// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include // NOLINT(readability/streams) #include "src/v8.h" #include "src/base/utils/random-number-generator.h" #include "src/disassembler.h" #include "src/factory.h" #include "src/macro-assembler.h" #include "src/mips64/macro-assembler-mips64.h" #include "src/mips64/simulator-mips64.h" #include "test/cctest/cctest.h" using namespace v8::internal; // Define these function prototypes to match JSEntryFunction in execution.cc. typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); typedef Object* (*F2)(int x, int y, int p2, int p3, int p4); typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4); typedef Object* (*F4)(int64_t x, int64_t y, int64_t p2, int64_t p3, int64_t p4); typedef Object* (*F5)(void* p0, void* p1, int p2, int p3, int p4); #define __ assm. TEST(MIPS0) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // Addition. __ addu(v0, a0, a1); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0)); CHECK_EQ(0xabcL, res); } TEST(MIPS1) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; __ mov(a1, a0); __ li(v0, 0); __ b(&C); __ nop(); __ bind(&L); __ addu(v0, v0, a1); __ addiu(a1, a1, -1); __ bind(&C); __ xori(v1, a1, 0); __ Branch(&L, ne, v1, Operand((int64_t)0)); __ nop(); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F1 f = FUNCTION_CAST(code->entry()); int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 50, 0, 0, 0, 0)); CHECK_EQ(1275L, res); } TEST(MIPS2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label exit, error; // ----- Test all instructions. // Test lui, ori, and addiu, used in the li pseudo-instruction. // This way we can then safely load registers with chosen values. __ ori(a4, zero_reg, 0); __ lui(a4, 0x1234); __ ori(a4, a4, 0); __ ori(a4, a4, 0x0f0f); __ ori(a4, a4, 0xf0f0); __ addiu(a5, a4, 1); __ addiu(a6, a5, -0x10); // Load values in temporary registers. __ li(a4, 0x00000004); __ li(a5, 0x00001234); __ li(a6, 0x12345678); __ li(a7, 0x7fffffff); __ li(t0, 0xfffffffc); __ li(t1, 0xffffedcc); __ li(t2, 0xedcba988); __ li(t3, 0x80000000); // SPECIAL class. __ srl(v0, a6, 8); // 0x00123456 __ sll(v0, v0, 11); // 0x91a2b000 __ sra(v0, v0, 3); // 0xf2345600 __ srav(v0, v0, a4); // 0xff234560 __ sllv(v0, v0, a4); // 0xf2345600 __ srlv(v0, v0, a4); // 0x0f234560 __ Branch(&error, ne, v0, Operand(0x0f234560)); __ nop(); __ addu(v0, a4, a5); // 0x00001238 __ subu(v0, v0, a4); // 0x00001234 __ Branch(&error, ne, v0, Operand(0x00001234)); __ nop(); __ addu(v1, a7, a4); // 32bit addu result is sign-extended into 64bit reg. __ Branch(&error, ne, v1, Operand(0xffffffff80000003)); __ nop(); __ subu(v1, t3, a4); // 0x7ffffffc __ Branch(&error, ne, v1, Operand(0x7ffffffc)); __ nop(); __ and_(v0, a5, a6); // 0x0000000000001230 __ or_(v0, v0, a5); // 0x0000000000001234 __ xor_(v0, v0, a6); // 0x000000001234444c __ nor(v0, v0, a6); // 0xffffffffedcba987 __ Branch(&error, ne, v0, Operand(0xffffffffedcba983)); __ nop(); // Shift both 32bit number to left, to preserve meaning of next comparison. __ dsll32(a7, a7, 0); __ dsll32(t3, t3, 0); __ slt(v0, t3, a7); __ Branch(&error, ne, v0, Operand(0x1)); __ nop(); __ sltu(v0, t3, a7); __ Branch(&error, ne, v0, Operand(zero_reg)); __ nop(); // Restore original values in registers. __ dsrl32(a7, a7, 0); __ dsrl32(t3, t3, 0); // End of SPECIAL class. __ addiu(v0, zero_reg, 0x7421); // 0x00007421 __ addiu(v0, v0, -0x1); // 0x00007420 __ addiu(v0, v0, -0x20); // 0x00007400 __ Branch(&error, ne, v0, Operand(0x00007400)); __ nop(); __ addiu(v1, a7, 0x1); // 0x80000000 - result is sign-extended. __ Branch(&error, ne, v1, Operand(0xffffffff80000000)); __ nop(); __ slti(v0, a5, 0x00002000); // 0x1 __ slti(v0, v0, 0xffff8000); // 0x0 __ Branch(&error, ne, v0, Operand(zero_reg)); __ nop(); __ sltiu(v0, a5, 0x00002000); // 0x1 __ sltiu(v0, v0, 0x00008000); // 0x1 __ Branch(&error, ne, v0, Operand(0x1)); __ nop(); __ andi(v0, a5, 0xf0f0); // 0x00001030 __ ori(v0, v0, 0x8a00); // 0x00009a30 __ xori(v0, v0, 0x83cc); // 0x000019fc __ Branch(&error, ne, v0, Operand(0x000019fc)); __ nop(); __ lui(v1, 0x8123); // Result is sign-extended into 64bit register. __ Branch(&error, ne, v1, Operand(0xffffffff81230000)); __ nop(); // Bit twiddling instructions & conditional moves. // Uses a4-t3 as set above. __ Clz(v0, a4); // 29 __ Clz(v1, a5); // 19 __ addu(v0, v0, v1); // 48 __ Clz(v1, a6); // 3 __ addu(v0, v0, v1); // 51 __ Clz(v1, t3); // 0 __ addu(v0, v0, v1); // 51 __ Branch(&error, ne, v0, Operand(51)); __ Movn(a0, a7, a4); // Move a0<-a7 (a4 is NOT 0). __ Ins(a0, a5, 12, 8); // 0x7ff34fff __ Branch(&error, ne, a0, Operand(0x7ff34fff)); __ Movz(a0, t2, t3); // a0 not updated (t3 is NOT 0). __ Ext(a1, a0, 8, 12); // 0x34f __ Branch(&error, ne, a1, Operand(0x34f)); __ Movz(a0, t2, v1); // a0<-t2, v0 is 0, from 8 instr back. __ Branch(&error, ne, a0, Operand(t2)); // Everything was correctly executed. Load the expected result. __ li(v0, 0x31415926); __ b(&exit); __ nop(); __ bind(&error); // Got an error. Return a wrong result. __ li(v0, 666); __ bind(&exit); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0)); CHECK_EQ(0x31415926L, res); } TEST(MIPS3) { // Test floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; double i; float fa; float fb; float fc; float fd; float fe; float ff; float fg; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Double precision floating point instructions. __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f6, MemOperand(a0, offsetof(T, b))); __ add_d(f8, f4, f6); __ Sdc1(f8, MemOperand(a0, offsetof(T, c))); // c = a + b. __ mov_d(f10, f8); // c __ neg_d(f12, f6); // -b __ sub_d(f10, f10, f12); __ Sdc1(f10, MemOperand(a0, offsetof(T, d))); // d = c - (-b). __ Sdc1(f4, MemOperand(a0, offsetof(T, b))); // b = a. __ li(a4, 120); __ mtc1(a4, f14); __ cvt_d_w(f14, f14); // f14 = 120.0. __ mul_d(f10, f10, f14); __ Sdc1(f10, MemOperand(a0, offsetof(T, e))); // e = d * 120 = 1.8066e16. __ div_d(f12, f10, f4); __ Sdc1(f12, MemOperand(a0, offsetof(T, f))); // f = e / a = 120.44. __ sqrt_d(f14, f12); __ Sdc1(f14, MemOperand(a0, offsetof(T, g))); // g = sqrt(f) = 10.97451593465515908537 if (kArchVariant == kMips64r2) { __ Ldc1(f4, MemOperand(a0, offsetof(T, h))); __ Ldc1(f6, MemOperand(a0, offsetof(T, i))); __ madd_d(f14, f6, f4, f6); __ Sdc1(f14, MemOperand(a0, offsetof(T, h))); } // Single precision floating point instructions. __ Lwc1(f4, MemOperand(a0, offsetof(T, fa))); __ Lwc1(f6, MemOperand(a0, offsetof(T, fb))); __ add_s(f8, f4, f6); __ Swc1(f8, MemOperand(a0, offsetof(T, fc))); // fc = fa + fb. __ neg_s(f10, f6); // -fb __ sub_s(f10, f8, f10); __ Swc1(f10, MemOperand(a0, offsetof(T, fd))); // fd = fc - (-fb). __ Swc1(f4, MemOperand(a0, offsetof(T, fb))); // fb = fa. __ li(t0, 120); __ mtc1(t0, f14); __ cvt_s_w(f14, f14); // f14 = 120.0. __ mul_s(f10, f10, f14); __ Swc1(f10, MemOperand(a0, offsetof(T, fe))); // fe = fd * 120 __ div_s(f12, f10, f4); __ Swc1(f12, MemOperand(a0, offsetof(T, ff))); // ff = fe / fa __ sqrt_s(f14, f12); __ Swc1(f14, MemOperand(a0, offsetof(T, fg))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); // Double test values. t.a = 1.5e14; t.b = 2.75e11; t.c = 0.0; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.h = 1.5; t.i = 2.75; // Single test values. t.fa = 1.5e6; t.fb = 2.75e4; t.fc = 0.0; t.fd = 0.0; t.fe = 0.0; t.ff = 0.0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); // Expected double results. CHECK_EQ(1.5e14, t.a); CHECK_EQ(1.5e14, t.b); CHECK_EQ(1.50275e14, t.c); CHECK_EQ(1.50550e14, t.d); CHECK_EQ(1.8066e16, t.e); CHECK_EQ(120.44, t.f); CHECK_EQ(10.97451593465515908537, t.g); if (kArchVariant == kMips64r2) { CHECK_EQ(6.875, t.h); } // Expected single results. CHECK_EQ(1.5e6, t.fa); CHECK_EQ(1.5e6, t.fb); CHECK_EQ(1.5275e06, t.fc); CHECK_EQ(1.5550e06, t.fd); CHECK_EQ(1.866e08, t.fe); CHECK_EQ(124.40000152587890625, t.ff); CHECK_EQ(11.1534748077392578125, t.fg); } TEST(MIPS4) { // Test moves between floating point and integer registers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; int64_t high; int64_t low; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f5, MemOperand(a0, offsetof(T, b))); // Swap f4 and f5, by using 3 integer registers, a4-a6, // both two 32-bit chunks, and one 64-bit chunk. // mXhc1 is mips32/64-r2 only, not r1, // but we will not support r1 in practice. __ mfc1(a4, f4); __ mfhc1(a5, f4); __ dmfc1(a6, f5); __ mtc1(a4, f5); __ mthc1(a5, f5); __ dmtc1(a6, f4); // Store the swapped f4 and f5 back to memory. __ Sdc1(f4, MemOperand(a0, offsetof(T, a))); __ Sdc1(f5, MemOperand(a0, offsetof(T, c))); // Test sign extension of move operations from coprocessor. __ Ldc1(f4, MemOperand(a0, offsetof(T, d))); __ mfhc1(a4, f4); __ mfc1(a5, f4); __ Sd(a4, MemOperand(a0, offsetof(T, high))); __ Sd(a5, MemOperand(a0, offsetof(T, low))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5e22; t.b = 2.75e11; t.c = 17.17; t.d = -2.75e11; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(2.75e11, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1.5e22, t.c); CHECK_EQ(static_cast(0xffffffffc25001d1L), t.high); CHECK_EQ(static_cast(0xffffffffbf800000L), t.low); } TEST(MIPS5) { // Test conversions between doubles and integers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; int i; int j; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Load all structure elements to registers. __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f6, MemOperand(a0, offsetof(T, b))); __ Lw(a4, MemOperand(a0, offsetof(T, i))); __ Lw(a5, MemOperand(a0, offsetof(T, j))); // Convert double in f4 to int in element i. __ cvt_w_d(f8, f4); __ mfc1(a6, f8); __ Sw(a6, MemOperand(a0, offsetof(T, i))); // Convert double in f6 to int in element j. __ cvt_w_d(f10, f6); __ mfc1(a7, f10); __ Sw(a7, MemOperand(a0, offsetof(T, j))); // Convert int in original i (a4) to double in a. __ mtc1(a4, f12); __ cvt_d_w(f0, f12); __ Sdc1(f0, MemOperand(a0, offsetof(T, a))); // Convert int in original j (a5) to double in b. __ mtc1(a5, f14); __ cvt_d_w(f2, f14); __ Sdc1(f2, MemOperand(a0, offsetof(T, b))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5e4; t.b = 2.75e8; t.i = 12345678; t.j = -100000; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(12345678.0, t.a); CHECK_EQ(-100000.0, t.b); CHECK_EQ(15000, t.i); CHECK_EQ(275000000, t.j); } TEST(MIPS6) { // Test simple memory loads and stores. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t ui; int32_t si; int32_t r1; int32_t r2; int32_t r3; int32_t r4; int32_t r5; int32_t r6; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Basic word load/store. __ Lw(a4, MemOperand(a0, offsetof(T, ui))); __ Sw(a4, MemOperand(a0, offsetof(T, r1))); // lh with positive data. __ Lh(a5, MemOperand(a0, offsetof(T, ui))); __ Sw(a5, MemOperand(a0, offsetof(T, r2))); // lh with negative data. __ Lh(a6, MemOperand(a0, offsetof(T, si))); __ Sw(a6, MemOperand(a0, offsetof(T, r3))); // lhu with negative data. __ Lhu(a7, MemOperand(a0, offsetof(T, si))); __ Sw(a7, MemOperand(a0, offsetof(T, r4))); // Lb with negative data. __ Lb(t0, MemOperand(a0, offsetof(T, si))); __ Sw(t0, MemOperand(a0, offsetof(T, r5))); // sh writes only 1/2 of word. __ lui(t1, 0x3333); __ ori(t1, t1, 0x3333); __ Sw(t1, MemOperand(a0, offsetof(T, r6))); __ Lhu(t1, MemOperand(a0, offsetof(T, si))); __ Sh(t1, MemOperand(a0, offsetof(T, r6))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.ui = 0x11223344; t.si = 0x99aabbcc; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x11223344), t.r1); if (kArchEndian == kLittle) { CHECK_EQ(static_cast(0x3344), t.r2); CHECK_EQ(static_cast(0xffffbbcc), t.r3); CHECK_EQ(static_cast(0x0000bbcc), t.r4); CHECK_EQ(static_cast(0xffffffcc), t.r5); CHECK_EQ(static_cast(0x3333bbcc), t.r6); } else { CHECK_EQ(static_cast(0x1122), t.r2); CHECK_EQ(static_cast(0xffff99aa), t.r3); CHECK_EQ(static_cast(0x000099aa), t.r4); CHECK_EQ(static_cast(0xffffff99), t.r5); CHECK_EQ(static_cast(0x99aa3333), t.r6); } } TEST(MIPS7) { // Test floating point compare and branch instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; int32_t result; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label neither_is_nan, less_than, outa_here; __ Ldc1(f4, MemOperand(a0, offsetof(T, a))); __ Ldc1(f6, MemOperand(a0, offsetof(T, b))); if (kArchVariant != kMips64r6) { __ c(UN, D, f4, f6); __ bc1f(&neither_is_nan); } else { __ cmp(UN, L, f2, f4, f6); __ bc1eqz(&neither_is_nan, f2); } __ nop(); __ Sw(zero_reg, MemOperand(a0, offsetof(T, result))); __ Branch(&outa_here); __ bind(&neither_is_nan); if (kArchVariant == kMips64r6) { __ cmp(OLT, L, f2, f6, f4); __ bc1nez(&less_than, f2); } else { __ c(OLT, D, f6, f4, 2); __ bc1t(&less_than, 2); } __ nop(); __ Sw(zero_reg, MemOperand(a0, offsetof(T, result))); __ Branch(&outa_here); __ bind(&less_than); __ Addu(a4, zero_reg, Operand(1)); __ Sw(a4, MemOperand(a0, offsetof(T, result))); // Set true. // This test-case should have additional tests. __ bind(&outa_here); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5e14; t.b = 2.75e11; t.c = 2.0; t.d = -4.0; t.e = 0.0; t.f = 0.0; t.result = 0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(1.5e14, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1, t.result); } TEST(MIPS8) { if (kArchVariant == kMips64r2) { // Test ROTR and ROTRV instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t input; int32_t result_rotr_4; int32_t result_rotr_8; int32_t result_rotr_12; int32_t result_rotr_16; int32_t result_rotr_20; int32_t result_rotr_24; int32_t result_rotr_28; int32_t result_rotrv_4; int32_t result_rotrv_8; int32_t result_rotrv_12; int32_t result_rotrv_16; int32_t result_rotrv_20; int32_t result_rotrv_24; int32_t result_rotrv_28; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // Basic word load. __ Lw(a4, MemOperand(a0, offsetof(T, input))); // ROTR instruction (called through the Ror macro). __ Ror(a5, a4, 0x0004); __ Ror(a6, a4, 0x0008); __ Ror(a7, a4, 0x000c); __ Ror(t0, a4, 0x0010); __ Ror(t1, a4, 0x0014); __ Ror(t2, a4, 0x0018); __ Ror(t3, a4, 0x001c); // Basic word store. __ Sw(a5, MemOperand(a0, offsetof(T, result_rotr_4))); __ Sw(a6, MemOperand(a0, offsetof(T, result_rotr_8))); __ Sw(a7, MemOperand(a0, offsetof(T, result_rotr_12))); __ Sw(t0, MemOperand(a0, offsetof(T, result_rotr_16))); __ Sw(t1, MemOperand(a0, offsetof(T, result_rotr_20))); __ Sw(t2, MemOperand(a0, offsetof(T, result_rotr_24))); __ Sw(t3, MemOperand(a0, offsetof(T, result_rotr_28))); // ROTRV instruction (called through the Ror macro). __ li(t3, 0x0004); __ Ror(a5, a4, t3); __ li(t3, 0x0008); __ Ror(a6, a4, t3); __ li(t3, 0x000C); __ Ror(a7, a4, t3); __ li(t3, 0x0010); __ Ror(t0, a4, t3); __ li(t3, 0x0014); __ Ror(t1, a4, t3); __ li(t3, 0x0018); __ Ror(t2, a4, t3); __ li(t3, 0x001C); __ Ror(t3, a4, t3); // Basic word store. __ Sw(a5, MemOperand(a0, offsetof(T, result_rotrv_4))); __ Sw(a6, MemOperand(a0, offsetof(T, result_rotrv_8))); __ Sw(a7, MemOperand(a0, offsetof(T, result_rotrv_12))); __ Sw(t0, MemOperand(a0, offsetof(T, result_rotrv_16))); __ Sw(t1, MemOperand(a0, offsetof(T, result_rotrv_20))); __ Sw(t2, MemOperand(a0, offsetof(T, result_rotrv_24))); __ Sw(t3, MemOperand(a0, offsetof(T, result_rotrv_28))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.input = 0x12345678; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0x0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x81234567), t.result_rotr_4); CHECK_EQ(static_cast(0x78123456), t.result_rotr_8); CHECK_EQ(static_cast(0x67812345), t.result_rotr_12); CHECK_EQ(static_cast(0x56781234), t.result_rotr_16); CHECK_EQ(static_cast(0x45678123), t.result_rotr_20); CHECK_EQ(static_cast(0x34567812), t.result_rotr_24); CHECK_EQ(static_cast(0x23456781), t.result_rotr_28); CHECK_EQ(static_cast(0x81234567), t.result_rotrv_4); CHECK_EQ(static_cast(0x78123456), t.result_rotrv_8); CHECK_EQ(static_cast(0x67812345), t.result_rotrv_12); CHECK_EQ(static_cast(0x56781234), t.result_rotrv_16); CHECK_EQ(static_cast(0x45678123), t.result_rotrv_20); CHECK_EQ(static_cast(0x34567812), t.result_rotrv_24); CHECK_EQ(static_cast(0x23456781), t.result_rotrv_28); } } TEST(MIPS9) { // Test BRANCH improvements. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label exit, exit2, exit3; __ Branch(&exit, ge, a0, Operand(zero_reg)); __ Branch(&exit2, ge, a0, Operand(0x00001FFF)); __ Branch(&exit3, ge, a0, Operand(0x0001FFFF)); __ bind(&exit); __ bind(&exit2); __ bind(&exit3); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); } TEST(MIPS10) { // Test conversions between doubles and long integers. // Test hos the long ints map to FP regs pairs. