2), t, f); Node* phi = graph->NewNode(common->Phi(kMachAnyTagged, 2), tv, fv, m); return phi; } } // namespace TARGET_TEST_F(SchedulerTest, FloatingDiamond1) { Node* start = graph()->NewNode(common()->Start(1)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* d1 = CreateDiamond(graph(), common(), p0); Node* ret = graph()->NewNode(common()->Return(), d1, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); ComputeAndVerifySchedule(13, graph()); } TARGET_TEST_F(SchedulerTest, FloatingDiamond2) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* p1 = graph()->NewNode(common()->Parameter(1), start); Node* d1 = CreateDiamond(graph(), common(), p0); Node* d2 = CreateDiamond(graph(), common(), p1); Node* add = graph()->NewNode(&kIntAdd, d1, d2); Node* ret = graph()->NewNode(common()->Return(), add, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); ComputeAndVerifySchedule(24, graph()); } TARGET_TEST_F(SchedulerTest, FloatingDiamond3) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* p1 = graph()->NewNode(common()->Parameter(1), start); Node* d1 = CreateDiamond(graph(), common(), p0); Node* d2 = CreateDiamond(graph(), common(), p1); Node* add = graph()->NewNode(&kIntAdd, d1, d2); Node* d3 = CreateDiamond(graph(), common(), add); Node* ret = graph()->NewNode(common()->Return(), d3, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); ComputeAndVerifySchedule(33, graph()); } TARGET_TEST_F(SchedulerTest, NestedFloatingDiamonds) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* fv = graph()->NewNode(common()->Int32Constant(7)); Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start()); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); Node* map = graph()->NewNode( simplified()->LoadElement(AccessBuilder::ForFixedArrayElement()), p0, p0, p0, start, f); Node* br1 = graph()->NewNode(common()->Branch(), map, graph()->start()); Node* t1 = graph()->NewNode(common()->IfTrue(), br1); Node* f1 = graph()->NewNode(common()->IfFalse(), br1); Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1); Node* ttrue = graph()->NewNode(common()->Int32Constant(1)); Node* ffalse = graph()->NewNode(common()->Int32Constant(0)); Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), ttrue, ffalse, m1); Node* m = graph()->NewNode(common()->Merge(2), t, f); Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), fv, phi1, m); Node* ephi1 = graph()->NewNode(common()->EffectPhi(2), start, map, m); Node* ret = graph()->NewNode(common()->Return(), phi, ephi1, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); ComputeAndVerifySchedule(23, graph()); } TARGET_TEST_F(SchedulerTest, NestedFloatingDiamondWithChain) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* p1 = graph()->NewNode(common()->Parameter(1), start); Node* c = graph()->NewNode(common()->Int32Constant(7)); Node* brA1 = graph()->NewNode(common()->Branch(), p0, graph()->start()); Node* tA1 = graph()->NewNode(common()->IfTrue(), brA1); Node* fA1 = graph()->NewNode(common()->IfFalse(), brA1); Node* mA1 = graph()->NewNode(common()->Merge(2), tA1, fA1); Node* phiA1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p1, mA1); Node* brB1 = graph()->NewNode(common()->Branch(), p1, graph()->start()); Node* tB1 = graph()->NewNode(common()->IfTrue(), brB1); Node* fB1 = graph()->NewNode(common()->IfFalse(), brB1); Node* mB1 = graph()->NewNode(common()->Merge(2), tB1, fB1); Node* phiB1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p1, mB1); Node* brA2 = graph()->NewNode(common()->Branch(), phiB1, mA1); Node* tA2 = graph()->NewNode(common()->IfTrue(), brA2); Node* fA2 = graph()->NewNode(common()->IfFalse(), brA2); Node* mA2 = graph()->NewNode(common()->Merge(2), tA2, fA2); Node* phiA2 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phiB1, c, mA2); Node* brB2 = graph()->NewNode(common()->Branch(), phiA1, mB1); Node* tB2 = graph()->NewNode(common()->IfTrue(), brB2); Node* fB2 = graph()->NewNode(common()->IfFalse(), brB2); Node* mB2 = graph()->NewNode(common()->Merge(2), tB2, fB2); Node* phiB2 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phiA1, c, mB2); Node* add = graph()->NewNode(&kIntAdd, phiA2, phiB2); Node* ret = graph()->NewNode(common()->Return(), add, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); ComputeAndVerifySchedule(35, graph()); } TARGET_TEST_F(SchedulerTest, NestedFloatingDiamondWithLoop) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* fv = graph()->NewNode(common()->Int32Constant(7)); Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start()); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); Node* loop = graph()->NewNode(common()->Loop(2), f, start); Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop); Node* add = graph()->NewNode(&kIntAdd, ind, fv); Node* br1 = graph()->NewNode(common()->Branch(), add, loop); Node* t1 = graph()->NewNode(common()->IfTrue(), br1); Node* f1 = graph()->NewNode(common()->IfFalse(), br1); loop->ReplaceInput(1, t1); // close loop. ind->ReplaceInput(1, ind); // close induction variable. Node* m = graph()->NewNode(common()->Merge(2), t, f1); Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), fv, ind, m); Node* ret = graph()->NewNode(common()->Return(), phi, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); ComputeAndVerifySchedule(20, graph()); } TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond1) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* c = graph()->NewNode(common()->Int32Constant(7)); Node* loop = graph()->NewNode(common()->Loop(2), start, start); Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop); Node* add = graph()->NewNode(&kIntAdd, ind, c); Node* br = graph()->NewNode(common()->Branch(), add, loop); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start()); Node* t1 = graph()->NewNode(common()->IfTrue(), br1); Node* f1 = graph()->NewNode(common()->IfFalse(), br1); Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1); Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), add, p0, m1); loop->ReplaceInput(1, t); // close loop. ind->ReplaceInput(1, phi1); // close induction variable. Node* ret = graph()->NewNode(common()->Return(), ind, start, f); Node* end = graph()->NewNode(common()->End(), ret, f); graph()->SetEnd(end); ComputeAndVerifySchedule(20, graph()); } TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond2) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* c = graph()->NewNode(common()->Int32Constant(7)); Node* loop = graph()->NewNode(common()->Loop(2), start, start); Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop); Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start()); Node* t1 = graph()->NewNode(common()->IfTrue(), br1); Node* f1 = graph()->NewNode(common()->IfFalse(), br1); Node* m1 = graph()->NewNode(common()->Merge(2), t1, f1); Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), c, ind, m1); Node* add = graph()->NewNode(&kIntAdd, ind, phi1); Node* br = graph()->NewNode(common()->Branch(), add, loop); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); loop->ReplaceInput(1, t); // close loop. ind->ReplaceInput(1, add); // close induction variable. Node* ret = graph()->NewNode(common()->Return(), ind, start, f); Node* end = graph()->NewNode(common()->End(), ret, f); graph()->SetEnd(end); ComputeAndVerifySchedule(20, graph()); } TARGET_TEST_F(SchedulerTest, LoopedFloatingDiamond3) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* c = graph()->NewNode(common()->Int32Constant(7)); Node* loop = graph()->NewNode(common()->Loop(2), start, start); Node* ind = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop); Node* br1 = graph()->NewNode(common()->Branch(), p0, graph()->start()); Node* t1 = graph()->NewNode(common()->IfTrue(), br1); Node* f1 = graph()->NewNode(common()->IfFalse(), br1); Node* loop1 = graph()->NewNode(common()->Loop(2), t1, start); Node* ind1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), p0, p0, loop); Node* add1 = graph()->NewNode(&kIntAdd, ind1, c); Node* br2 = graph()->NewNode(common()->Branch(), add1, loop1); Node* t2 = graph()->NewNode(common()->IfTrue(), br2); Node* f2 = graph()->NewNode(common()->IfFalse(), br2); loop1->ReplaceInput(1, t2); // close inner loop. ind1->ReplaceInput(1, ind1); // close inner induction variable. Node* m1 = graph()->NewNode(common()->Merge(2), f1, f2); Node* phi1 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), c, ind1, m1); Node* add = graph()->NewNode(&kIntAdd, ind, phi1); Node* br = graph()->NewNode(common()->Branch(), add, loop); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); loop->ReplaceInput(1, t); // close loop. ind->ReplaceInput(1, add); // close induction variable. Node* ret = graph()->NewNode(common()->Return(), ind, start, f); Node* end = graph()->NewNode(common()->End(), ret, f); graph()->SetEnd(end); ComputeAndVerifySchedule(28, graph()); } TARGET_TEST_F(SchedulerTest, PhisPushedDownToDifferentBranches) { Node* start = graph()->NewNode(common()->Start(2)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* p1 = graph()->NewNode(common()->Parameter(1), start); Node* v1 = graph()->NewNode(common()->Int32Constant(1)); Node* v2 = graph()->NewNode(common()->Int32Constant(2)); Node* v3 = graph()->NewNode(common()->Int32Constant(3)); Node* v4 = graph()->NewNode(common()->Int32Constant(4)); Node* br = graph()->NewNode(common()->Branch(), p0, graph()->start()); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); Node* m = graph()->NewNode(common()->Merge(2), t, f); Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), v1, v2, m); Node* phi2 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), v3, v4, m); Node* br2 = graph()->NewNode(common()->Branch(), p1, graph()->start()); Node* t2 = graph()->NewNode(common()->IfTrue(), br2); Node* f2 = graph()->NewNode(common()->IfFalse(), br2); Node* m2 = graph()->NewNode(common()->Merge(2), t2, f2); Node* phi3 = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), phi, phi2, m2); Node* ret = graph()->NewNode(common()->Return(), phi3, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); ComputeAndVerifySchedule(24, graph()); } TARGET_TEST_F(SchedulerTest, BranchHintTrue) { Node* start = graph()->NewNode(common()->Start(1)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* tv = graph()->NewNode(common()->Int32Constant(6)); Node* fv = graph()->NewNode(common()->Int32Constant(7)); Node* br = graph()->NewNode(common()->Branch(BranchHint::kTrue), p0, start); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); Node* m = graph()->NewNode(common()->Merge(2), t, f); Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), tv, fv, m); Node* ret = graph()->NewNode(common()->Return(), phi, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); Schedule* schedule = ComputeAndVerifySchedule(13, graph()); // Make sure the false block is marked as deferred. CHECK(!schedule->block(t)->deferred()); CHECK(schedule->block(f)->deferred()); } TARGET_TEST_F(SchedulerTest, BranchHintFalse) { Node* start = graph()->NewNode(common()->Start(1)); graph()->SetStart(start); Node* p0 = graph()->NewNode(common()->Parameter(0), start); Node* tv = graph()->NewNode(common()->Int32Constant(6)); Node* fv = graph()->NewNode(common()->Int32Constant(7)); Node* br = graph()->NewNode(common()->Branch(BranchHint::kFalse), p0, start); Node* t = graph()->NewNode(common()->IfTrue(), br); Node* f = graph()->NewNode(common()->IfFalse(), br); Node* m = graph()->NewNode(common()->Merge(2), t, f); Node* phi = graph()->NewNode(common()->Phi(kMachAnyTagged, 2), tv, fv, m); Node* ret = graph()->NewNode(common()->Return(), phi, start, start); Node* end = graph()->NewNode(common()->End(), ret, start); graph()->SetEnd(end); Schedule* schedule = ComputeAndVerifySchedule(13, graph()); // Make sure the true block is marked as deferred. CHECK(schedule->block(t)->deferred()); CHECK(!schedule->block(f)->deferred()); } } // namespace compiler } // namespace internal } // namespace v8