// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/counters.h" #include #include "src/base/platform/platform.h" #include "src/isolate.h" #include "src/log-inl.h" #include "src/log.h" namespace v8 { namespace internal { StatsTable::StatsTable() : lookup_function_(NULL), create_histogram_function_(NULL), add_histogram_sample_function_(NULL) {} int* StatsCounter::FindLocationInStatsTable() const { return isolate_->stats_table()->FindLocation(name_); } void Histogram::AddSample(int sample) { if (Enabled()) { isolate()->stats_table()->AddHistogramSample(histogram_, sample); } } void* Histogram::CreateHistogram() const { return isolate()->stats_table()-> CreateHistogram(name_, min_, max_, num_buckets_); } // Start the timer. void HistogramTimer::Start() { if (Enabled()) { timer_.Start(); } Logger::CallEventLogger(isolate(), name(), Logger::START, true); } // Stop the timer and record the results. void HistogramTimer::Stop() { if (Enabled()) { int64_t sample = resolution_ == MICROSECOND ? timer_.Elapsed().InMicroseconds() : timer_.Elapsed().InMilliseconds(); // Compute the delta between start and stop, in microseconds. AddSample(static_cast(sample)); timer_.Stop(); } Logger::CallEventLogger(isolate(), name(), Logger::END, true); } Counters::Counters(Isolate* isolate) { #define HR(name, caption, min, max, num_buckets) \ name##_ = Histogram(#caption, min, max, num_buckets, isolate); HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) \ name##_ = HistogramTimer(#caption, 0, max, HistogramTimer::res, 50, isolate); HISTOGRAM_TIMER_LIST(HT) #undef HT #define AHT(name, caption) \ name##_ = AggregatableHistogramTimer(#caption, 0, 10000000, 50, isolate); AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) \ name##_ = Histogram(#caption, 0, 101, 100, isolate); HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP // Exponential histogram assigns bucket limits to points // p[1], p[2], ... p[n] such that p[i+1] / p[i] = constant. // The constant factor is equal to the n-th root of (high / low), // where the n is the number of buckets, the low is the lower limit, // the high is the upper limit. // For n = 50, low = 1000, high = 500000: the factor = 1.13. #define HM(name, caption) \ name##_ = Histogram(#caption, 1000, 500000, 50, isolate); HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM // For n = 100, low = 4000, high = 2000000: the factor = 1.06. #define HM(name, caption) \ name##_ = Histogram(#caption, 4000, 2000000, 100, isolate); HISTOGRAM_MEMORY_LIST(HM) #undef HM #define HM(name, caption) \ aggregated_##name##_ = AggregatedMemoryHistogram(&name##_); HISTOGRAM_MEMORY_LIST(HM) #undef HM #define SC(name, caption) \ name##_ = StatsCounter(isolate, "c:" #caption); STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) #undef SC #define SC(name) \ count_of_##name##_ = StatsCounter(isolate, "c:" "V8.CountOf_" #name); \ size_of_##name##_ = StatsCounter(isolate, "c:" "V8.SizeOf_" #name); INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ count_of_CODE_TYPE_##name##_ = \ StatsCounter(isolate, "c:" "V8.CountOf_CODE_TYPE-" #name); \ size_of_CODE_TYPE_##name##_ = \ StatsCounter(isolate, "c:" "V8.SizeOf_CODE_TYPE-" #name); CODE_KIND_LIST(SC) #undef SC #define SC(name) \ count_of_FIXED_ARRAY_##name##_ = \ StatsCounter(isolate, "c:" "V8.CountOf_FIXED_ARRAY-" #name); \ size_of_FIXED_ARRAY_##name##_ = \ StatsCounter(isolate, "c:" "V8.SizeOf_FIXED_ARRAY-" #name); FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ count_of_CODE_AGE_##name##_ = \ StatsCounter(isolate, "c:" "V8.CountOf_CODE_AGE-" #name); \ size_of_CODE_AGE_##name##_ = \ StatsCounter(isolate, "c:" "V8.SizeOf_CODE_AGE-" #name); CODE_AGE_LIST_COMPLETE(SC) #undef SC } void Counters::ResetCounters() { #define SC(name, caption) name##_.Reset(); STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) #undef SC #define SC(name) \ count_of_##name##_.Reset(); \ size_of_##name##_.Reset(); INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ count_of_CODE_TYPE_##name##_.Reset(); \ size_of_CODE_TYPE_##name##_.Reset(); CODE_KIND_LIST(SC) #undef SC #define SC(name) \ count_of_FIXED_ARRAY_##name##_.Reset(); \ size_of_FIXED_ARRAY_##name##_.Reset(); FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ count_of_CODE_AGE_##name##_.Reset(); \ size_of_CODE_AGE_##name##_.Reset(); CODE_AGE_LIST_COMPLETE(SC) #undef SC } void Counters::ResetHistograms() { #define HR(name, caption, min, max, num_buckets) name##_.Reset(); HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) name##_.Reset(); HISTOGRAM_TIMER_LIST(HT) #undef HT #define AHT(name, caption) name##_.Reset(); AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) name##_.Reset(); HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) name##_.Reset(); HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM } class RuntimeCallStatEntries { public: void Print(std::ostream& os) { if (total_call_count == 0) return; std::sort(entries.rbegin(), entries.rend()); os << std::setw(50) << "Runtime Function/C++ Builtin" << std::setw(12) << "Time" << std::setw(18) << "Count" << std::endl << std::string(88, '=') << std::endl; for (Entry& entry : entries) { entry.SetTotal(total_time, total_call_count); entry.Print(os); } os << std::string(88, '-') << std::endl; Entry("Total", total_time, total_call_count).Print(os); } // By default, the compiler will usually inline this, which results in a large // binary size increase: std::vector::push_back expands to a large amount of // instructions, and this function is invoked repeatedly by macros. V8_NOINLINE void Add(RuntimeCallCounter* counter) { if (counter->count == 0) return; entries.push_back(Entry(counter->name, counter->time, counter->count)); total_time += counter->time; total_call_count += counter->count; } private: class Entry { public: Entry(const char* name, base::TimeDelta time, uint64_t count) : name_(name), time_(time.InMicroseconds()), count_(count), time_percent_(100), count_percent_(100) {} bool operator<(const Entry& other) const { if (time_ < other.time_) return true; if (time_ > other.time_) return false; return count_ < other.count_; } void Print(std::ostream& os) { os.precision(2); os << std::fixed << std::setprecision(2); os << std::setw(50) << name_; os << std::setw(10) << static_cast(time_) / 1000 << "ms "; os << std::setw(6) << time_percent_ << "%"; os << std::setw(10) << count_ << " "; os << std::setw(6) << count_percent_ << "%"; os << std::endl; } void SetTotal(base::TimeDelta total_time, uint64_t total_count) { if (total_time.InMicroseconds() == 0) { time_percent_ = 0; } else { time_percent_ = 100.0 * time_ / total_time.InMicroseconds(); } count_percent_ = 100.0 * count_ / total_count; } private: const char* name_; int64_t time_; uint64_t count_; double time_percent_; double count_percent_; }; uint64_t total_call_count = 0; base::TimeDelta total_time; std::vector entries; }; void RuntimeCallCounter::Reset() { count = 0; time = base::TimeDelta(); } // static void RuntimeCallStats::Enter(Isolate* isolate, RuntimeCallTimer* timer, CounterId counter_id) { RuntimeCallStats* stats = isolate->counters()->runtime_call_stats(); RuntimeCallCounter* counter = &(stats->*counter_id); timer->Start(counter, stats->current_timer_); stats->current_timer_ = timer; } // static void RuntimeCallStats::Leave(Isolate* isolate, RuntimeCallTimer* timer) { RuntimeCallStats* stats = isolate->counters()->runtime_call_stats(); if (stats->current_timer_ == timer) { stats->current_timer_ = timer->Stop(); } else { // Must be a Threading cctest. Walk the chain of Timers to find the // buried one that's leaving. We don't care about keeping nested timings // accurate, just avoid crashing by keeping the chain intact. RuntimeCallTimer* next = stats->current_timer_; while (next->parent_ != timer) next = next->parent_; next->parent_ = timer->Stop(); } } // static void RuntimeCallStats::CorrectCurrentCounterId(Isolate* isolate, CounterId counter_id) { RuntimeCallStats* stats = isolate->counters()->runtime_call_stats(); DCHECK_NOT_NULL(stats->current_timer_); RuntimeCallCounter* counter = &(stats->*counter_id); stats->current_timer_->counter_ = counter; } void RuntimeCallStats::Print(std::ostream& os) { RuntimeCallStatEntries entries; #define PRINT_COUNTER(name) entries.Add(&this->name); FOR_EACH_MANUAL_COUNTER(PRINT_COUNTER) #undef PRINT_COUNTER #define PRINT_COUNTER(name, nargs, ressize) entries.Add(&this->Runtime_##name); FOR_EACH_INTRINSIC(PRINT_COUNTER) #undef PRINT_COUNTER #define PRINT_COUNTER(name) entries.Add(&this->Builtin_##name); BUILTIN_LIST_C(PRINT_COUNTER) #undef PRINT_COUNTER #define PRINT_COUNTER(name) entries.Add(&this->API_##name); FOR_EACH_API_COUNTER(PRINT_COUNTER) #undef PRINT_COUNTER #define PRINT_COUNTER(name) entries.Add(&this->Handler_##name); FOR_EACH_HANDLER_COUNTER(PRINT_COUNTER) #undef PRINT_COUNTER entries.Print(os); } void RuntimeCallStats::Reset() { if (!FLAG_runtime_call_stats) return; #define RESET_COUNTER(name) this->name.Reset(); FOR_EACH_MANUAL_COUNTER(RESET_COUNTER) #undef RESET_COUNTER #define RESET_COUNTER(name, nargs, result_size) this->Runtime_##name.Reset(); FOR_EACH_INTRINSIC(RESET_COUNTER) #undef RESET_COUNTER #define RESET_COUNTER(name) this->Builtin_##name.Reset(); BUILTIN_LIST_C(RESET_COUNTER) #undef RESET_COUNTER #define RESET_COUNTER(name) this->API_##name.Reset(); FOR_EACH_API_COUNTER(RESET_COUNTER) #undef RESET_COUNTER #define RESET_COUNTER(name) this->Handler_##name.Reset(); FOR_EACH_HANDLER_COUNTER(RESET_COUNTER) #undef RESET_COUNTER } } // namespace internal } // namespace v8