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double a_converted; double b; int32_t dbl_mant; int32_t dbl_exp; int32_t long_hi; int32_t long_lo; int64_t long_as_int64; int32_t b_long_hi; int32_t b_long_lo; int64_t b_long_as_int64; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; if (kArchVariant == kMips64r2) { // Rewritten for FR=1 FPU mode: // - 32 FP regs of 64-bits each, no odd/even pairs. // - Note that cvt_l_d/cvt_d_l ARE legal in FR=1 mode. // Load all structure elements to registers. __ Ldc1(f0, MemOperand(a0, offsetof(T, a))); // Save the raw bits of the double. __ mfc1(a4, f0); __ mfhc1(a5, f0); __ Sw(a4, MemOperand(a0, offsetof(T, dbl_mant))); __ Sw(a5, MemOperand(a0, offsetof(T, dbl_exp))); // Convert double in f0 to long, save hi/lo parts. __ cvt_l_d(f0, f0); __ mfc1(a4, f0); // f0 LS 32 bits of long. __ mfhc1(a5, f0); // f0 MS 32 bits of long. __ Sw(a4, MemOperand(a0, offsetof(T, long_lo))); __ Sw(a5, MemOperand(a0, offsetof(T, long_hi))); // Combine the high/low ints, convert back to double. __ dsll32(a6, a5, 0); // Move a5 to high bits of a6. __ or_(a6, a6, a4); __ dmtc1(a6, f1); __ cvt_d_l(f1, f1); __ Sdc1(f1, MemOperand(a0, offsetof(T, a_converted))); // Convert the b long integers to double b. __ Lw(a4, MemOperand(a0, offsetof(T, b_long_lo))); __ Lw(a5, MemOperand(a0, offsetof(T, b_long_hi))); __ mtc1(a4, f8); // f8 LS 32-bits. __ mthc1(a5, f8); // f8 MS 32-bits. __ cvt_d_l(f10, f8); __ Sdc1(f10, MemOperand(a0, offsetof(T, b))); // Convert double b back to long-int. __ Ldc1(f31, MemOperand(a0, offsetof(T, b))); __ cvt_l_d(f31, f31); __ dmfc1(a7, f31); __ Sd(a7, MemOperand(a0, offsetof(T, b_long_as_int64))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 2.147483647e9; // 0x7fffffff -> 0x41DFFFFFFFC00000 as double. t.b_long_hi = 0x000000ff; // 0xFF00FF00FF -> 0x426FE01FE01FE000 as double. t.b_long_lo = 0x00ff00ff; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x41DFFFFF), t.dbl_exp); CHECK_EQ(static_cast(0xFFC00000), t.dbl_mant); CHECK_EQ(0, t.long_hi); CHECK_EQ(static_cast(0x7fffffff), t.long_lo); CHECK_EQ(2.147483647e9, t.a_converted); // 0xFF00FF00FF -> 1.095233372415e12. CHECK_EQ(1.095233372415e12, t.b); CHECK_EQ(static_cast(0xFF00FF00FF), t.b_long_as_int64); } } TEST(MIPS11) { // Do not run test on MIPS64r6, as these instructions are removed. if (kArchVariant != kMips64r6) { // Test LWL, LWR, SWL and SWR instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t reg_init; int32_t mem_init; int32_t lwl_0; int32_t lwl_1; int32_t lwl_2; int32_t lwl_3; int32_t lwr_0; int32_t lwr_1; int32_t lwr_2; int32_t lwr_3; int32_t swl_0; int32_t swl_1; int32_t swl_2; int32_t swl_3; int32_t swr_0; int32_t swr_1; int32_t swr_2; int32_t swr_3; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // Test all combinations of LWL and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, lwl_0))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a5, MemOperand(a0, offsetof(T, mem_init) + 1)); __ Sw(a5, MemOperand(a0, offsetof(T, lwl_1))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a6, MemOperand(a0, offsetof(T, mem_init) + 2)); __ Sw(a6, MemOperand(a0, offsetof(T, lwl_2))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ lwl(a7, MemOperand(a0, offsetof(T, mem_init) + 3)); __ Sw(a7, MemOperand(a0, offsetof(T, lwl_3))); // Test all combinations of LWR and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, lwr_0))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a5, MemOperand(a0, offsetof(T, mem_init) + 1)); __ Sw(a5, MemOperand(a0, offsetof(T, lwr_1))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a6, MemOperand(a0, offsetof(T, mem_init) + 2)); __ Sw(a6, MemOperand(a0, offsetof(T, lwr_2))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ lwr(a7, MemOperand(a0, offsetof(T, mem_init) + 3)); __ Sw(a7, MemOperand(a0, offsetof(T, lwr_3))); // Test all combinations of SWL and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, swl_0))); __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ swl(a4, MemOperand(a0, offsetof(T, swl_0))); __ Lw(a5, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a5, MemOperand(a0, offsetof(T, swl_1))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ swl(a5, MemOperand(a0, offsetof(T, swl_1) + 1)); __ Lw(a6, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a6, MemOperand(a0, offsetof(T, swl_2))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ swl(a6, MemOperand(a0, offsetof(T, swl_2) + 2)); __ Lw(a7, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a7, MemOperand(a0, offsetof(T, swl_3))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ swl(a7, MemOperand(a0, offsetof(T, swl_3) + 3)); // Test all combinations of SWR and vAddr. __ Lw(a4, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a4, MemOperand(a0, offsetof(T, swr_0))); __ Lw(a4, MemOperand(a0, offsetof(T, reg_init))); __ swr(a4, MemOperand(a0, offsetof(T, swr_0))); __ Lw(a5, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a5, MemOperand(a0, offsetof(T, swr_1))); __ Lw(a5, MemOperand(a0, offsetof(T, reg_init))); __ swr(a5, MemOperand(a0, offsetof(T, swr_1) + 1)); __ Lw(a6, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a6, MemOperand(a0, offsetof(T, swr_2))); __ Lw(a6, MemOperand(a0, offsetof(T, reg_init))); __ swr(a6, MemOperand(a0, offsetof(T, swr_2) + 2)); __ Lw(a7, MemOperand(a0, offsetof(T, mem_init))); __ Sw(a7, MemOperand(a0, offsetof(T, swr_3))); __ Lw(a7, MemOperand(a0, offsetof(T, reg_init))); __ swr(a7, MemOperand(a0, offsetof(T, swr_3) + 3)); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.reg_init = 0xaabbccdd; t.mem_init = 0x11223344; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); if (kArchEndian == kLittle) { CHECK_EQ(static_cast(0x44bbccdd), t.lwl_0); CHECK_EQ(static_cast(0x3344ccdd), t.lwl_1); CHECK_EQ(static_cast(0x223344dd), t.lwl_2); CHECK_EQ(static_cast(0x11223344), t.lwl_3); CHECK_EQ(static_cast(0x11223344), t.lwr_0); CHECK_EQ(static_cast(0xaa112233), t.lwr_1); CHECK_EQ(static_cast(0xaabb1122), t.lwr_2); CHECK_EQ(static_cast(0xaabbcc11), t.lwr_3); CHECK_EQ(static_cast(0x112233aa), t.swl_0); CHECK_EQ(static_cast(0x1122aabb), t.swl_1); CHECK_EQ(static_cast(0x11aabbcc), t.swl_2); CHECK_EQ(static_cast(0xaabbccdd), t.swl_3); CHECK_EQ(static_cast(0xaabbccdd), t.swr_0); CHECK_EQ(static_cast(0xbbccdd44), t.swr_1); CHECK_EQ(static_cast(0xccdd3344), t.swr_2); CHECK_EQ(static_cast(0xdd223344), t.swr_3); } else { CHECK_EQ(static_cast(0x11223344), t.lwl_0); CHECK_EQ(static_cast(0x223344dd), t.lwl_1); CHECK_EQ(static_cast(0x3344ccdd), t.lwl_2); CHECK_EQ(static_cast(0x44bbccdd), t.lwl_3); CHECK_EQ(static_cast(0xaabbcc11), t.lwr_0); CHECK_EQ(static_cast(0xaabb1122), t.lwr_1); CHECK_EQ(static_cast(0xaa112233), t.lwr_2); CHECK_EQ(static_cast(0x11223344), t.lwr_3); CHECK_EQ(static_cast(0xaabbccdd), t.swl_0); CHECK_EQ(static_cast(0x11aabbcc), t.swl_1); CHECK_EQ(static_cast(0x1122aabb), t.swl_2); CHECK_EQ(static_cast(0x112233aa), t.swl_3); CHECK_EQ(static_cast(0xdd223344), t.swr_0); CHECK_EQ(static_cast(0xccdd3344), t.swr_1); CHECK_EQ(static_cast(0xbbccdd44), t.swr_2); CHECK_EQ(static_cast(0xaabbccdd), t.swr_3); } } } TEST(MIPS12) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t x; int32_t y; int32_t y1; int32_t y2; int32_t y3; int32_t y4; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ mov(t2, fp); // Save frame pointer. __ mov(fp, a0); // Access struct T by fp. __ Lw(a4, MemOperand(a0, offsetof(T, y))); __ Lw(a7, MemOperand(a0, offsetof(T, y4))); __ addu(a5, a4, a7); __ subu(t0, a4, a7); __ nop(); __ push(a4); // These instructions disappear after opt. __ Pop(); __ addu(a4, a4, a4); __ nop(); __ Pop(); // These instructions disappear after opt. __ push(a7); __ nop(); __ push(a7); // These instructions disappear after opt. __ pop(a7); __ nop(); __ push(a7); __ pop(t0); __ nop(); __ Sw(a4, MemOperand(fp, offsetof(T, y))); __ Lw(a4, MemOperand(fp, offsetof(T, y))); __ nop(); __ Sw(a4, MemOperand(fp, offsetof(T, y))); __ Lw(a5, MemOperand(fp, offsetof(T, y))); __ nop(); __ push(a5); __ Lw(a5, MemOperand(fp, offsetof(T, y))); __ pop(a5); __ nop(); __ push(a5); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a5); __ nop(); __ push(a5); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a6); __ nop(); __ push(a6); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a5); __ nop(); __ push(a5); __ Lw(a6, MemOperand(fp, offsetof(T, y))); __ pop(a7); __ nop(); __ mov(fp, t2); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.x = 1; t.y = 2; t.y1 = 3; t.y2 = 4; t.y3 = 0XBABA; t.y4 = 0xDEDA; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(3, t.y1); } TEST(MIPS13) { // Test Cvt_d_uw and Trunc_uw_d macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double cvt_big_out; double cvt_small_out; uint32_t trunc_big_out; uint32_t trunc_small_out; uint32_t cvt_big_in; uint32_t cvt_small_in; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ Sw(a4, MemOperand(a0, offsetof(T, cvt_small_in))); __ Cvt_d_uw(f10, a4); __ Sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out))); __ Trunc_uw_d(f10, f10, f4); __ Swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out))); __ Sw(a4, MemOperand(a0, offsetof(T, cvt_big_in))); __ Cvt_d_uw(f8, a4); __ Sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out))); __ Trunc_uw_d(f8, f8, f4); __ Swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.cvt_big_in = 0xFFFFFFFF; t.cvt_small_in = 333; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(t.cvt_big_out, static_cast(t.cvt_big_in)); CHECK_EQ(t.cvt_small_out, static_cast(t.cvt_small_in)); CHECK_EQ(static_cast(t.trunc_big_out), static_cast(t.cvt_big_in)); CHECK_EQ(static_cast(t.trunc_small_out), static_cast(t.cvt_small_in)); } TEST(MIPS14) { // Test round, floor, ceil, trunc, cvt. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); #define ROUND_STRUCT_ELEMENT(x) \ uint32_t x##_isNaN2008; \ int32_t x##_up_out; \ int32_t x##_down_out; \ int32_t neg_##x##_up_out; \ int32_t neg_##x##_down_out; \ uint32_t x##_err1_out; \ uint32_t x##_err2_out; \ uint32_t x##_err3_out; \ uint32_t x##_err4_out; \ int32_t x##_invalid_result; typedef struct { double round_up_in; double round_down_in; double neg_round_up_in; double neg_round_down_in; double err1_in; double err2_in; double err3_in; double err4_in; ROUND_STRUCT_ELEMENT(round) ROUND_STRUCT_ELEMENT(floor) ROUND_STRUCT_ELEMENT(ceil) ROUND_STRUCT_ELEMENT(trunc) ROUND_STRUCT_ELEMENT(cvt) } T; T t; #undef ROUND_STRUCT_ELEMENT MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); #define RUN_ROUND_TEST(x) \ __ cfc1(t0, FCSR); \ __ Sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \ __ Ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \ __ x##_w_d(f0, f0); \ __ Swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \ \ __ Ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ Sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \ __ Swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result))); RUN_ROUND_TEST(round) RUN_ROUND_TEST(floor) RUN_ROUND_TEST(ceil) RUN_ROUND_TEST(trunc) RUN_ROUND_TEST(cvt) // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.round_up_in = 123.51; t.round_down_in = 123.49; t.neg_round_up_in = -123.5; t.neg_round_down_in = -123.49; t.err1_in = 123.51; t.err2_in = 1; t.err3_in = static_cast(1) + 0xFFFFFFFF; t.err4_in = NAN; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); #define GET_FPU_ERR(x) (static_cast(x & kFCSRFlagMask)) #define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask) #define CHECK_ROUND_RESULT(type) \ CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \ CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \ CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \ CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \ if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips64r6) { \ CHECK_EQ(static_cast(0), t.type##_invalid_result);\ } else { \ CHECK_EQ(static_cast(kFPUInvalidResult), t.type##_invalid_result);\ } CHECK_ROUND_RESULT(round); CHECK_ROUND_RESULT(floor); CHECK_ROUND_RESULT(ceil); CHECK_ROUND_RESULT(cvt); } TEST(MIPS15) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); Label target; __ beq(v0, v1, &target); __ nop(); __ bne(v0, v1, &target); __ nop(); __ bind(&target); __ nop(); } // ----- mips64 tests ----------------------------------------------- TEST(MIPS16) { // Test 64-bit memory loads and stores. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); struct T { int64_t r1; int64_t r2; int64_t r3; int64_t r4; int64_t r5; int64_t r6; int64_t r7; int64_t r8; int64_t r9; int64_t r10; int64_t r11; int64_t r12; uint32_t ui; int32_t si; }; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Basic 32-bit word load/store, with un-signed data. __ Lw(a4, MemOperand(a0, offsetof(T, ui))); __ Sw(a4, MemOperand(a0, offsetof(T, r1))); // Check that the data got zero-extended into 64-bit a4. __ Sd(a4, MemOperand(a0, offsetof(T, r2))); // Basic 32-bit word load/store, with SIGNED data. __ Lw(a5, MemOperand(a0, offsetof(T, si))); __ Sw(a5, MemOperand(a0, offsetof(T, r3))); // Check that the data got sign-extended into 64-bit a4. __ Sd(a5, MemOperand(a0, offsetof(T, r4))); // 32-bit UNSIGNED word load/store, with SIGNED data. __ Lwu(a6, MemOperand(a0, offsetof(T, si))); __ Sw(a6, MemOperand(a0, offsetof(T, r5))); // Check that the data got zero-extended into 64-bit a4. __ Sd(a6, MemOperand(a0, offsetof(T, r6))); // lh with positive data. __ Lh(a5, MemOperand(a0, offsetof(T, ui))); __ Sw(a5, MemOperand(a0, offsetof(T, r7))); // lh with negative data. __ Lh(a6, MemOperand(a0, offsetof(T, si))); __ Sw(a6, MemOperand(a0, offsetof(T, r8))); // lhu with negative data. __ Lhu(a7, MemOperand(a0, offsetof(T, si))); __ Sw(a7, MemOperand(a0, offsetof(T, r9))); // Lb with negative data. __ Lb(t0, MemOperand(a0, offsetof(T, si))); __ Sw(t0, MemOperand(a0, offsetof(T, r10))); // sh writes only 1/2 of word. __ Lw(a4, MemOperand(a0, offsetof(T, ui))); __ Sh(a4, MemOperand(a0, offsetof(T, r11))); __ Lw(a4, MemOperand(a0, offsetof(T, si))); __ Sh(a4, MemOperand(a0, offsetof(T, r12))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.ui = 0x44332211; t.si = 0x99aabbcc; t.r1 = 0x5555555555555555; t.r2 = 0x5555555555555555; t.r3 = 0x5555555555555555; t.r4 = 0x5555555555555555; t.r5 = 0x5555555555555555; t.r6 = 0x5555555555555555; t.r7 = 0x5555555555555555; t.r8 = 0x5555555555555555; t.r9 = 0x5555555555555555; t.r10 = 0x5555555555555555; t.r11 = 0x5555555555555555; t.r12 = 0x5555555555555555; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); if (kArchEndian == kLittle) { // Unsigned data, 32 & 64 CHECK_EQ(static_cast(0x5555555544332211L), t.r1); // lw, sw. CHECK_EQ(static_cast(0x0000000044332211L), t.r2); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x5555555599aabbccL), t.r3); // lw, sw. CHECK_EQ(static_cast(0xffffffff99aabbccL), t.r4); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x5555555599aabbccL), t.r5); // lwu, sw. CHECK_EQ(static_cast(0x0000000099aabbccL), t.r6); // sd. // lh with unsigned and signed data. CHECK_EQ(static_cast(0x5555555500002211L), t.r7); // lh, sw. CHECK_EQ(static_cast(0x55555555ffffbbccL), t.r8); // lh, sw. // lhu with signed data. CHECK_EQ(static_cast(0x555555550000bbccL), t.r9); // lhu, sw. // lb with signed data. CHECK_EQ(static_cast(0x55555555ffffffccL), t.r10); // lb, sw. // sh with unsigned and signed data. CHECK_EQ(static_cast(0x5555555555552211L), t.r11); // lw, sh. CHECK_EQ(static_cast(0x555555555555bbccL), t.r12); // lw, sh. } else { // Unsigned data, 32 & 64 CHECK_EQ(static_cast(0x4433221155555555L), t.r1); // lw, sw. CHECK_EQ(static_cast(0x0000000044332211L), t.r2); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x99aabbcc55555555L), t.r3); // lw, sw. CHECK_EQ(static_cast(0xffffffff99aabbccL), t.r4); // sd. // Signed data, 32 & 64. CHECK_EQ(static_cast(0x99aabbcc55555555L), t.r5); // lwu, sw. CHECK_EQ(static_cast(0x0000000099aabbccL), t.r6); // sd. // lh with unsigned and signed data. CHECK_EQ(static_cast(0x0000443355555555L), t.r7); // lh, sw. CHECK_EQ(static_cast(0xffff99aa55555555L), t.r8); // lh, sw. // lhu with signed data. CHECK_EQ(static_cast(0x000099aa55555555L), t.r9); // lhu, sw. // lb with signed data. CHECK_EQ(static_cast(0xffffff9955555555L), t.r10); // lb, sw. // sh with unsigned and signed data. CHECK_EQ(static_cast(0x2211555555555555L), t.r11); // lw, sh. CHECK_EQ(static_cast(0xbbcc555555555555L), t.r12); // lw, sh. } } // ----------------------mips64r6 specific tests---------------------- TEST(seleqz_selnez) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { int a; int b; int c; int d; double e; double f; double g; double h; float i; float j; float k; float l; } Test; Test test; // Integer part of test. __ addiu(t1, zero_reg, 1); // t1 = 1 __ seleqz(t3, t1, zero_reg); // t3 = 1 __ Sw(t3, MemOperand(a0, offsetof(Test, a))); // a = 1 __ seleqz(t2, t1, t1); // t2 = 0 __ Sw(t2, MemOperand(a0, offsetof(Test, b))); // b = 0 __ selnez(t3, t1, zero_reg); // t3 = 1; __ Sw(t3, MemOperand(a0, offsetof(Test, c))); // c = 0 __ selnez(t3, t1, t1); // t3 = 1 __ Sw(t3, MemOperand(a0, offsetof(Test, d))); // d = 1 // Floating point part of test. __ Ldc1(f0, MemOperand(a0, offsetof(Test, e))); // src __ Ldc1(f2, MemOperand(a0, offsetof(Test, f))); // test __ Lwc1(f8, MemOperand(a0, offsetof(Test, i))); // src __ Lwc1(f10, MemOperand(a0, offsetof(Test, j))); // test __ seleqz_d(f4, f0, f2); __ selnez_d(f6, f0, f2); __ seleqz_s(f12, f8, f10); __ selnez_s(f14, f8, f10); __ Sdc1(f4, MemOperand(a0, offsetof(Test, g))); // src __ Sdc1(f6, MemOperand(a0, offsetof(Test, h))); // src __ Swc1(f12, MemOperand(a0, offsetof(Test, k))); // src __ Swc1(f14, MemOperand(a0, offsetof(Test, l))); // src __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(1, test.a); CHECK_EQ(0, test.b); CHECK_EQ(0, test.c); CHECK_EQ(1, test.d); const int test_size = 3; const int input_size = 5; double inputs_D[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double outputs_D[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9, 18446744073709551616.0, 18446744073709555712.0}; float inputs_S[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float outputs_S[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8, 18446744073709551616.0, 18446746272732807168.0}; for (int j=0; j < test_size; j+=2) { for (int i=0; i < input_size; i++) { test.e = inputs_D[i]; test.f = tests_D[j]; test.i = inputs_S[i]; test.j = tests_S[j]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(outputs_D[i], test.g); CHECK_EQ(0, test.h); CHECK_EQ(outputs_S[i], test.k); CHECK_EQ(0, test.l); test.f = tests_D[j+1]; test.j = tests_S[j+1]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(0, test.g); CHECK_EQ(outputs_D[i], test.h); CHECK_EQ(0, test.k); CHECK_EQ(outputs_S[i], test.l); } } } } TEST(min_max) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); struct TestFloat { double a; double b; double c; double d; float e; float f; float g; float h; }; TestFloat test; const double dnan = std::numeric_limits::quiet_NaN(); const double dinf = std::numeric_limits::infinity(); const double dminf = -std::numeric_limits::infinity(); const float fnan = std::numeric_limits::quiet_NaN(); const float finf = std::numeric_limits::infinity(); const float fminf = std::numeric_limits::infinity(); const int kTableLength = 13; double inputsa[kTableLength] = {2.0, 3.0, dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan}; double inputsb[kTableLength] = {3.0, 2.0, 3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan}; double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan}; double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan}; float inputse[kTableLength] = {2.0, 3.0, fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan}; float inputsf[kTableLength] = {3.0, 2.0, 3.0, fnan, 0.0, -0.0, fnan, finf, finf, 42.0, finf, fminf, fnan}; float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan}; float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan}; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, e))); __ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, f))); __ min_d(f10, f4, f8); __ max_d(f12, f4, f8); __ min_s(f14, f2, f6); __ max_s(f16, f2, f6); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, d))); __ Swc1(f14, MemOperand(a0, offsetof(TestFloat, g))); __ Swc1(f16, MemOperand(a0, offsetof(TestFloat, h))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 4; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.e = inputse[i]; test.f = inputsf[i]; CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0); CHECK_EQ(0, memcmp(&test.c, &outputsdmin[i], sizeof(test.c))); CHECK_EQ(0, memcmp(&test.d, &outputsdmax[i], sizeof(test.d))); CHECK_EQ(0, memcmp(&test.g, &outputsfmin[i], sizeof(test.g))); CHECK_EQ(0, memcmp(&test.h, &outputsfmax[i], sizeof(test.h))); } } } TEST(rint_d) { if (kArchVariant == kMips64r6) { const int kTableLength = 30; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; int fcsr; }TestFloat; TestFloat test; double inputs[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E+308, 6.27463370218383111104242366943E-307, 309485009821345068724781056.89, 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RN[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RZ[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RP[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 1, 309485009821345068724781057.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RM[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr))); __ ctc1(t0, FCSR); __ rint_d(f8, f4); __ Sdc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs[j][i]); } } } } TEST(sel) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { double dd; double ds; double dt; float fd; float fs; float ft; } Test; Test test; __ Ldc1(f0, MemOperand(a0, offsetof(Test, dd))); // test __ Ldc1(f2, MemOperand(a0, offsetof(Test, ds))); // src1 __ Ldc1(f4, MemOperand(a0, offsetof(Test, dt))); // src2 __ Lwc1(f6, MemOperand(a0, offsetof(Test, fd))); // test __ Lwc1(f8, MemOperand(a0, offsetof(Test, fs))); // src1 __ Lwc1(f10, MemOperand(a0, offsetof(Test, ft))); // src2 __ sel_d(f0, f2, f4); __ sel_s(f6, f8, f10); __ Sdc1(f0, MemOperand(a0, offsetof(Test, dd))); __ Swc1(f6, MemOperand(a0, offsetof(Test, fd))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); const int test_size = 3; const int input_size = 5; double inputs_dt[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double inputs_ds[input_size] = {0.1, 69.88, -91.325, 18446744073709551625.0, -18446744073709551625.0}; float inputs_ft[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float inputs_fs[input_size] = {0.1, 69.88, -91.325, 18446744073709551625.0, -18446744073709551625.0}; double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9, 18446744073709551616.0, 18446744073709555712.0}; float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8, 18446744073709551616.0, 18446746272732807168.0}; for (int j=0; j < test_size; j+=2) { for (int i=0; i < input_size; i++) { test.dt = inputs_dt[i]; test.dd = tests_D[j]; test.ds = inputs_ds[i]; test.ft = inputs_ft[i]; test.fd = tests_S[j]; test.fs = inputs_fs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dd, inputs_ds[i]); CHECK_EQ(test.fd, inputs_fs[i]); test.dd = tests_D[j+1]; test.fd = tests_S[j+1]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dd, inputs_dt[i]); CHECK_EQ(test.fd, inputs_ft[i]); } } } } TEST(rint_s) { if (kArchVariant == kMips64r6) { const int kTableLength = 30; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; int fcsr; }TestFloat; TestFloat test; float inputs[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E+38, 6.27463370218383111104242366943E-37, 309485009821345068724781056.89, 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RN[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RZ[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RP[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 1, 309485009821345068724781057.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RM[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr))); __ cfc1(t1, FCSR); __ ctc1(t0, FCSR); __ rint_s(f8, f4); __ Swc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ ctc1(t1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs[j][i]); } } } } TEST(mina_maxa) { if (kArchVariant == kMips64r6) { const int kTableLength = 23; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); const double dnan = std::numeric_limits::quiet_NaN(); const double dinf = std::numeric_limits::infinity(); const double dminf = -std::numeric_limits::infinity(); const float fnan = std::numeric_limits::quiet_NaN(); const float finf = std::numeric_limits::infinity(); const float fminf = std::numeric_limits::infinity(); struct TestFloat { double a; double b; double resd; double resd1; float c; float d; float resf; float resf1; }; TestFloat test; double inputsa[kTableLength] = { 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, dnan, 3.0, -0.0, 0.0, dinf, dnan, 42.0, dinf, dminf, dinf, dnan}; double inputsb[kTableLength] = { 4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, 3.0, dnan, 0.0, -0.0, dnan, dinf, dinf, 42.0, dinf, dminf, dnan}; double resd[kTableLength] = { 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, -0.0, -0.0, dinf, dinf, 42.0, 42.0, dminf, dminf, dnan}; double resd1[kTableLength] = { 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, 3.0, 3.0, 0.0, 0.0, dinf, dinf, dinf, dinf, dinf, dinf, dnan}; float inputsc[kTableLength] = { 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, fnan, 3.0, -0.0, 0.0, finf, fnan, 42.0, finf, fminf, finf, fnan}; float inputsd[kTableLength] = {4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, 3.0, fnan, -0.0, 0.0, fnan, finf, finf, 42.0, finf, fminf, fnan}; float resf[kTableLength] = { 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, -0.0, -0.0, finf, finf, 42.0, 42.0, fminf, fminf, fnan}; float resf1[kTableLength] = { 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, 3.0, 3.0, 0.0, 0.0, finf, finf, finf, finf, finf, finf, fnan}; __ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ Lwc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ Lwc1(f10, MemOperand(a0, offsetof(TestFloat, d))); __ mina_d(f6, f2, f4); __ mina_s(f12, f8, f10); __ maxa_d(f14, f2, f4); __ maxa_s(f16, f8, f10); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, resf))); __ Sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd))); __ Swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1))); __ Sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.c = inputsc[i]; test.d = inputsd[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if (i < kTableLength - 1) { CHECK_EQ(test.resd, resd[i]); CHECK_EQ(test.resf, resf[i]); CHECK_EQ(test.resd1, resd1[i]); CHECK_EQ(test.resf1, resf1[i]); } else { CHECK(std::isnan(test.resd)); CHECK(std::isnan(test.resf)); CHECK(std::isnan(test.resd1)); CHECK(std::isnan(test.resf1)); } } } } // ----------------------mips64r2 specific tests---------------------- TEST(trunc_l) { if (kArchVariant == kMips64r2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; // a trunc result int64_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ trunc_l_d(f8, f4); __ trunc_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } } TEST(movz_movn) { if (kArchVariant == kMips64r2) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { int64_t rt; double a; double b; double bold; double b1; double bold1; float c; float d; float dold; float d1; float dold1; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; __ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, c))); __ Ld(t0, MemOperand(a0, offsetof(TestFloat, rt))); __ Move(f12, 0.0); __ Move(f10, 0.0); __ Move(f16, 0.0); __ Move(f14, 0.0); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold))); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, dold))); __ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1))); __ Swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1))); __ movz_s(f10, f6, t0); __ movz_d(f12, f2, t0); __ movn_s(f14, f6, t0); __ movn_d(f16, f2, t0); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, d))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, b))); __ Swc1(f14, MemOperand(a0, offsetof(TestFloat, d1))); __ Sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.c = inputs_S[i]; test.rt = 1; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, test.bold); CHECK_EQ(test.d, test.dold); CHECK_EQ(test.b1, outputs_D[i]); CHECK_EQ(test.d1, outputs_S[i]); test.rt = 0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs_D[i]); CHECK_EQ(test.d, outputs_S[i]); CHECK_EQ(test.b1, test.bold1); CHECK_EQ(test.d1, test.dold1); } } } TEST(movt_movd) { if (kArchVariant == kMips64r2) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); typedef struct test_float { double srcd; double dstd; double dstdold; double dstd1; double dstdold1; float srcf; float dstf; float dstfold; float dstf1; float dstfold1; int32_t cc; int32_t fcsr; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 20.8, -2.9 }; double inputs_S[kTableLength] = { 4.88, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.88, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 20.8, -2.9 }; int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7}; for (int i = 0; i < kTableLength; i++) { test.srcd = inputs_D[i]; test.srcf = inputs_S[i]; for (int j = 0; j< 8; j++) { test.cc = condition_flags[j]; if (test.cc == 0) { test.fcsr = 1 << 23; } else { test.fcsr = 1 << (24+condition_flags[j]); } HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ Ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf))); __ Lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr))); __ cfc1(t0, FCSR); __ ctc1(t1, FCSR); __ li(t2, 0x0); __ mtc1(t2, f12); __ mtc1(t2, f10); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold))); __ movt_s(f12, f4, test.cc); __ movt_d(f10, f2, test.cc); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1))); __ movf_s(f12, f4, test.cc); __ movf_d(f10, f2, test.cc); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1))); __ ctc1(t0, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dstf, outputs_S[i]); CHECK_EQ(test.dstd, outputs_D[i]); CHECK_EQ(test.dstf1, test.dstfold1); CHECK_EQ(test.dstd1, test.dstdold1); test.fcsr = 0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dstf, test.dstfold); CHECK_EQ(test.dstd, test.dstdold); CHECK_EQ(test.dstf1, outputs_S[i]); CHECK_EQ(test.dstd1, outputs_D[i]); } } } } // ----------------------tests for all archs-------------------------- TEST(cvt_w_d) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; int32_t b; int fcsr; }Test; const int kTableLength = 24; double inputs[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, 2147483653.0 }; double outputs_RN[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RZ[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RP[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RM[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lw(t0, MemOperand(a0, offsetof(Test, fcsr))); __ cfc1(t1, FCSR); __ ctc1(t0, FCSR); __ cvt_w_d(f8, f4); __ Swc1(f8, MemOperand(a0, offsetof(Test, b))); __ ctc1(t1, FCSR); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs[j][i]); } } } TEST(trunc_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a trunc result int32_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ trunc_w_d(f8, f4); __ trunc_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(round_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a trunc result int32_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ round_w_d(f8, f4); __ round_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(round_l) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ round_l_d(f8, f4); __ round_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(sub) { const int kTableLength = 12; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; float resultS; double c; double d; double resultD; }TestFloat; TestFloat test; double inputfs_D[kTableLength] = { 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 }; double inputft_D[kTableLength] = { 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 }; double outputs_D[kTableLength] = { 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 }; float inputfs_S[kTableLength] = { 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 }; float inputft_S[kTableLength] = { 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 }; float outputs_S[kTableLength] = { 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ Ldc1(f10, MemOperand(a0, offsetof(TestFloat, d))); __ sub_s(f6, f2, f4); __ sub_d(f12, f8, f10); __ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputfs_S[i]; test.b = inputft_S[i]; test.c = inputfs_D[i]; test.d = inputft_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); } } TEST(sqrt_rsqrt_recip) { const int kTableLength = 4; const double deltaDouble = 2E-15; const float deltaFloat = 2E-7; const float sqrt2_s = sqrt(2); const double sqrt2_d = sqrt(2); CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float resultS; float resultS1; float resultS2; double c; double resultD; double resultD1; double resultD2; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 0.0L, 4.0L, 2.0L, 4e-28L }; double outputs_D[kTableLength] = { 0.0L, 2.0L, sqrt2_d, 2e-14L }; float inputs_S[kTableLength] = { 0.0, 4.0, 2.0, 4e-28 }; float outputs_S[kTableLength] = { 0.0, 2.0, sqrt2_s, 2e-14 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ sqrt_s(f6, f2); __ sqrt_d(f12, f8); __ rsqrt_d(f14, f8); __ rsqrt_s(f16, f2); __ recip_d(f18, f8); __ recip_s(f4, f2); __ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ Swc1(f16, MemOperand(a0, offsetof(TestFloat, resultS1))); __ Sdc1(f14, MemOperand(a0, offsetof(TestFloat, resultD1))); __ Swc1(f4, MemOperand(a0, offsetof(TestFloat, resultS2))); __ Sdc1(f18, MemOperand(a0, offsetof(TestFloat, resultD2))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { float f1; double d1; test.a = inputs_S[i]; test.c = inputs_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); if (i != 0) { f1 = test.resultS1 - 1.0F/outputs_S[i]; f1 = (f1 < 0) ? f1 : -f1; CHECK(f1 <= deltaFloat); d1 = test.resultD1 - 1.0L/outputs_D[i]; d1 = (d1 < 0) ? d1 : -d1; CHECK(d1 <= deltaDouble); f1 = test.resultS2 - 1.0F/inputs_S[i]; f1 = (f1 < 0) ? f1 : -f1; CHECK(f1 <= deltaFloat); d1 = test.resultD2 - 1.0L/inputs_D[i]; d1 = (d1 < 0) ? d1 : -d1; CHECK(d1 <= deltaDouble); } else { CHECK_EQ(test.resultS1, 1.0F/outputs_S[i]); CHECK_EQ(test.resultD1, 1.0L/outputs_D[i]); CHECK_EQ(test.resultS2, 1.0F/inputs_S[i]); CHECK_EQ(test.resultD2, 1.0L/inputs_D[i]); } } } TEST(neg) { const int kTableLength = 2; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float resultS; double c; double resultD; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 4.0, -2.0 }; double outputs_D[kTableLength] = { -4.0, 2.0 }; float inputs_S[kTableLength] = { 4.0, -2.0 }; float outputs_S[kTableLength] = { -4.0, 2.0 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, c))); __ neg_s(f6, f2); __ neg_d(f12, f8); __ Swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_S[i]; test.c = inputs_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); } } TEST(mul) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; float resultS; double c; double d; double resultD; }TestFloat; TestFloat test; double inputfs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputft_D[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float inputfs_S[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; float inputft_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; __ Lwc1(f2, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, c))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, d))); __ mul_s(f10, f2, f4); __ mul_d(f12, f6, f8); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, resultS))); __ Sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputfs_S[i]; test.b = inputft_S[i]; test.c = inputfs_D[i]; test.d = inputft_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, inputfs_S[i]*inputft_S[i]); CHECK_EQ(test.resultD, inputfs_D[i]*inputft_D[i]); } } TEST(mov) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; float c; float d; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f6, MemOperand(a0, offsetof(TestFloat, c))); __ mov_s(f8, f6); __ mov_d(f10, f4); __ Swc1(f8, MemOperand(a0, offsetof(TestFloat, d))); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, b))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.c = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs_D[i]); CHECK_EQ(test.d, outputs_S[i]); } } TEST(floor_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a floor result int32_t d; // b floor result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ floor_w_d(f8, f4); __ floor_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(floor_l) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ floor_l_d(f8, f4); __ floor_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(ceil_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a floor result int32_t d; // b floor result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ ceil_w_d(f8, f4); __ ceil_w_s(f10, f6); __ Swc1(f8, MemOperand(a0, offsetof(Test, c))); __ Swc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(ceil_l) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ Sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ Ldc1(f4, MemOperand(a0, offsetof(Test, a))); __ Lwc1(f6, MemOperand(a0, offsetof(Test, b))); __ ceil_l_d(f8, f4); __ ceil_l_s(f10, f6); __ Sdc1(f8, MemOperand(a0, offsetof(Test, c))); __ Sdc1(f10, MemOperand(a0, offsetof(Test, d))); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips64r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(jump_tables1) { // Test jump tables with forward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; __ daddiu(sp, sp, -8); __ Sd(ra, MemOperand(sp)); __ Align(8); Label done; { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); PredictableCodeSizeScope predictable( &assm, (kNumCases * 2 + 6) * Assembler::kInstrSize); Label here; __ bal(&here); __ dsll(at, a0, 3); // In delay slot. __ bind(&here); __ daddu(at, at, ra); __ Ld(at, MemOperand(at, 4 * Assembler::kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(v0, (values[i] >> 16) & 0xffff); __ ori(v0, v0, values[i] & 0xffff); __ b(&done); __ nop(); } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ daddiu(sp, sp, 8); __ jr(ra); __ nop(); CHECK_EQ(0, assm.UnboundLabelsCount()); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], static_cast(res)); } } TEST(jump_tables2) { // Test jump tables with backward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; __ daddiu(sp, sp, -8); __ Sd(ra, MemOperand(sp)); Label done, dispatch; __ b(&dispatch); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(v0, (values[i] >> 16) & 0xffff); __ ori(v0, v0, values[i] & 0xffff); __ b(&done); __ nop(); } __ Align(8); __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); PredictableCodeSizeScope predictable( &assm, (kNumCases * 2 + 6) * Assembler::kInstrSize); Label here; __ bal(&here); __ dsll(at, a0, 3); // In delay slot. __ bind(&here); __ daddu(at, at, ra); __ Ld(at, MemOperand(at, 4 * Assembler::kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ daddiu(sp, sp, 8); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %" PRId64 "\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables3) { // Test jump tables with backward jumps and embedded heap objects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const int kNumCases = 512; Handle values[kNumCases]; for (int i = 0; i < kNumCases; ++i) { double value = isolate->random_number_generator()->NextDouble(); values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED); } Label labels[kNumCases]; Object* obj; int64_t imm64; __ daddiu(sp, sp, -8); __ Sd(ra, MemOperand(sp)); Label done, dispatch; __ b(&dispatch); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); obj = *values[i]; imm64 = reinterpret_cast(obj); __ lui(v0, (imm64 >> 32) & kImm16Mask); __ ori(v0, v0, (imm64 >> 16) & kImm16Mask); __ dsll(v0, v0, 16); __ ori(v0, v0, imm64 & kImm16Mask); __ b(&done); __ nop(); } __ Align(8); __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases * 2 + 6); PredictableCodeSizeScope predictable( &assm, (kNumCases * 2 + 6) * Assembler::kInstrSize); Label here; __ bal(&here); __ dsll(at, a0, 3); // In delay slot. __ bind(&here); __ daddu(at, at, ra); __ Ld(at, MemOperand(at, 4 * Assembler::kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ Ld(ra, MemOperand(sp)); __ daddiu(sp, sp, 8); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { Handle result( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0), isolate); #ifdef OBJECT_PRINT ::printf("f(%d) = ", i); result->Print(std::cout); ::printf("\n"); #endif CHECK(values[i].is_identical_to(result)); } } TEST(BITSWAP) { // Test BITSWAP if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int64_t r1; int64_t r2; int64_t r3; int64_t r4; int64_t r5; int64_t r6; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ Ld(a4, MemOperand(a0, offsetof(T, r1))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r1))); __ Ld(a4, MemOperand(a0, offsetof(T, r2))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r2))); __ Ld(a4, MemOperand(a0, offsetof(T, r3))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r3))); __ Ld(a4, MemOperand(a0, offsetof(T, r4))); __ nop(); __ bitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r4))); __ Ld(a4, MemOperand(a0, offsetof(T, r5))); __ nop(); __ dbitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r5))); __ Ld(a4, MemOperand(a0, offsetof(T, r6))); __ nop(); __ dbitswap(a6, a4); __ Sd(a6, MemOperand(a0, offsetof(T, r6))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.r1 = 0x00102100781A15C3; t.r2 = 0x001021008B71FCDE; t.r3 = 0xFF8017FF781A15C3; t.r4 = 0xFF8017FF8B71FCDE; t.r5 = 0x10C021098B71FCDE; t.r6 = 0xFB8017FF781A15C3; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x000000001E58A8C3L), t.r1); CHECK_EQ(static_cast(0xFFFFFFFFD18E3F7BL), t.r2); CHECK_EQ(static_cast(0x000000001E58A8C3L), t.r3); CHECK_EQ(static_cast(0xFFFFFFFFD18E3F7BL), t.r4); CHECK_EQ(static_cast(0x08038490D18E3F7BL), t.r5); CHECK_EQ(static_cast(0xDF01E8FF1E58A8C3L), t.r6); } } TEST(class_fmt) { if (kArchVariant == kMips64r6) { // Test CLASS.fmt instruction. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double dSignalingNan; double dQuietNan; double dNegInf; double dNegNorm; double dNegSubnorm; double dNegZero; double dPosInf; double dPosNorm; double dPosSubnorm; double dPosZero; float fSignalingNan; float fQuietNan; float fNegInf; float fNegNorm; float fNegSubnorm; float fNegZero; float fPosInf; float fPosNorm; float fPosSubnorm; float fPosZero; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ Ldc1(f4, MemOperand(a0, offsetof(T, dSignalingNan))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dSignalingNan))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dQuietNan))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dQuietNan))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegInf))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegInf))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegNorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegNorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegSubnorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegSubnorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dNegZero))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dNegZero))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosInf))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosInf))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosNorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosNorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosSubnorm))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosSubnorm))); __ Ldc1(f4, MemOperand(a0, offsetof(T, dPosZero))); __ class_d(f6, f4); __ Sdc1(f6, MemOperand(a0, offsetof(T, dPosZero))); // Testing instruction CLASS.S __ Lwc1(f4, MemOperand(a0, offsetof(T, fSignalingNan))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fSignalingNan))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fQuietNan))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fQuietNan))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegInf))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegInf))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegNorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegNorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegSubnorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegSubnorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fNegZero))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fNegZero))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosInf))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosInf))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosNorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosNorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosSubnorm))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosSubnorm))); __ Lwc1(f4, MemOperand(a0, offsetof(T, fPosZero))); __ class_s(f6, f4); __ Swc1(f6, MemOperand(a0, offsetof(T, fPosZero))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); // Double test values. t.dSignalingNan = std::numeric_limits::signaling_NaN(); t.dQuietNan = std::numeric_limits::quiet_NaN(); t.dNegInf = -1.0 / 0.0; t.dNegNorm = -5.0; t.dNegSubnorm = -DBL_MIN / 2.0; t.dNegZero = -0.0; t.dPosInf = 2.0 / 0.0; t.dPosNorm = 275.35; t.dPosSubnorm = DBL_MIN / 2.0; t.dPosZero = +0.0; // Float test values t.fSignalingNan = std::numeric_limits::signaling_NaN(); t.fQuietNan = std::numeric_limits::quiet_NaN(); t.fNegInf = -0.5/0.0; t.fNegNorm = -FLT_MIN; t.fNegSubnorm = -FLT_MIN / 1.5; t.fNegZero = -0.0; t.fPosInf = 100000.0 / 0.0; t.fPosNorm = FLT_MAX; t.fPosSubnorm = FLT_MIN / 20.0; t.fPosZero = +0.0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); // Expected double results. CHECK_EQ(bit_cast(t.dSignalingNan), 0x001); CHECK_EQ(bit_cast(t.dQuietNan), 0x002); CHECK_EQ(bit_cast(t.dNegInf), 0x004); CHECK_EQ(bit_cast(t.dNegNorm), 0x008); CHECK_EQ(bit_cast(t.dNegSubnorm), 0x010); CHECK_EQ(bit_cast(t.dNegZero), 0x020); CHECK_EQ(bit_cast(t.dPosInf), 0x040); CHECK_EQ(bit_cast(t.dPosNorm), 0x080); CHECK_EQ(bit_cast(t.dPosSubnorm), 0x100); CHECK_EQ(bit_cast(t.dPosZero), 0x200); // Expected float results. CHECK_EQ(bit_cast(t.fSignalingNan), 0x001); CHECK_EQ(bit_cast(t.fQuietNan), 0x002); CHECK_EQ(bit_cast(t.fNegInf), 0x004); CHECK_EQ(bit_cast(t.fNegNorm), 0x008); CHECK_EQ(bit_cast(t.fNegSubnorm), 0x010); CHECK_EQ(bit_cast(t.fNegZero), 0x020); CHECK_EQ(bit_cast(t.fPosInf), 0x040); CHECK_EQ(bit_cast(t.fPosNorm), 0x080); CHECK_EQ(bit_cast(t.fPosSubnorm), 0x100); CHECK_EQ(bit_cast(t.fPosZero), 0x200); } } TEST(ABS) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { int64_t fir; double a; float b; double fcsr; } TestFloat; TestFloat test; // Save FIR. __ cfc1(a1, FCSR); __ Sd(a1, MemOperand(a0, offsetof(TestFloat, fcsr))); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ abs_d(f10, f4); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, a))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ abs_s(f10, f4); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, b))); // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.a = -2.0; test.b = -2.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, 2.0); CHECK_EQ(test.b, 2.0); test.a = 2.0; test.b = 2.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, 2.0); CHECK_EQ(test.b, 2.0); // Testing biggest positive number test.a = std::numeric_limits::max(); test.b = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::max()); CHECK_EQ(test.b, std::numeric_limits::max()); // Testing smallest negative number test.a = -std::numeric_limits::max(); // lowest() test.b = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::max()); CHECK_EQ(test.b, std::numeric_limits::max()); // Testing smallest positive number test.a = -std::numeric_limits::min(); test.b = -std::numeric_limits::min(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::min()); CHECK_EQ(test.b, std::numeric_limits::min()); // Testing infinity test.a = -std::numeric_limits::max() / std::numeric_limits::min(); test.b = -std::numeric_limits::max() / std::numeric_limits::min(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::max() / std::numeric_limits::min()); CHECK_EQ(test.b, std::numeric_limits::max() / std::numeric_limits::min()); test.a = std::numeric_limits::quiet_NaN(); test.b = std::numeric_limits::quiet_NaN(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK(std::isnan(test.a)); CHECK(std::isnan(test.b)); test.a = std::numeric_limits::signaling_NaN(); test.b = std::numeric_limits::signaling_NaN(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK(std::isnan(test.a)); CHECK(std::isnan(test.b)); } TEST(ADD_FMT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; double c; float fa; float fb; float fc; } TestFloat; TestFloat test; __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ Ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ add_d(f10, f8, f4); __ Sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ Lwc1(f4, MemOperand(a0, offsetof(TestFloat, fa))); __ Lwc1(f8, MemOperand(a0, offsetof(TestFloat, fb))); __ add_s(f10, f8, f4); __ Swc1(f10, MemOperand(a0, offsetof(TestFloat, fc))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.a = 2.0; test.b = 3.0; test.fa = 2.0; test.fb = 3.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.c, 5.0); CHECK_EQ(test.fc, 5.0); test.a = std::numeric_limits::max(); test.b = -std::numeric_limits::max(); // lowest() test.fa = std::numeric_limits::max(); test.fb = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.c, 0.0); CHECK_EQ(test.fc, 0.0); test.a = std::numeric_limits::max(); test.b = std::numeric_limits::max(); test.fa = std::numeric_limits::max(); test.fb = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK(!std::isfinite(test.c)); CHECK(!std::isfinite(test.fc)); test.a = 5.0; test.b = std::numeric_limits::signaling_NaN(); test.fa = 5.0; test.fb = std::numeric_limits::signaling_NaN(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK(std::isnan(test.c)); CHECK(std::isnan(test.fc)); } TEST(C_COND_FMT) { if (kArchVariant == kMips64r2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double dOp1; double dOp2; uint32_t dF; uint32_t dUn; uint32_t dEq; uint32_t dUeq; uint32_t dOlt; uint32_t dUlt; uint32_t dOle; uint32_t dUle; float fOp1; float fOp2; uint32_t fF; uint32_t fUn; uint32_t fEq; uint32_t fUeq; uint32_t fOlt; uint32_t fUlt; uint32_t fOle; uint32_t fUle; } TestFloat; TestFloat test; __ li(t1, 1); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1))); __ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2))); __ Lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1))); __ Lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(F, f4, f6, 0); __ c_s(F, f14, f16, 2); __ movt(t2, t1, 0); __ movt(t3, t1, 2); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dF))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fF))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(UN, f4, f6, 2); __ c_s(UN, f14, f16, 4); __ movt(t2, t1, 2); __ movt(t3, t1, 4); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUn))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUn))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(EQ, f4, f6, 4); __ c_s(EQ, f14, f16, 6); __ movt(t2, t1, 4); __ movt(t3, t1, 6); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dEq))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fEq))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(UEQ, f4, f6, 6); __ c_s(UEQ, f14, f16, 0); __ movt(t2, t1, 6); __ movt(t3, t1, 0); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUeq))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUeq))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(OLT, f4, f6, 0); __ c_s(OLT, f14, f16, 2); __ movt(t2, t1, 0); __ movt(t3, t1, 2); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dOlt))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fOlt))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(ULT, f4, f6, 2); __ c_s(ULT, f14, f16, 4); __ movt(t2, t1, 2); __ movt(t3, t1, 4); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUlt))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUlt))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(OLE, f4, f6, 4); __ c_s(OLE, f14, f16, 6); __ movt(t2, t1, 4); __ movt(t3, t1, 6); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dOle))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fOle))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(ULE, f4, f6, 6); __ c_s(ULE, f14, f16, 0); __ movt(t2, t1, 6); __ movt(t3, t1, 0); __ Sw(t2, MemOperand(a0, offsetof(TestFloat, dUle))); __ Sw(t3, MemOperand(a0, offsetof(TestFloat, fUle))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.dOp1 = 2.0; test.dOp2 = 3.0; test.fOp1 = 2.0; test.fOp2 = 3.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 0U); CHECK_EQ(test.dOlt, 1U); CHECK_EQ(test.dUlt, 1U); CHECK_EQ(test.dOle, 1U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 0U); CHECK_EQ(test.fOlt, 1U); CHECK_EQ(test.fUlt, 1U); CHECK_EQ(test.fOle, 1U); CHECK_EQ(test.fUle, 1U); test.dOp1 = std::numeric_limits::max(); test.dOp2 = std::numeric_limits::min(); test.fOp1 = std::numeric_limits::min(); test.fOp2 = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 0U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 0U); CHECK_EQ(test.dOle, 0U); CHECK_EQ(test.dUle, 0U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 0U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 0U); CHECK_EQ(test.fOle, 0U); CHECK_EQ(test.fUle, 0U); test.dOp1 = -std::numeric_limits::max(); // lowest() test.dOp2 = -std::numeric_limits::max(); // lowest() test.fOp1 = std::numeric_limits::max(); test.fOp2 = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 1U); CHECK_EQ(test.dUeq, 1U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 0U); CHECK_EQ(test.dOle, 1U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 1U); CHECK_EQ(test.fUeq, 1U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 0U); CHECK_EQ(test.fOle, 1U); CHECK_EQ(test.fUle, 1U); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = 0.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = 0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 1U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 1U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 1U); CHECK_EQ(test.dOle, 0U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 1U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 1U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 1U); CHECK_EQ(test.fOle, 0U); CHECK_EQ(test.fUle, 1U); } } TEST(CMP_COND_FMT) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double dOp1; double dOp2; double dF; double dUn; double dEq; double dUeq; double dOlt; double dUlt; double dOle; double dUle; double dOr; double dUne; double dNe; float fOp1; float fOp2; float fF; float fUn; float fEq; float fUeq; float fOlt; float fUlt; float fOle; float fUle; float fOr; float fUne; float fNe; } TestFloat; TestFloat test; __ li(t1, 1); __ Ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1))); __ Ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2))); __ Lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1))); __ Lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2))); __ cmp_d(F, f2, f4, f6); __ cmp_s(F, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dF))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fF))); __ cmp_d(UN, f2, f4, f6); __ cmp_s(UN, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUn))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUn))); __ cmp_d(EQ, f2, f4, f6); __ cmp_s(EQ, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dEq))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fEq))); __ cmp_d(UEQ, f2, f4, f6); __ cmp_s(UEQ, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUeq))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUeq))); __ cmp_d(LT, f2, f4, f6); __ cmp_s(LT, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOlt))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOlt))); __ cmp_d(ULT, f2, f4, f6); __ cmp_s(ULT, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUlt))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUlt))); __ cmp_d(LE, f2, f4, f6); __ cmp_s(LE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOle))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOle))); __ cmp_d(ULE, f2, f4, f6); __ cmp_s(ULE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUle))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUle))); __ cmp_d(ORD, f2, f4, f6); __ cmp_s(ORD, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOr))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fOr))); __ cmp_d(UNE, f2, f4, f6); __ cmp_s(UNE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUne))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fUne))); __ cmp_d(NE, f2, f4, f6); __ cmp_s(NE, f12, f14, f16); __ Sdc1(f2, MemOperand(a0, offsetof(TestFloat, dNe))); __ Swc1(f12, MemOperand(a0, offsetof(TestFloat, fNe))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); uint64_t dTrue = 0xFFFFFFFFFFFFFFFF; uint64_t dFalse = 0x0000000000000000; uint32_t fTrue = 0xFFFFFFFF; uint32_t fFalse = 0x00000000; test.dOp1 = 2.0; test.dOp2 = 3.0; test.fOp1 = 2.0; test.fOp2 = 3.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dFalse); CHECK_EQ(bit_cast(test.dOlt), dTrue); CHECK_EQ(bit_cast(test.dUlt), dTrue); CHECK_EQ(bit_cast(test.dOle), dTrue); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dTrue); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fFalse); CHECK_EQ(bit_cast(test.fOlt), fTrue); CHECK_EQ(bit_cast(test.fUlt), fTrue); CHECK_EQ(bit_cast(test.fOle), fTrue); CHECK_EQ(bit_cast(test.fUle), fTrue); test.dOp1 = std::numeric_limits::max(); test.dOp2 = std::numeric_limits::min(); test.fOp1 = std::numeric_limits::min(); test.fOp2 = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dFalse); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dFalse); CHECK_EQ(bit_cast(test.dOle), dFalse); CHECK_EQ(bit_cast(test.dUle), dFalse); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dTrue); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fFalse); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fFalse); CHECK_EQ(bit_cast(test.fOle), fFalse); CHECK_EQ(bit_cast(test.fUle), fFalse); test.dOp1 = -std::numeric_limits::max(); // lowest() test.dOp2 = -std::numeric_limits::max(); // lowest() test.fOp1 = std::numeric_limits::max(); test.fOp2 = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dTrue); CHECK_EQ(bit_cast(test.dUeq), dTrue); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dFalse); CHECK_EQ(bit_cast(test.dOle), dTrue); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dFalse); CHECK_EQ(bit_cast(test.dNe), dFalse); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fTrue); CHECK_EQ(bit_cast(test.fUeq), fTrue); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fFalse); CHECK_EQ(bit_cast(test.fOle), fTrue); CHECK_EQ(bit_cast(test.fUle), fTrue); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = 0.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = 0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dTrue); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dTrue); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dTrue); CHECK_EQ(bit_cast(test.dOle), dFalse); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dFalse); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dFalse); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fTrue); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fTrue); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fTrue); CHECK_EQ(bit_cast(test.fOle), fFalse); CHECK_EQ(bit_cast(test.fUle), fTrue); } } TEST(CVT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float cvt_d_s_in; double cvt_d_s_out; int32_t cvt_d_w_in; double cvt_d_w_out; int64_t cvt_d_l_in; double cvt_d_l_out; float cvt_l_s_in; int64_t cvt_l_s_out; double cvt_l_d_in; int64_t cvt_l_d_out; double cvt_s_d_in; float cvt_s_d_out; int32_t cvt_s_w_in; float cvt_s_w_out; int64_t cvt_s_l_in; float cvt_s_l_out; float cvt_w_s_in; int32_t cvt_w_s_out; double cvt_w_d_in; int32_t cvt_w_d_out; } TestFloat; TestFloat test; // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); #define GENERATE_CVT_TEST(x, y, z) \ __ y##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_in))); \ __ x(f0, f0); \ __ nop(); \ __ z##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_out))); GENERATE_CVT_TEST(cvt_d_s, lw, sd) GENERATE_CVT_TEST(cvt_d_w, lw, sd) GENERATE_CVT_TEST(cvt_d_l, ld, sd) GENERATE_CVT_TEST(cvt_l_s, lw, sd) GENERATE_CVT_TEST(cvt_l_d, ld, sd) GENERATE_CVT_TEST(cvt_s_d, ld, sw) GENERATE_CVT_TEST(cvt_s_w, lw, sw) GENERATE_CVT_TEST(cvt_s_l, ld, sw) GENERATE_CVT_TEST(cvt_w_s, lw, sw) GENERATE_CVT_TEST(cvt_w_d, ld, sw) // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.cvt_d_s_in = -0.51; test.cvt_d_w_in = -1; test.cvt_d_l_in = -1; test.cvt_l_s_in = -0.51; test.cvt_l_d_in = -0.51; test.cvt_s_d_in = -0.51; test.cvt_s_w_in = -1; test.cvt_s_l_in = -1; test.cvt_w_s_in = -0.51; test.cvt_w_d_in = -0.51; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(-1, test.cvt_l_s_out); CHECK_EQ(-1, test.cvt_l_d_out); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(-1, test.cvt_w_s_out); CHECK_EQ(-1, test.cvt_w_d_out); test.cvt_d_s_in = 0.49; test.cvt_d_w_in = 1; test.cvt_d_l_in = 1; test.cvt_l_s_in = 0.49; test.cvt_l_d_in = 0.49; test.cvt_s_d_in = 0.49; test.cvt_s_w_in = 1; test.cvt_s_l_in = 1; test.cvt_w_s_in = 0.49; test.cvt_w_d_in = 0.49; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(0, test.cvt_l_s_out); CHECK_EQ(0, test.cvt_l_d_out); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(0, test.cvt_w_s_out); CHECK_EQ(0, test.cvt_w_d_out); test.cvt_d_s_in = std::numeric_limits::max(); test.cvt_d_w_in = std::numeric_limits::max(); test.cvt_d_l_in = std::numeric_limits::max(); test.cvt_l_s_in = std::numeric_limits::max(); test.cvt_l_d_in = std::numeric_limits::max(); test.cvt_s_d_in = std::numeric_limits::max(); test.cvt_s_w_in = std::numeric_limits::max(); test.cvt_s_l_in = std::numeric_limits::max(); test.cvt_w_s_in = std::numeric_limits::max(); test.cvt_w_d_in = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(test.cvt_l_s_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_l_d_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(test.cvt_w_s_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_w_d_out, std::numeric_limits::max()); test.cvt_d_s_in = -std::numeric_limits::max(); // lowest() test.cvt_d_w_in = std::numeric_limits::min(); // lowest() test.cvt_d_l_in = std::numeric_limits::min(); // lowest() test.cvt_l_s_in = -std::numeric_limits::max(); // lowest() test.cvt_l_d_in = -std::numeric_limits::max(); // lowest() test.cvt_s_d_in = -std::numeric_limits::max(); // lowest() test.cvt_s_w_in = std::numeric_limits::min(); // lowest() test.cvt_s_l_in = std::numeric_limits::min(); // lowest() test.cvt_w_s_in = -std::numeric_limits::max(); // lowest() test.cvt_w_d_in = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); // The returned value when converting from fixed-point to float-point // is not consistent between board, simulator and specification // in this test case, therefore modifying the test CHECK(test.cvt_l_s_out == std::numeric_limits::min() || test.cvt_l_s_out == std::numeric_limits::max()); CHECK(test.cvt_l_d_out == std::numeric_limits::min() || test.cvt_l_d_out == std::numeric_limits::max()); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK(test.cvt_w_s_out == std::numeric_limits::min() || test.cvt_w_s_out == std::numeric_limits::max()); CHECK(test.cvt_w_d_out == std::numeric_limits::min() || test.cvt_w_d_out == std::numeric_limits::max()); test.cvt_d_s_in = std::numeric_limits::min(); test.cvt_d_w_in = std::numeric_limits::min(); test.cvt_d_l_in = std::numeric_limits::min(); test.cvt_l_s_in = std::numeric_limits::min(); test.cvt_l_d_in = std::numeric_limits::min(); test.cvt_s_d_in = std::numeric_limits::min(); test.cvt_s_w_in = std::numeric_limits::min(); test.cvt_s_l_in = std::numeric_limits::min(); test.cvt_w_s_in = std::numeric_limits::min(); test.cvt_w_d_in = std::numeric_limits::min(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); CHECK_EQ(0, test.cvt_l_s_out); CHECK_EQ(0, test.cvt_l_d_out); CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); CHECK_EQ(0, test.cvt_w_s_out); CHECK_EQ(0, test.cvt_w_d_out); } TEST(DIV_FMT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { double dOp1; double dOp2; double dRes; float fOp1; float fOp2; float fRes; } Test; Test test; // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); __ Ldc1(f4, MemOperand(a0, offsetof(Test, dOp1))); __ Ldc1(f2, MemOperand(a0, offsetof(Test, dOp2))); __ nop(); __ div_d(f6, f4, f2); __ Sdc1(f6, MemOperand(a0, offsetof(Test, dRes))); __ Lwc1(f4, MemOperand(a0, offsetof(Test, fOp1))); __ Lwc1(f2, MemOperand(a0, offsetof(Test, fOp2))); __ nop(); __ div_s(f6, f4, f2); __ Swc1(f6, MemOperand(a0, offsetof(Test, fRes))); // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); const int test_size = 3; double dOp1[test_size] = { 5.0, DBL_MAX, DBL_MAX, }; double dOp2[test_size] = { 2.0, 2.0, -DBL_MAX, }; double dRes[test_size] = { 2.5, DBL_MAX / 2.0, -1.0, }; float fOp1[test_size] = { 5.0, FLT_MAX, FLT_MAX, }; float fOp2[test_size] = { 2.0, 2.0, -FLT_MAX, }; float fRes[test_size] = { 2.5, FLT_MAX / 2.0, -1.0, }; for (int i = 0; i < test_size; i++) { test.dOp1 = dOp1[i]; test.dOp2 = dOp2[i]; test.fOp1 = fOp1[i]; test.fOp2 = fOp2[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dRes, dRes[i]); CHECK_EQ(test.fRes, fRes[i]); } test.dOp1 = DBL_MAX; test.dOp2 = -0.0; test.fOp1 = FLT_MAX; test.fOp2 = -0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK(!std::isfinite(test.dRes)); CHECK(!std::isfinite(test.fRes)); test.dOp1 = 0.0; test.dOp2 = -0.0; test.fOp1 = 0.0; test.fOp2 = -0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK(std::isnan(test.dRes)); CHECK(std::isnan(test.fRes)); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = -5.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = -5.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK(std::isnan(test.dRes)); CHECK(std::isnan(test.fRes)); } uint64_t run_align(uint64_t rs_value, uint64_t rt_value, uint8_t bp) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ align(v0, a0, a1, bp); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F4 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0)); return res; } TEST(r6_align) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAlign { uint64_t rs_value; uint64_t rt_value; uint8_t bp; uint64_t expected_res; }; struct TestCaseAlign tc[] = { // rs_value, rt_value, bp, expected_res { 0x11223344, 0xaabbccdd, 0, 0xffffffffaabbccdd }, { 0x11223344, 0xaabbccdd, 1, 0xffffffffbbccdd11 }, { 0x11223344, 0xaabbccdd, 2, 0xffffffffccdd1122 }, { 0x11223344, 0xaabbccdd, 3, 0xffffffffdd112233 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlign); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_align(tc[i].rs_value, tc[i].rt_value, tc[i].bp)); } } } uint64_t run_dalign(uint64_t rs_value, uint64_t rt_value, uint8_t bp) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ dalign(v0, a0, a1, bp); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F4 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, rs_value, rt_value, 0, 0, 0)); return res; } TEST(r6_dalign) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseDalign { uint64_t rs_value; uint64_t rt_value; uint8_t bp; uint64_t expected_res; }; struct TestCaseDalign tc[] = { // rs_value, rt_value, bp, expected_res { 0x1122334455667700, 0xaabbccddeeff8899, 0, 0xaabbccddeeff8899 }, { 0x1122334455667700, 0xaabbccddeeff8899, 1, 0xbbccddeeff889911 }, { 0x1122334455667700, 0xaabbccddeeff8899, 2, 0xccddeeff88991122 }, { 0x1122334455667700, 0xaabbccddeeff8899, 3, 0xddeeff8899112233 }, { 0x1122334455667700, 0xaabbccddeeff8899, 4, 0xeeff889911223344 }, { 0x1122334455667700, 0xaabbccddeeff8899, 5, 0xff88991122334455 }, { 0x1122334455667700, 0xaabbccddeeff8899, 6, 0x8899112233445566 }, { 0x1122334455667700, 0xaabbccddeeff8899, 7, 0x9911223344556677 } }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDalign); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_dalign(tc[i].rs_value, tc[i].rt_value, tc[i].bp)); } } } uint64_t PC; // The program counter. uint64_t run_aluipc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ aluipc(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); PC = (uint64_t) f; // Set the program counter. uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_aluipc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAluipc { int16_t offset; }; struct TestCaseAluipc tc[] = { // offset { -32768 }, // 0x8000 { -1 }, // 0xFFFF { 0 }, { 1 }, { 32767 }, // 0x7FFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAluipc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint64_t res = run_aluipc(tc[i].offset); // Now, the program_counter (PC) is set. uint64_t expected_res = ~0x0FFFF & (PC + (tc[i].offset << 16)); CHECK_EQ(expected_res, res); } } } uint64_t run_auipc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ auipc(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); PC = (uint64_t) f; // Set the program counter. uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_auipc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAuipc { int16_t offset; }; struct TestCaseAuipc tc[] = { // offset { -32768 }, // 0x8000 { -1 }, // 0xFFFF { 0 }, { 1 }, { 32767 }, // 0x7FFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAuipc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint64_t res = run_auipc(tc[i].offset); // Now, the program_counter (PC) is set. uint64_t expected_res = PC + (tc[i].offset << 16); CHECK_EQ(expected_res, res); } } } uint64_t run_aui(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ li(t0, rs); __ aui(v0, t0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } uint64_t run_daui(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ li(t0, rs); __ daui(v0, t0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } uint64_t run_dahi(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, rs); __ dahi(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } uint64_t run_dati(uint64_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, rs); __ dati(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_aui_family) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAui { uint64_t rs; uint16_t offset; uint64_t ref_res; }; // AUI test cases. struct TestCaseAui aui_tc[] = { {0xfffeffff, 0x1, 0xffffffffffffffff}, {0xffffffff, 0x0, 0xffffffffffffffff}, {0, 0xffff, 0xffffffffffff0000}, {0x0008ffff, 0xfff7, 0xffffffffffffffff}, {32767, 32767, 0x000000007fff7fff}, {0x00000000ffffffff, 0x1, 0x000000000000ffff}, {0xffffffff, 0xffff, 0xfffffffffffeffff}, }; size_t nr_test_cases = sizeof(aui_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_aui(aui_tc[i].rs, aui_tc[i].offset); CHECK_EQ(aui_tc[i].ref_res, res); } // DAUI test cases. struct TestCaseAui daui_tc[] = { {0xfffffffffffeffff, 0x1, 0xffffffffffffffff}, {0xffffffffffffffff, 0x0, 0xffffffffffffffff}, {0, 0xffff, 0xffffffffffff0000}, {0x0008ffff, 0xfff7, 0xffffffffffffffff}, {32767, 32767, 0x000000007fff7fff}, {0x00000000ffffffff, 0x1, 0x000000010000ffff}, {0xffffffff, 0xffff, 0x00000000fffeffff}, }; nr_test_cases = sizeof(daui_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_daui(daui_tc[i].rs, daui_tc[i].offset); CHECK_EQ(daui_tc[i].ref_res, res); } // DATI test cases. struct TestCaseAui dati_tc[] = { {0xfffffffffffeffff, 0x1, 0x0000fffffffeffff}, {0xffffffffffffffff, 0x0, 0xffffffffffffffff}, {0, 0xffff, 0xffff000000000000}, {0x0008ffff, 0xfff7, 0xfff700000008ffff}, {32767, 32767, 0x7fff000000007fff}, {0x00000000ffffffff, 0x1, 0x00010000ffffffff}, {0xffffffffffff, 0xffff, 0xffffffffffffffff}, }; nr_test_cases = sizeof(dati_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_dati(dati_tc[i].rs, dati_tc[i].offset); CHECK_EQ(dati_tc[i].ref_res, res); } // DAHI test cases. struct TestCaseAui dahi_tc[] = { {0xfffffffeffffffff, 0x1, 0xffffffffffffffff}, {0xffffffffffffffff, 0x0, 0xffffffffffffffff}, {0, 0xffff, 0xffffffff00000000}, }; nr_test_cases = sizeof(dahi_tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_dahi(dahi_tc[i].rs, dahi_tc[i].offset); CHECK_EQ(dahi_tc[i].ref_res, res); } } } uint64_t run_li_macro(uint64_t imm, LiFlags mode, int32_t num_instr = 0) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label code_start; __ bind(&code_start); __ li(v0, imm, mode); if (num_instr > 0) { CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(li_macro) { CcTest::InitializeVM(); // Test li macro-instruction for border cases. struct TestCase_li { uint64_t imm; int32_t r2_num_instr; int32_t r6_num_instr; }; // We call li(v0, imm) to test cases listed below. struct TestCase_li tc[] = { // imm, r2_num_instr, r6_num_instr {0xffffffffffff8000, 1, 1}, // min_int16 // The test case above generates daddiu instruction. // This is int16 value and we can load it using just daddiu. {0x8000, 1, 1}, // max_int16 + 1 // Generates ori // max_int16 + 1 is not int16 but is uint16, just use ori. {0xffffffffffff7fff, 2, 2}, // min_int16 - 1 // Generates lui + ori // We load int32 value using lui + ori. {0x8001, 1, 1}, // max_int16 + 2 // Generates ori // Also an uint16 value, use ori. {0x00010000, 1, 1}, // max_uint16 + 1 // Generates lui // Low 16 bits are 0, load value using lui. {0x00010001, 2, 2}, // max_uint16 + 2 // Generates lui + ori // We have to generate two instructions in this case. {0x00000000ffffffff, 2, 2}, // max_uint32 // r2 - daddiu + dsrl32 // r6 - daddiu + dahi {0x00000000fffffffe, 3, 2}, // max_uint32 - 1 // r2 - lui + ori + dsll // r6 - daddiu + dahi {0x00ffff000000fffe, 3, 3}, // ori + dsll32 + ori {0x00000001fffffffe, 4, 2}, // max_uint32 << 1 // r2 - lui + ori + dsll + ori // r6 - daddiu + dahi {0x0000fffffffffffe, 4, 2}, // max_uint48 - 1 // r2 - daddiu + dsll32 + ori + dsubu // Loading imm directly would require ori + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dati {0xffffffff00000000, 2, 2}, // max_uint32 << 32 // r2 - daddiu + dsll32 // r6 - ori + dahi // We need ori to clear register before loading value using dahi. {0xffffffff80000000, 1, 1}, // min_int32 // The test case above generates lui instruction. {0x0000000080000000, 2, 2}, // max_int32 + 1 // r2 - ori + dsll // r6 - lui + dahi {0x0000800000000000, 2, 2}, // ori + dsll32 {0xffff800000000000, 2, 2}, // r2 - daddiu + dsll32 // r6 - ori + dahi {0xffff80000000ffff, 3, 2}, // r2 - daddiu + dsll32 + ori // r6 - ori + dahi {0xffffff123000ffff, 3, 3}, // daddiu + dsll + ori {0xffff00000000ffff, 3, 2}, // r2 - daddiu + dsll32 + ori // r6 - ori + dati {0xffff8000ffff0000, 3, 2}, // r2 - lui + ori + dsll // r6 - lui + dahi {0x0000ffffffff0000, 4, 2}, // r2 - ori + dsll + ori + dsll // r6 - lui + dati {0x1234ffff80000000, 3, 2}, // r2 - lui + ori + dsll // r6 - lui + dati {0x1234ffff80010000, 5, 2}, // r2 - lui + ori + dsll + ori + dsll // r6 - lui + dati {0xffff8000ffff8000, 2, 2}, // r2 - daddiu + dinsu // r6 - daddiu + dahi {0xffff0000ffff8000, 4, 3}, // r2 - ori + dsll32 + ori + dsubu // Loading imm directly would require lui + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dahi + dati {0x8000000080000000, 2, 2}, // lui + dinsu {0xabcd0000abcd0000, 2, 2}, // lui + dinsu {0x8000800080008000, 3, 3}, // lui + ori + dinsu {0xabcd1234abcd1234, 3, 3}, // The test case above generates lui + ori + dinsu instruction sequence. {0xffff800080008000, 4, 3}, // r2 - lui + ori + dsll + ori // r6 - lui + ori + dahi {0xffffabcd, 3, 2}, // r2 - ori + dsll + ori // r6 - daddiu + dahi {0x1ffffabcd, 4, 2}, // r2 - lui + ori + dsll + ori // r6 - daddiu + dahi {0xffffffffabcd, 4, 2}, // r2 - daddiu + dsll32 + ori + dsubu // Loading imm directly would require ori + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dati {0x1ffffffffabcd, 4, 2}, // r2 - daddiu + dsll32 + ori + dsubu // Loading imm directly would require lui + ori + dsll + ori + dsll + ori. // Optimized by loading -imm and using dsubu to get imm. // r6 - daddiu + dati {0xffff7fff80010000, 5, 2}, // r2 - lui + ori + dsll + ori + dsll // r6 - lui + dahi // Here lui sets high 32 bits to 1 so dahi can be used to get target // value. {0x00007fff7fff0000, 3, 2}, // r2 - lui + ori + dsll // r6 - lui + dahi // High 32 bits are not set so dahi can be used to get target value. {0xffff7fff7fff0000, 5, 3}, // r2 - lui + ori + dsll + ori + dsll // r6 - lui + dahi + dati // High 32 bits are not set so just dahi can't be used to get target // value. {0x00007fff80010000, 3, 3}, // r2 - lui + ori + dsll // r6 - lui + ori + dsll // High 32 bits are set so can't just use lui + dahi to get target value. {0x1234abcd87654321, 6, 4}, // The test case above generates: // r2 - lui + ori + dsll + ori + dsll + ori instruction sequence, // r6 - lui + ori + dahi + dati. // Load using full instruction sequence. {0xffff0000ffffffff, 3, 3}, // r2 - ori + dsll32 + nor // Loading imm directly would require lui + dsll + ori + dsll + ori. // Optimized by loading ~imm and using nor to get imm. Loading -imm would // require one instruction more. // r6 - daddiu + dahi + dati }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCase_li); for (size_t i = 0; i < nr_test_cases; ++i) { if (kArchVariant == kMips64r2) { CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, OPTIMIZE_SIZE, tc[i].r2_num_instr)); } else { CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, OPTIMIZE_SIZE, tc[i].r6_num_instr)); } CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, CONSTANT_SIZE)); if (is_int48(tc[i].imm)) { CHECK_EQ(tc[i].imm, run_li_macro(tc[i].imm, ADDRESS_LOAD)); } } } uint64_t run_lwpc(int offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // 256k instructions; 2^8k // addiu t3, a4, 0xffff; (0x250fffff) // ... // addiu t0, a4, 0x0000; (0x250c0000) uint32_t addiu_start_1 = 0x25000000; for (int32_t i = 0xfffff; i >= 0xc0000; --i) { uint32_t addiu_new = addiu_start_1 + i; __ dd(addiu_new); } __ lwpc(t8, offset); // offset 0; 0xef080000 (t8 register) __ mov(v0, t8); // 256k instructions; 2^8k // addiu a4, a4, 0x0000; (0x25080000) // ... // addiu a7, a4, 0xffff; (0x250bffff) uint32_t addiu_start_2 = 0x25000000; for (int32_t i = 0x80000; i <= 0xbffff; ++i) { uint32_t addiu_new = addiu_start_2 + i; __ dd(addiu_new); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_lwpc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseLwpc { int offset; uint64_t expected_res; }; struct TestCaseLwpc tc[] = { // offset, expected_res { -262144, 0x250fffff }, // offset 0x40000 { -4, 0x250c0003 }, { -1, 0x250c0000 }, { 0, 0xffffffffef080000 }, { 1, 0x03001025 }, // mov(v0, t8) { 2, 0x25080000 }, { 4, 0x25080002 }, { 262143, 0x250bfffd }, // offset 0x3ffff }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwpc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_lwpc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_lwupc(int offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // 256k instructions; 2^8k // addiu t3, a4, 0xffff; (0x250fffff) // ... // addiu t0, a4, 0x0000; (0x250c0000) uint32_t addiu_start_1 = 0x25000000; for (int32_t i = 0xfffff; i >= 0xc0000; --i) { uint32_t addiu_new = addiu_start_1 + i; __ dd(addiu_new); } __ lwupc(t8, offset); // offset 0; 0xef080000 (t8 register) __ mov(v0, t8); // 256k instructions; 2^8k // addiu a4, a4, 0x0000; (0x25080000) // ... // addiu a7, a4, 0xffff; (0x250bffff) uint32_t addiu_start_2 = 0x25000000; for (int32_t i = 0x80000; i <= 0xbffff; ++i) { uint32_t addiu_new = addiu_start_2 + i; __ dd(addiu_new); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_lwupc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseLwupc { int offset; uint64_t expected_res; }; struct TestCaseLwupc tc[] = { // offset, expected_res { -262144, 0x250fffff }, // offset 0x40000 { -4, 0x250c0003 }, { -1, 0x250c0000 }, { 0, 0xef100000 }, { 1, 0x03001025 }, // mov(v0, t8) { 2, 0x25080000 }, { 4, 0x25080002 }, { 262143, 0x250bfffd }, // offset 0x3ffff }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwupc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_lwupc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_jic(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label get_program_counter, stop_execution; __ push(ra); __ li(v0, 0); __ li(t1, 0x66); __ addiu(v0, v0, 0x1); // <-- offset = -32 __ addiu(v0, v0, 0x2); __ addiu(v0, v0, 0x10); __ addiu(v0, v0, 0x20); __ beq(v0, t1, &stop_execution); __ nop(); __ bal(&get_program_counter); // t0 <- program counter __ nop(); __ jic(t0, offset); __ addiu(v0, v0, 0x100); __ addiu(v0, v0, 0x200); __ addiu(v0, v0, 0x1000); __ addiu(v0, v0, 0x2000); // <--- offset = 16 __ pop(ra); __ jr(ra); __ nop(); __ bind(&get_program_counter); __ mov(t0, ra); __ jr(ra); __ nop(); __ bind(&stop_execution); __ pop(ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_jic) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseJic { // As rt will be used t0 register which will have value of // the program counter for the jic instruction. int16_t offset; uint32_t expected_res; }; struct TestCaseJic tc[] = { // offset, expected_result { 16, 0x2033 }, { 4, 0x3333 }, { -32, 0x66 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJic); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_jic(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_beqzc(int32_t value, int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label stop_execution; __ li(v0, 0); __ li(t1, 0x66); __ addiu(v0, v0, 0x1); // <-- offset = -8 __ addiu(v0, v0, 0x2); __ addiu(v0, v0, 0x10); __ addiu(v0, v0, 0x20); __ beq(v0, t1, &stop_execution); __ nop(); __ beqzc(a0, offset); __ addiu(v0, v0, 0x1); __ addiu(v0, v0, 0x100); __ addiu(v0, v0, 0x200); __ addiu(v0, v0, 0x1000); __ addiu(v0, v0, 0x2000); // <--- offset = 4 __ jr(ra); __ nop(); __ bind(&stop_execution); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, value, 0, 0, 0, 0)); return res; } TEST(r6_beqzc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseBeqzc { uint32_t value; int32_t offset; uint32_t expected_res; }; struct TestCaseBeqzc tc[] = { // value, offset, expected_res { 0x0, -8, 0x66 }, { 0x0, 0, 0x3334 }, { 0x0, 1, 0x3333 }, { 0xabc, 1, 0x3334 }, { 0x0, 4, 0x2033 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqzc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_beqzc(tc[i].value, tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_jialc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label main_block, get_program_counter; __ push(ra); __ li(v0, 0); __ beq(v0, v0, &main_block); __ nop(); // Block 1 __ addiu(v0, v0, 0x1); // <-- offset = -40 __ addiu(v0, v0, 0x2); __ jr(ra); __ nop(); // Block 2 __ addiu(v0, v0, 0x10); // <-- offset = -24 __ addiu(v0, v0, 0x20); __ jr(ra); __ nop(); // Block 3 (Main) __ bind(&main_block); __ bal(&get_program_counter); // t0 <- program counter __ nop(); __ jialc(t0, offset); __ addiu(v0, v0, 0x4); __ pop(ra); __ jr(ra); __ nop(); // Block 4 __ addiu(v0, v0, 0x100); // <-- offset = 20 __ addiu(v0, v0, 0x200); __ jr(ra); __ nop(); // Block 5 __ addiu(v0, v0, 0x1000); // <--- offset = 36 __ addiu(v0, v0, 0x2000); __ jr(ra); __ nop(); __ bind(&get_program_counter); __ mov(t0, ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_jialc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseJialc { // As rt will be used t0 register which will have value of // the program counter for the jialc instruction. int16_t offset; uint32_t expected_res; }; struct TestCaseJialc tc[] = { // offset, expected_res { -40, 0x7 }, { -24, 0x34 }, { 20, 0x304 }, { 36, 0x3004 } }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJialc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_jialc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_addiupc(int32_t imm19) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ addiupc(v0, imm19); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); PC = (uint64_t) f; // Set the program counter. uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_addiupc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseAddiupc { int32_t imm19; }; struct TestCaseAddiupc tc[] = { // imm19 { -262144 }, // 0x40000 { -1 }, // 0x7FFFF { 0 }, { 1 }, // 0x00001 { 262143 } // 0x3FFFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAddiupc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint64_t res = run_addiupc(tc[i].imm19); // Now, the program_counter (PC) is set. uint64_t expected_res = PC + (tc[i].imm19 << 2); CHECK_EQ(expected_res, res); } } } uint64_t run_ldpc(int offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // 256k instructions; 2 * 2^7k = 2^8k // addiu t3, a4, 0xffff; (0x250fffff) // ... // addiu t0, a4, 0x0000; (0x250c0000) uint32_t addiu_start_1 = 0x25000000; for (int32_t i = 0xfffff; i >= 0xc0000; --i) { uint32_t addiu_new = addiu_start_1 + i; __ dd(addiu_new); } __ ldpc(t8, offset); // offset 0; 0xef080000 (t8 register) __ mov(v0, t8); // 256k instructions; 2 * 2^7k = 2^8k // addiu a4, a4, 0x0000; (0x25080000) // ... // addiu a7, a4, 0xffff; (0x250bffff) uint32_t addiu_start_2 = 0x25000000; for (int32_t i = 0x80000; i <= 0xbffff; ++i) { uint32_t addiu_new = addiu_start_2 + i; __ dd(addiu_new); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_ldpc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseLdpc { int offset; uint64_t expected_res; }; auto doubleword = [](uint32_t word2, uint32_t word1) { if (kArchEndian == kLittle) return (static_cast(word2) << 32) + word1; else return (static_cast(word1) << 32) + word2; }; TestCaseLdpc tc[] = { // offset, expected_res {-131072, doubleword(0x250ffffe, 0x250fffff)}, {-4, doubleword(0x250c0006, 0x250c0007)}, {-1, doubleword(0x250c0000, 0x250c0001)}, {0, doubleword(0x03001025, 0xef180000)}, {1, doubleword(0x25080001, 0x25080000)}, {4, doubleword(0x25080007, 0x25080006)}, {131071, doubleword(0x250bfffd, 0x250bfffc)}, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLdpc); for (size_t i = 0; i < nr_test_cases; ++i) { uint64_t res = run_ldpc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } int64_t run_bc(int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label continue_1, stop_execution; __ push(ra); __ li(v0, 0); __ li(t8, 0); __ li(t9, 2); // Condition for the stopping execution. for (int32_t i = -100; i <= -11; ++i) { __ addiu(v0, v0, 1); } __ addiu(t8, t8, 1); // -10 __ beq(t8, t9, &stop_execution); // -9 __ nop(); // -8 __ beq(t8, t8, &continue_1); // -7 __ nop(); // -6 __ bind(&stop_execution); __ pop(ra); // -5, -4 __ jr(ra); // -3 __ nop(); // -2 __ bind(&continue_1); __ bc(offset); // -1 for (int32_t i = 0; i <= 99; ++i) { __ addiu(v0, v0, 1); } __ pop(ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_bc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseBc { int32_t offset; int64_t expected_res; }; struct TestCaseBc tc[] = { // offset, expected_result { -100, (abs(-100) - 10) * 2 }, { -11, (abs(-100) - 10 + 1) }, { 0, (abs(-100) - 10 + 1 + 99) }, { 1, (abs(-100) - 10 + 99) }, { 99, (abs(-100) - 10 + 1) }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBc); for (size_t i = 0; i < nr_test_cases; ++i) { int64_t res = run_bc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } int64_t run_balc(int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label continue_1, stop_execution; __ push(ra); __ li(v0, 0); __ li(t8, 0); __ li(t9, 2); // Condition for stopping execution. __ beq(t8, t8, &continue_1); __ nop(); uint32_t instruction_addiu = 0x24420001; // addiu v0, v0, 1 for (int32_t i = -117; i <= -57; ++i) { __ dd(instruction_addiu); } __ jr(ra); // -56 __ nop(); // -55 for (int32_t i = -54; i <= -4; ++i) { __ dd(instruction_addiu); } __ jr(ra); // -3 __ nop(); // -2 __ bind(&continue_1); __ balc(offset); // -1 __ pop(ra); // 0, 1 __ jr(ra); // 2 __ nop(); // 3 for (int32_t i = 4; i <= 44; ++i) { __ dd(instruction_addiu); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_balc) { if (kArchVariant == kMips64r6) { CcTest::InitializeVM(); struct TestCaseBalc { int32_t offset; int64_t expected_res; }; struct TestCaseBalc tc[] = { // offset, expected_result { -117, 61 }, { -54, 51 }, { 0, 0 }, { 4, 41 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBalc); for (size_t i = 0; i < nr_test_cases; ++i) { int64_t res = run_balc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_dsll(uint64_t rt_value, uint16_t sa_value) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ dsll(v0, a0, sa_value); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F4 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, rt_value, 0, 0, 0, 0)); return res; } TEST(dsll) { CcTest::InitializeVM(); struct TestCaseDsll { uint64_t rt_value; uint16_t sa_value; uint64_t expected_res; }; struct TestCaseDsll tc[] = { // rt_value, sa_value, expected_res { 0xffffffffffffffff, 0, 0xffffffffffffffff }, { 0xffffffffffffffff, 16, 0xffffffffffff0000 }, { 0xffffffffffffffff, 31, 0xffffffff80000000 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsll); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_dsll(tc[i].rt_value, tc[i].sa_value)); } } uint64_t run_bal(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ mov(t0, ra); __ bal(offset); // Equivalent for "BGEZAL zero_reg, offset". __ nop(); __ mov(ra, t0); __ jr(ra); __ nop(); __ li(v0, 1); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(bal) { CcTest::InitializeVM(); struct TestCaseBal { int16_t offset; uint64_t expected_res; }; struct TestCaseBal tc[] = { // offset, expected_res { 4, 1 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBal); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_bal(tc[i].offset)); } } TEST(Trampoline) { // Private member of Assembler class. static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label done; size_t nr_calls = kMaxBranchOffset / (2 * Instruction::kInstrSize) + 2; for (size_t i = 0; i < nr_calls; ++i) { __ BranchShort(&done, eq, a0, Operand(a1)); } __ bind(&done); __ Ret(USE_DELAY_SLOT); __ mov(v0, zero_reg); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 42, 42, 0, 0, 0)); CHECK_EQ(0, res); } template struct TestCaseMaddMsub { T fr, fs, ft, fd_add, fd_sub; }; template void helper_madd_msub_maddf_msubf(F func) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); T x = std::sqrt(static_cast(2.0)); T y = std::sqrt(static_cast(3.0)); T z = std::sqrt(static_cast(5.0)); T x2 = 11.11, y2 = 22.22, z2 = 33.33; TestCaseMaddMsub test_cases[] = { {x, y, z, 0.0, 0.0}, {x, y, -z, 0.0, 0.0}, {x, -y, z, 0.0, 0.0}, {x, -y, -z, 0.0, 0.0}, {-x, y, z, 0.0, 0.0}, {-x, y, -z, 0.0, 0.0}, {-x, -y, z, 0.0, 0.0}, {-x, -y, -z, 0.0, 0.0}, {-3.14, 0.2345, -123.000056, 0.0, 0.0}, {7.3, -23.257, -357.1357, 0.0, 0.0}, {x2, y2, z2, 0.0, 0.0}, {x2, y2, -z2, 0.0, 0.0}, {x2, -y2, z2, 0.0, 0.0}, {x2, -y2, -z2, 0.0, 0.0}, {-x2, y2, z2, 0.0, 0.0}, {-x2, y2, -z2, 0.0, 0.0}, {-x2, -y2, z2, 0.0, 0.0}, {-x2, -y2, -z2, 0.0, 0.0}, }; if (std::is_same::value) { __ Lwc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); __ Lwc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub, fs))); __ Lwc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub, ft))); __ Lwc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); } else if (std::is_same::value) { __ Ldc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); __ Ldc1(f6, MemOperand(a0, offsetof(TestCaseMaddMsub, fs))); __ Ldc1(f8, MemOperand(a0, offsetof(TestCaseMaddMsub, ft))); __ Ldc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fr))); } else { UNREACHABLE(); } func(assm); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); const size_t kTableLength = sizeof(test_cases) / sizeof(TestCaseMaddMsub); TestCaseMaddMsub tc; for (size_t i = 0; i < kTableLength; i++) { tc.fr = test_cases[i].fr; tc.fs = test_cases[i].fs; tc.ft = test_cases[i].ft; (CALL_GENERATED_CODE(isolate, f, &tc, 0, 0, 0, 0)); T res_sub; T res_add; if (kArchVariant != kMips64r6) { res_add = tc.fr + (tc.fs * tc.ft); res_sub = (tc.fs * tc.ft) - tc.fr; } else { res_add = std::fma(tc.fs, tc.ft, tc.fr); res_sub = std::fma(-tc.fs, tc.ft, tc.fr); } CHECK_EQ(tc.fd_add, res_add); CHECK_EQ(tc.fd_sub, res_sub); } } TEST(madd_msub_s) { if (kArchVariant == kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ madd_s(f10, f4, f6, f8); __ Swc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ msub_s(f16, f4, f6, f8); __ Swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } TEST(madd_msub_d) { if (kArchVariant == kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ madd_d(f10, f4, f6, f8); __ Sdc1(f10, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ msub_d(f16, f4, f6, f8); __ Sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } TEST(maddf_msubf_s) { if (kArchVariant != kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ maddf_s(f4, f6, f8); __ Swc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ msubf_s(f16, f6, f8); __ Swc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } TEST(maddf_msubf_d) { if (kArchVariant != kMips64r6) return; helper_madd_msub_maddf_msubf([](MacroAssembler& assm) { __ maddf_d(f4, f6, f8); __ Sdc1(f4, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_add))); __ msubf_d(f16, f6, f8); __ Sdc1(f16, MemOperand(a0, offsetof(TestCaseMaddMsub, fd_sub))); }); } uint64_t run_Subu(uint64_t imm, int32_t num_instr) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label code_start; __ bind(&code_start); __ Subu(v0, zero_reg, Operand(imm)); CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(Subu) { CcTest::InitializeVM(); // Test Subu macro-instruction for min_int16 and max_int16 border cases. // For subtracting int16 immediate values we use addiu. struct TestCaseSubu { uint64_t imm; uint64_t expected_res; int32_t num_instr; }; // We call Subu(v0, zero_reg, imm) to test cases listed below. // 0 - imm = expected_res struct TestCaseSubu tc[] = { // imm, expected_res, num_instr {0xffffffffffff8000, 0x8000, 2}, // min_int16 // The test case above generates ori + addu instruction sequence. // We can't have just addiu because -min_int16 > max_int16 so use // register. We can load min_int16 to at register with addiu and then // subtract at with subu, but now we use ori + addu because -min_int16 can // be loaded using ori. {0x8000, 0xffffffffffff8000, 1}, // max_int16 + 1 // Generates addiu // max_int16 + 1 is not int16 but -(max_int16 + 1) is, just use addiu. {0xffffffffffff7fff, 0x8001, 2}, // min_int16 - 1 // Generates ori + addu // To load this value to at we need two instructions and another one to // subtract, lui + ori + subu. But we can load -value to at using just // ori and then add at register with addu. {0x8001, 0xffffffffffff7fff, 2}, // max_int16 + 2 // Generates ori + subu // Not int16 but is uint16, load value to at with ori and subtract with // subu. {0x00010000, 0xffffffffffff0000, 2}, // Generates lui + subu // Load value using lui to at and subtract with subu. {0x00010001, 0xfffffffffffeffff, 3}, // Generates lui + ori + subu // We have to generate three instructions in this case. {0x7fffffff, 0xffffffff80000001, 3}, // max_int32 // Generates lui + ori + subu {0xffffffff80000000, 0xffffffff80000000, 2}, // min_int32 // The test case above generates lui + subu intruction sequence. // The result of 0 - min_int32 eqauls max_int32 + 1, which wraps around to // min_int32 again. }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseSubu); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Subu(tc[i].imm, tc[i].num_instr)); } } uint64_t run_Dsubu(uint64_t imm, int32_t num_instr) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label code_start; __ bind(&code_start); __ Dsubu(v0, zero_reg, Operand(imm)); CHECK_EQ(assm.InstructionsGeneratedSince(&code_start), num_instr); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(Dsubu) { CcTest::InitializeVM(); // Test Dsubu macro-instruction for min_int16 and max_int16 border cases. // For subtracting int16 immediate values we use daddiu. struct TestCaseDsubu { uint64_t imm; uint64_t expected_res; int32_t num_instr; }; // We call Dsubu(v0, zero_reg, imm) to test cases listed below. // 0 - imm = expected_res struct TestCaseDsubu tc[] = { // imm, expected_res, num_instr {0xffffffffffff8000, 0x8000, 2}, // min_int16 // The test case above generates ori + daddu instruction sequence. // We can't have just daddiu because -min_int16 > max_int16 so use // register. We can load min_int16 to at register with daddiu and then // subtract at with dsubu, but now we use ori + daddu because -min_int16 // can be loaded using ori. {0x8000, 0xffffffffffff8000, 1}, // max_int16 + 1 // Generates daddiu // max_int16 + 1 is not int16 but -(max_int16 + 1) is, just use daddiu. {0xffffffffffff7fff, 0x8001, 2}, // min_int16 - 1 // Generates ori + daddu // To load this value to at we need two instructions and another one to // subtract, lui + ori + dsubu. But we can load -value to at using just // ori and then dadd at register with daddu. {0x8001, 0xffffffffffff7fff, 2}, // max_int16 + 2 // Generates ori + dsubu // Not int16 but is uint16, load value to at with ori and subtract with // dsubu. {0x00010000, 0xffffffffffff0000, 2}, // Generates lui + dsubu // Load value using lui to at and subtract with dsubu. {0x00010001, 0xfffffffffffeffff, 3}, // Generates lui + ori + dsubu // We have to generate three instructions in this case. {0x7fffffff, 0xffffffff80000001, 3}, // max_int32 // Generates lui + ori + dsubu {0xffffffff80000000, 0x0000000080000000, 2}, // min_int32 // Generates lui + dsubu // The result of 0 - min_int32 eqauls max_int32 + 1, which fits into a 64 // bit register, Dsubu gives a different result here. {0x7fffffffffffffff, 0x8000000000000001, 3}, // max_int64 // r2 - Generates daddiu + dsrl + dsubu // r6 - Generates daddiu + dati + dsubu {0x8000000000000000, 0x8000000000000000, 3}, // min_int64 // The test case above generates: // r2 - daddiu + dsrl32 + dsubu instruction sequence, // r6 - ori + dati + dsubu. // The result of 0 - min_int64 eqauls max_int64 + 1, which wraps around to // min_int64 again. {0xffff0000ffffffff, 0x0000ffff00000001, 4}, // The test case above generates: // r2 - ori + dsrl32 + ori + daddu instruction sequence, // r6 - daddiu + dahi + dati + dsubu. // For r2 loading imm would take more instructions than loading -imm so we // can load -imm and add with daddu. }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDsubu); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Dsubu(tc[i].imm, tc[i].num_instr)); } } uint64_t run_Dins(uint64_t imm, uint64_t source, uint16_t pos, uint16_t size) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ li(v0, imm); __ li(t0, source); __ Dins(v0, t0, pos, size); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint64_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(Dins) { CcTest::InitializeVM(); // Test Dins macro-instruction. struct TestCaseDins { uint64_t imm; uint64_t source; uint16_t pos; uint16_t size; uint64_t expected_res; }; // We load imm to v0 and source to t0 and then call // Dins(v0, t0, pos, size) to test cases listed below. struct TestCaseDins tc[] = { // imm, source, pos, size, expected_res {0x5555555555555555, 0x1abcdef01, 31, 1, 0x55555555d5555555}, {0x5555555555555555, 0x1abcdef02, 30, 2, 0x5555555595555555}, {0x201234567, 0x1fabcdeff, 0, 32, 0x2fabcdeff}, {0x201234567, 0x7fabcdeff, 31, 2, 0x381234567}, {0x800000000, 0x7fabcdeff, 0, 33, 0x9fabcdeff}, {0x1234, 0xabcdabcdabcdabcd, 0, 64, 0xabcdabcdabcdabcd}, {0xabcd, 0xabceabcf, 32, 1, 0x10000abcd}, {0xabcd, 0xabceabcf, 63, 1, 0x800000000000abcd}, {0x10000abcd, 0xabc1abc2abc3abc4, 32, 32, 0xabc3abc40000abcd}, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseDins); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_Dins(tc[i].imm, tc[i].source, tc[i].pos, tc[i].size)); } } TEST(MSA_fill_copy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t u8; uint64_t u16; uint64_t u32; uint64_t s8; uint64_t s16; uint64_t s32; uint64_t s64; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; { CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, 0x9e7689aca512b683); __ fill_b(w0, t0); __ fill_h(w2, t0); __ fill_w(w4, t0); __ fill_d(w6, t0); __ copy_u_b(t1, w0, 11); __ sd(t1, MemOperand(a0, offsetof(T, u8))); __ copy_u_h(t1, w2, 6); __ sd(t1, MemOperand(a0, offsetof(T, u16))); __ copy_u_w(t1, w4, 3); __ sd(t1, MemOperand(a0, offsetof(T, u32))); __ copy_s_b(t1, w0, 8); __ sd(t1, MemOperand(a0, offsetof(T, s8))); __ copy_s_h(t1, w2, 5); __ sd(t1, MemOperand(a0, offsetof(T, s16))); __ copy_s_w(t1, w4, 1); __ sd(t1, MemOperand(a0, offsetof(T, s32))); __ copy_s_d(t1, w6, 0); __ sd(t1, MemOperand(a0, offsetof(T, s64))); __ jr(ra); __ nop(); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(0x83u, t.u8); CHECK_EQ(0xb683u, t.u16); CHECK_EQ(0xa512b683u, t.u32); CHECK_EQ(0xffffffffffffff83u, t.s8); CHECK_EQ(0xffffffffffffb683u, t.s16); CHECK_EQ(0xffffffffa512b683u, t.s32); CHECK_EQ(0x9e7689aca512b683u, t.s64); } TEST(MSA_fill_copy_2) { // Similar to MSA_fill_copy test, but also check overlaping between MSA and // FPU registers with same numbers CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t d0; uint64_t d1; } T; T t[2]; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; { CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, 0xaaaaaaaaaaaaaaaa); __ li(t1, 0x5555555555555555); __ fill_d(w0, t0); __ fill_d(w2, t0); __ Move(f0, t1); __ Move(f2, t1); #define STORE_MSA_REG(w_reg, base, scratch) \ __ copy_s_d(scratch, w_reg, 0); \ __ sd(scratch, MemOperand(base, offsetof(T, d0))); \ __ copy_s_d(scratch, w_reg, 1); \ __ sd(scratch, MemOperand(base, offsetof(T, d1))); STORE_MSA_REG(w0, a0, t2) STORE_MSA_REG(w2, a1, t2) #undef STORE_MSA_REG __ jr(ra); __ nop(); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F5 f = FUNCTION_CAST(code->entry()); Object* dummy = CALL_GENERATED_CODE(isolate, f, &t[0], &t[1], 0, 0, 0); USE(dummy); CHECK_EQ(0x5555555555555555, t[0].d0); CHECK_EQ(0xaaaaaaaaaaaaaaaa, t[0].d1); CHECK_EQ(0x5555555555555555, t[1].d0); CHECK_EQ(0xaaaaaaaaaaaaaaaa, t[1].d1); } TEST(MSA_fill_copy_3) { // Similar to MSA_fill_copy test, but also check overlaping between MSA and // FPU registers with same numbers CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint64_t d0; uint64_t d1; } T; T t[2]; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; { CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, 0xaaaaaaaaaaaaaaaa); __ li(t1, 0x5555555555555555); __ Move(f0, t0); __ Move(f2, t0); __ fill_d(w0, t1); __ fill_d(w2, t1); __ Sdc1(f0, MemOperand(a0, offsetof(T, d0))); __ Sdc1(f2, MemOperand(a1, offsetof(T, d0))); __ jr(ra); __ nop(); } CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F5 f = FUNCTION_CAST(code->entry()); Object* dummy = CALL_GENERATED_CODE(isolate, f, &t[0], &t[1], 0, 0, 0); USE(dummy); CHECK_EQ(0x5555555555555555, t[0].d0); CHECK_EQ(0x5555555555555555, t[1].d0); } typedef union { uint8_t b[16]; uint16_t h[8]; uint32_t w[4]; uint64_t d[2]; } msa_reg_t; template void run_msa_insert(int64_t rs_value, int n, msa_reg_t* w) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); __ li(t0, -1); __ li(t1, rs_value); __ fill_w(w0, t0); if (std::is_same::value) { DCHECK(n < 16); __ insert_b(w0, n, t1); } else if (std::is_same::value) { DCHECK(n < 8); __ insert_h(w0, n, t1); } else if (std::is_same::value) { DCHECK(n < 4); __ insert_w(w0, n, t1); } else if (std::is_same::value) { DCHECK(n < 2); __ insert_d(w0, n, t1); } else { UNREACHABLE(); } __ copy_u_w(t2, w0, 0); __ sw(t2, MemOperand(a0, 0)); __ copy_u_w(t2, w0, 1); __ sw(t2, MemOperand(a0, 4)); __ copy_u_w(t2, w0, 2); __ sw(t2, MemOperand(a0, 8)); __ copy_u_w(t2, w0, 3); __ sw(t2, MemOperand(a0, 12)); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, w, 0, 0, 0, 0)); } TEST(MSA_insert) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseInsert { uint64_t input; int n; uint64_t exp_res_lo; uint64_t exp_res_hi; }; struct TestCaseInsert tc_b[] = { // input, n, exp_res_lo, exp_res_hi {0xa2, 13, 0xffffffffffffffffu, 0xffffa2ffffffffffu}, {0x73, 10, 0xffffffffffffffffu, 0xffffffffff73ffffu}, {0x3494, 5, 0xffff94ffffffffffu, 0xffffffffffffffffu}, {0xa6b8, 1, 0xffffffffffffb8ffu, 0xffffffffffffffffu}}; for (size_t i = 0; i < sizeof(tc_b) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_b[i].input, tc_b[i].n, &res); CHECK_EQ(tc_b[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_b[i].exp_res_hi, res.d[1]); } struct TestCaseInsert tc_h[] = { // input, n, exp_res_lo, exp_res_hi {0x85a2, 7, 0xffffffffffffffffu, 0x85a2ffffffffffffu}, {0xe873, 5, 0xffffffffffffffffu, 0xffffffffe873ffffu}, {0x3494, 3, 0x3494ffffffffffffu, 0xffffffffffffffffu}, {0xa6b8, 1, 0xffffffffa6b8ffffu, 0xffffffffffffffffu}}; for (size_t i = 0; i < sizeof(tc_h) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_h[i].input, tc_h[i].n, &res); CHECK_EQ(tc_h[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_h[i].exp_res_hi, res.d[1]); } struct TestCaseInsert tc_w[] = { // input, n, exp_res_lo, exp_res_hi {0xd2f085a2u, 3, 0xffffffffffffffffu, 0xd2f085a2ffffffffu}, {0x4567e873u, 2, 0xffffffffffffffffu, 0xffffffff4567e873u}, {0xacdb3494u, 1, 0xacdb3494ffffffffu, 0xffffffffffffffffu}, {0x89aba6b8u, 0, 0xffffffff89aba6b8u, 0xffffffffffffffffu}}; for (size_t i = 0; i < sizeof(tc_w) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_w[i].input, tc_w[i].n, &res); CHECK_EQ(tc_w[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_w[i].exp_res_hi, res.d[1]); } struct TestCaseInsert tc_d[] = { // input, n, exp_res_lo, exp_res_hi {0xf35862e13e38f8b0, 1, 0xffffffffffffffffu, 0xf35862e13e38f8b0}, {0x4f41ffdef2bfe636, 0, 0x4f41ffdef2bfe636, 0xffffffffffffffffu}}; for (size_t i = 0; i < sizeof(tc_d) / sizeof(TestCaseInsert); ++i) { msa_reg_t res; run_msa_insert(tc_d[i].input, tc_d[i].n, &res); CHECK_EQ(tc_d[i].exp_res_lo, res.d[0]); CHECK_EQ(tc_d[i].exp_res_hi, res.d[1]); } } struct ExpResShf { uint8_t i8; uint64_t lo; uint64_t hi; }; void run_msa_i8(SecondaryField opcode, uint64_t ws_lo, uint64_t ws_hi, uint8_t i8) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; uint64_t wd_lo = 0xf35862e13e38f8b0; uint64_t wd_hi = 0x4f41ffdef2bfe636; #define LOAD_W_REG(lo, hi, w_reg) \ __ li(t0, lo); \ __ li(t1, hi); \ __ insert_d(w_reg, 0, t0); \ __ insert_d(w_reg, 1, t1); LOAD_W_REG(ws_lo, ws_hi, w0) switch (opcode) { case ANDI_B: __ andi_b(w2, w0, i8); break; case ORI_B: __ ori_b(w2, w0, i8); break; case NORI_B: __ nori_b(w2, w0, i8); break; case XORI_B: __ xori_b(w2, w0, i8); break; case BMNZI_B: LOAD_W_REG(wd_lo, wd_hi, w2); __ bmnzi_b(w2, w0, i8); break; case BMZI_B: LOAD_W_REG(wd_lo, wd_hi, w2); __ bmzi_b(w2, w0, i8); break; case BSELI_B: LOAD_W_REG(wd_lo, wd_hi, w2); __ bseli_b(w2, w0, i8); break; case SHF_B: __ shf_b(w2, w0, i8); break; case SHF_H: __ shf_h(w2, w0, i8); break; case SHF_W: __ shf_w(w2, w0, i8); break; default: UNREACHABLE(); } __ copy_u_w(t2, w2, 0); __ sw(t2, MemOperand(a0, 0)); __ copy_u_w(t2, w2, 1); __ sw(t2, MemOperand(a0, 4)); __ copy_u_w(t2, w2, 2); __ sw(t2, MemOperand(a0, 8)); __ copy_u_w(t2, w2, 3); __ sw(t2, MemOperand(a0, 12)); __ jr(ra); __ nop(); #undef LOAD_W_REG CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0)); uint64_t mask = i8 * 0x0101010101010101ull; switch (opcode) { case ANDI_B: CHECK_EQ(ws_lo & mask, res.d[0]); CHECK_EQ(ws_hi & mask, res.d[1]); break; case ORI_B: CHECK_EQ(ws_lo | mask, res.d[0]); CHECK_EQ(ws_hi | mask, res.d[1]); break; case NORI_B: CHECK_EQ(~(ws_lo | mask), res.d[0]); CHECK_EQ(~(ws_hi | mask), res.d[1]); break; case XORI_B: CHECK_EQ(ws_lo ^ mask, res.d[0]); CHECK_EQ(ws_hi ^ mask, res.d[1]); break; case BMNZI_B: CHECK_EQ((ws_lo & mask) | (wd_lo & ~mask), res.d[0]); CHECK_EQ((ws_hi & mask) | (wd_hi & ~mask), res.d[1]); break; case BMZI_B: CHECK_EQ((ws_lo & ~mask) | (wd_lo & mask), res.d[0]); CHECK_EQ((ws_hi & ~mask) | (wd_hi & mask), res.d[1]); break; case BSELI_B: CHECK_EQ((ws_lo & ~wd_lo) | (mask & wd_lo), res.d[0]); CHECK_EQ((ws_hi & ~wd_hi) | (mask & wd_hi), res.d[1]); break; case SHF_B: { struct ExpResShf exp_b[] = { // i8, exp_lo, exp_hi {0xffu, 0x11111111b9b9b9b9, 0xf7f7f7f7c8c8c8c8}, {0x0u, 0x62626262dfdfdfdf, 0xd6d6d6d6c8c8c8c8}, {0xe4u, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636}, {0x1bu, 0x1b756911c3d9a7b9, 0xae94a5f79c8aefc8}, {0xb1u, 0x662b6253e8c4df12, 0x0d3ad6803f8bc88b}, {0x4eu, 0x62e1f358f8b03e38, 0xffde4f41e636f2bf}, {0x27u, 0x1b697511c3a7d9b9, 0xaea594f79cef8ac8}}; for (size_t i = 0; i < sizeof(exp_b) / sizeof(ExpResShf); ++i) { if (exp_b[i].i8 == i8) { CHECK_EQ(exp_b[i].lo, res.d[0]); CHECK_EQ(exp_b[i].hi, res.d[1]); } } } break; case SHF_H: { struct ExpResShf exp_h[] = { // i8, exp_lo, exp_hi {0xffu, 0x1169116911691169, 0xf7a5f7a5f7a5f7a5}, {0x0u, 0x12df12df12df12df, 0x8bc88bc88bc88bc8}, {0xe4u, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636}, {0x1bu, 0xd9c3b9a7751b1169, 0x8a9cc8ef94aef7a5}, {0xb1u, 0x53622b6612dfc4e8, 0x80d63a0d8bc88b3f}, {0x4eu, 0x3e38f8b0f35862e1, 0xf2bfe6364f41ffde}, {0x27u, 0xd9c3751bb9a71169, 0x8a9c94aec8eff7a5}}; for (size_t i = 0; i < sizeof(exp_h) / sizeof(ExpResShf); ++i) { if (exp_h[i].i8 == i8) { CHECK_EQ(exp_h[i].lo, res.d[0]); CHECK_EQ(exp_h[i].hi, res.d[1]); } } } break; case SHF_W: { struct ExpResShf exp_w[] = { // i8, exp_lo, exp_hi {0xffu, 0xf7a594aef7a594ae, 0xf7a594aef7a594ae}, {0x0u, 0xc4e812dfc4e812df, 0xc4e812dfc4e812df}, {0xe4u, 0xf35862e13e38f8b0, 0x4f41ffdef2bfe636}, {0x1bu, 0xc8ef8a9cf7a594ae, 0xb9a7d9c31169751b}, {0xb1u, 0xc4e812df2b665362, 0x8b3f8bc83a0d80d6}, {0x4eu, 0x4f41ffdef2bfe636, 0xf35862e13e38f8b0}, {0x27u, 0x1169751bf7a594ae, 0xb9a7d9c3c8ef8a9c}}; for (size_t i = 0; i < sizeof(exp_w) / sizeof(ExpResShf); ++i) { if (exp_w[i].i8 == i8) { CHECK_EQ(exp_w[i].lo, res.d[0]); CHECK_EQ(exp_w[i].hi, res.d[1]); } } } break; default: UNREACHABLE(); } } struct TestCaseMsaI8 { uint64_t input_lo; uint64_t input_hi; uint8_t i8; }; TEST(MSA_andi_ori_nori_xori) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaI8 tc[] = {// input_lo, input_hi, i8 {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0xffu}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0u}, {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x3bu}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0xd9u}}; for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) { run_msa_i8(ANDI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(ORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(NORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(XORI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); } } TEST(MSA_bmnzi_bmzi_bseli) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaI8 tc[] = {// input_lo, input_hi, i8 {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0xffu}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0u}, {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x3bu}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0xd9u}}; for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) { run_msa_i8(BMNZI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(BMZI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(BSELI_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); } } TEST(MSA_shf) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaI8 tc[] = { // input_lo, input_hi, i8 {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0xffu}, // 3333 {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0u}, // 0000 {0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0xe4u}, // 3210 {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x1bu}, // 0123 {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0xb1u}, // 2301 {0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x4eu}, // 1032 {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x27u} // 0213 }; for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI8); ++i) { run_msa_i8(SHF_B, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(SHF_H, tc[i].input_lo, tc[i].input_hi, tc[i].i8); run_msa_i8(SHF_W, tc[i].input_lo, tc[i].input_hi, tc[i].i8); } } struct TestCaseMsaI5 { uint64_t ws_lo; uint64_t ws_hi; uint32_t i5; }; template void run_msa_i5(struct TestCaseMsaI5* input, bool i5_sign_ext, InstFunc GenerateI5InstructionFunc, OperFunc GenerateOperationFunc) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); CpuFeatureScope fscope(&assm, MIPS_SIMD); msa_reg_t res; int32_t i5 = i5_sign_ext ? static_cast(input->i5 << 27) >> 27 : input->i5; __ li(t0, input->ws_lo); __ li(t1, input->ws_hi); __ insert_d(w0, 0, t0); __ insert_d(w0, 1, t1); GenerateI5InstructionFunc(assm, i5); __ copy_u_w(t2, w2, 0); __ sw(t2, MemOperand(a0, 0)); __ copy_u_w(t2, w2, 1); __ sw(t2, MemOperand(a0, 4)); __ copy_u_w(t2, w2, 2); __ sw(t2, MemOperand(a0, 8)); __ copy_u_w(t2, w2, 3); __ sw(t2, MemOperand(a0, 12)); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(isolate, &desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &res, 0, 0, 0, 0)); CHECK_EQ(GenerateOperationFunc(input->ws_lo, input->i5), res.d[0]); CHECK_EQ(GenerateOperationFunc(input->ws_hi, input->i5), res.d[1]); } TEST(MSA_addvi_subvi) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaI5 tc[] = { // ws_lo, ws_hi, i5 {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x0000001f}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0000000f}, {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x00000005}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x00000010}, {0xffab807f807fffcd, 0x7f23ff80ff567f80, 0x0000000f}, {0x80ffefff7f12807f, 0x807f80ff7fdeff78, 0x00000010}}; #define ADDVI_DF(lanes, mask) \ uint64_t res = 0; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = (kMSARegSize / lanes) * i; \ res |= ((((ws >> shift) & mask) + i5) & mask) << shift; \ } \ return res #define SUBVI_DF(lanes, mask) \ uint64_t res = 0; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = (kMSARegSize / lanes) * i; \ res |= ((((ws >> shift) & mask) - i5) & mask) << shift; \ } \ return res for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) { run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_b(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesByte, UINT8_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_h(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesHalf, UINT16_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_w(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesWord, UINT32_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ addvi_d(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { ADDVI_DF(kMSALanesDword, UINT64_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_b(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesByte, UINT8_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_h(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesHalf, UINT16_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_w(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesWord, UINT32_MAX); }); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ subvi_d(w2, w0, i5); }, [](uint64_t ws, uint32_t i5) { SUBVI_DF(kMSALanesDword, UINT64_MAX); }); } #undef ADDVI_DF #undef SUBVI_DF } TEST(MSA_maxi_mini) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaI5 tc[] = { // ws_lo, ws_hi, i5 {0x7f80ff3480ff7f00, 0x8d7fff80ff7f6780, 0x0000001f}, {0x7f80ff3480ff7f00, 0x8d7fff80ff7f6780, 0x0000000f}, {0x7f80ff3480ff7f00, 0x8d7fff80ff7f6780, 0x00000010}, {0x80007fff91daffff, 0x7fff8000ffff5678, 0x0000001f}, {0x80007fff91daffff, 0x7fff8000ffff5678, 0x0000000f}, {0x80007fff91daffff, 0x7fff8000ffff5678, 0x00000010}, {0x7fffffff80000000, 0x12345678ffffffff, 0x0000001f}, {0x7fffffff80000000, 0x12345678ffffffff, 0x0000000f}, {0x7fffffff80000000, 0x12345678ffffffff, 0x00000010}, {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x0000001f}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x0000000f}, {0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x00000010}, {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x00000015}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x00000009}, {0xf35862e13e38f8b0, 0x4f41ffdef2bfe636, 0x00000003}}; #define MAXI_MINI_S_DF(lanes, mask, func) \ [](uint64_t ws, uint32_t ui5) { \ uint64_t res = 0; \ int64_t i5 = ArithmeticShiftRight(static_cast(ui5) << 59, 59); \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ int64_t elem = \ static_cast(((ws >> shift) & mask) << (64 - elem_size)) >> \ (64 - elem_size); \ res |= static_cast(func(elem, i5) & mask) << shift; \ } \ return res; \ } #define MAXI_MINI_U_DF(lanes, mask, func) \ [](uint64_t ws, uint32_t ui5) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t elem = (ws >> shift) & mask; \ res |= (func(elem, static_cast(ui5)) & mask) << shift; \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) { run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_b(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesByte, UINT8_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_h(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesHalf, UINT16_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_w(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesWord, UINT32_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ maxi_s_d(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesDword, UINT64_MAX, Max)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_b(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesByte, UINT8_MAX, Min)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_h(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesHalf, UINT16_MAX, Min)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_w(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesWord, UINT32_MAX, Min)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ mini_s_d(w2, w0, i5); }, MAXI_MINI_S_DF(kMSALanesDword, UINT64_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_b(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesByte, UINT8_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_h(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesHalf, UINT16_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_w(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesWord, UINT32_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ maxi_u_d(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesDword, UINT64_MAX, Max)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_b(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesByte, UINT8_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_h(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesHalf, UINT16_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_w(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesWord, UINT32_MAX, Min)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ mini_u_d(w2, w0, i5); }, MAXI_MINI_U_DF(kMSALanesDword, UINT64_MAX, Min)); } #undef MAXI_MINI_S_DF #undef MAXI_MINI_U_DF } TEST(MSA_ceqi_clti_clei) { if ((kArchVariant != kMips64r6) || !CpuFeatures::IsSupported(MIPS_SIMD)) return; CcTest::InitializeVM(); struct TestCaseMsaI5 tc[] = { {0xff69751bb9a7d9c3, 0xf7a594aec8ff8a9c, 0x0000001f}, {0xe669ffffb9a7d9c3, 0xf7a594aeffff8a9c, 0x0000001f}, {0xffffffffb9a7d9c3, 0xf7a594aeffffffff, 0x0000001f}, {0x2b0b5362c4e812df, 0x3a0d80d68b3f0bc8, 0x0000000b}, {0x2b66000bc4e812df, 0x3a0d000b8b3f8bc8, 0x0000000b}, {0x0000000bc4e812df, 0x3a0d80d60000000b, 0x0000000b}, {0xf38062e13e38f8b0, 0x8041ffdef2bfe636, 0x00000010}, {0xf35880003e38f8b0, 0x4f41ffdef2bf8000, 0x00000010}, {0xf35862e180000000, 0x80000000f2bfe636, 0x00000010}, {0x1169751bb9a7d9c3, 0xf7a594aec8ef8a9c, 0x00000015}, {0x2b665362c4e812df, 0x3a0d80d68b3f8bc8, 0x00000009}, {0xf30062e13e38f800, 0x4f00ffdef2bf0036, 0x00000000}}; #define CEQI_CLTI_CLEI_S_DF(lanes, mask, func) \ [](uint64_t ws, uint32_t ui5) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ int64_t i5 = ArithmeticShiftRight(static_cast(ui5) << 59, 59); \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ int64_t elem = \ static_cast(((ws >> shift) & mask) << (64 - elem_size)) >> \ (64 - elem_size); \ res |= static_cast((func)&mask) << shift; \ } \ return res; \ } #define CEQI_CLTI_CLEI_U_DF(lanes, mask, func) \ [](uint64_t ws, uint64_t ui5) { \ uint64_t res = 0; \ int elem_size = kMSARegSize / lanes; \ for (int i = 0; i < lanes / 2; ++i) { \ int shift = elem_size * i; \ uint64_t elem = (ws >> shift) & mask; \ res |= ((func)&mask) << shift; \ } \ return res; \ } for (size_t i = 0; i < sizeof(tc) / sizeof(TestCaseMsaI5); ++i) { run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_b(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_h(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_w(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5(&tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ ceqi_d(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX, !Compare(elem, i5) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_b(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, i5) == -1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_h(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, i5) == -1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_w(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, i5) == -1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clti_s_d(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, i5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_b(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, i5) != 1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_h(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, i5) != 1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_w(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, i5) != 1) ? -1u : 0u)); run_msa_i5( &tc[i], true, [](MacroAssembler& assm, int32_t i5) { __ clei_s_d(w2, w0, i5); }, CEQI_CLTI_CLEI_S_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, i5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_b(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_h(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_w(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clti_u_d(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, ui5) == -1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_b(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesByte, UINT8_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_h(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesHalf, UINT16_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_w(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesWord, UINT32_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); run_msa_i5( &tc[i], false, [](MacroAssembler& assm, int32_t i5) { __ clei_u_d(w2, w0, i5); }, CEQI_CLTI_CLEI_U_DF(kMSALanesDword, UINT64_MAX, (Compare(elem, ui5) != 1) ? -1ull : 0ull)); } #undef CEQI_CLTI_CLEI_S_DF #undef CEQI_CLTI_CLEI_U_DF } #undef __