// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/conversions.h" #include #include #include #include "src/allocation.h" #include "src/assert-scope.h" #include "src/char-predicates-inl.h" #include "src/codegen.h" #include "src/conversions-inl.h" #include "src/dtoa.h" #include "src/factory.h" #include "src/list-inl.h" #include "src/strtod.h" #include "src/utils.h" #ifndef _STLP_VENDOR_CSTD // STLPort doesn't import fpclassify into the std namespace. using std::fpclassify; #endif namespace v8 { namespace internal { namespace { // C++-style iterator adaptor for StringCharacterStream // (unlike C++ iterators the end-marker has different type). class StringCharacterStreamIterator { public: class EndMarker {}; explicit StringCharacterStreamIterator(StringCharacterStream* stream); uint16_t operator*() const; void operator++(); bool operator==(EndMarker const&) const { return end_; } bool operator!=(EndMarker const& m) const { return !end_; } private: StringCharacterStream* const stream_; uint16_t current_; bool end_; }; StringCharacterStreamIterator::StringCharacterStreamIterator( StringCharacterStream* stream) : stream_(stream) { ++(*this); } uint16_t StringCharacterStreamIterator::operator*() const { return current_; } void StringCharacterStreamIterator::operator++() { end_ = !stream_->HasMore(); if (!end_) { current_ = stream_->GetNext(); } } } // End anonymous namespace. double StringToDouble(UnicodeCache* unicode_cache, const char* str, int flags, double empty_string_val) { // We cast to const uint8_t* here to avoid instantiating the // InternalStringToDouble() template for const char* as well. const uint8_t* start = reinterpret_cast(str); const uint8_t* end = start + StrLength(str); return InternalStringToDouble(unicode_cache, start, end, flags, empty_string_val); } double StringToDouble(UnicodeCache* unicode_cache, Vector str, int flags, double empty_string_val) { // We cast to const uint8_t* here to avoid instantiating the // InternalStringToDouble() template for const char* as well. const uint8_t* start = reinterpret_cast(str.start()); const uint8_t* end = start + str.length(); return InternalStringToDouble(unicode_cache, start, end, flags, empty_string_val); } double StringToDouble(UnicodeCache* unicode_cache, Vector str, int flags, double empty_string_val) { const uc16* end = str.start() + str.length(); return InternalStringToDouble(unicode_cache, str.start(), end, flags, empty_string_val); } // Converts a string into an integer. double StringToInt(UnicodeCache* unicode_cache, Vector vector, int radix) { return InternalStringToInt( unicode_cache, vector.start(), vector.start() + vector.length(), radix); } double StringToInt(UnicodeCache* unicode_cache, Vector vector, int radix) { return InternalStringToInt( unicode_cache, vector.start(), vector.start() + vector.length(), radix); } const char* DoubleToCString(double v, Vector buffer) { switch (fpclassify(v)) { case FP_NAN: return "NaN"; case FP_INFINITE: return (v < 0.0 ? "-Infinity" : "Infinity"); case FP_ZERO: return "0"; default: { SimpleStringBuilder builder(buffer.start(), buffer.length()); int decimal_point; int sign; const int kV8DtoaBufferCapacity = kBase10MaximalLength + 1; char decimal_rep[kV8DtoaBufferCapacity]; int length; DoubleToAscii(v, DTOA_SHORTEST, 0, Vector(decimal_rep, kV8DtoaBufferCapacity), &sign, &length, &decimal_point); if (sign) builder.AddCharacter('-'); if (length <= decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 6. builder.AddString(decimal_rep); builder.AddPadding('0', decimal_point - length); } else if (0 < decimal_point && decimal_point <= 21) { // ECMA-262 section 9.8.1 step 7. builder.AddSubstring(decimal_rep, decimal_point); builder.AddCharacter('.'); builder.AddString(decimal_rep + decimal_point); } else if (decimal_point <= 0 && decimal_point > -6) { // ECMA-262 section 9.8.1 step 8. builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); } else { // ECMA-262 section 9.8.1 step 9 and 10 combined. builder.AddCharacter(decimal_rep[0]); if (length != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); } builder.AddCharacter('e'); builder.AddCharacter((decimal_point >= 0) ? '+' : '-'); int exponent = decimal_point - 1; if (exponent < 0) exponent = -exponent; builder.AddDecimalInteger(exponent); } return builder.Finalize(); } } } const char* IntToCString(int n, Vector buffer) { bool negative = false; if (n < 0) { // We must not negate the most negative int. if (n == kMinInt) return DoubleToCString(n, buffer); negative = true; n = -n; } // Build the string backwards from the least significant digit. int i = buffer.length(); buffer[--i] = '\0'; do { buffer[--i] = '0' + (n % 10); n /= 10; } while (n); if (negative) buffer[--i] = '-'; return buffer.start() + i; } char* DoubleToFixedCString(double value, int f) { const int kMaxDigitsBeforePoint = 21; const double kFirstNonFixed = 1e21; const int kMaxDigitsAfterPoint = 20; DCHECK(f >= 0); DCHECK(f <= kMaxDigitsAfterPoint); bool negative = false; double abs_value = value; if (value < 0) { abs_value = -value; negative = true; } // If abs_value has more than kMaxDigitsBeforePoint digits before the point // use the non-fixed conversion routine. if (abs_value >= kFirstNonFixed) { char arr[100]; Vector buffer(arr, arraysize(arr)); return StrDup(DoubleToCString(value, buffer)); } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; // Add space for the '\0' byte. const int kDecimalRepCapacity = kMaxDigitsBeforePoint + kMaxDigitsAfterPoint + 1; char decimal_rep[kDecimalRepCapacity]; int decimal_rep_length; DoubleToAscii(value, DTOA_FIXED, f, Vector(decimal_rep, kDecimalRepCapacity), &sign, &decimal_rep_length, &decimal_point); // Create a representation that is padded with zeros if needed. int zero_prefix_length = 0; int zero_postfix_length = 0; if (decimal_point <= 0) { zero_prefix_length = -decimal_point + 1; decimal_point = 1; } if (zero_prefix_length + decimal_rep_length < decimal_point + f) { zero_postfix_length = decimal_point + f - decimal_rep_length - zero_prefix_length; } unsigned rep_length = zero_prefix_length + decimal_rep_length + zero_postfix_length; SimpleStringBuilder rep_builder(rep_length + 1); rep_builder.AddPadding('0', zero_prefix_length); rep_builder.AddString(decimal_rep); rep_builder.AddPadding('0', zero_postfix_length); char* rep = rep_builder.Finalize(); // Create the result string by appending a minus and putting in a // decimal point if needed. unsigned result_size = decimal_point + f + 2; SimpleStringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddSubstring(rep, decimal_point); if (f > 0) { builder.AddCharacter('.'); builder.AddSubstring(rep + decimal_point, f); } DeleteArray(rep); return builder.Finalize(); } static char* CreateExponentialRepresentation(char* decimal_rep, int exponent, bool negative, int significant_digits) { bool negative_exponent = false; if (exponent < 0) { negative_exponent = true; exponent = -exponent; } // Leave room in the result for appending a minus, for a period, the // letter 'e', a minus or a plus depending on the exponent, and a // three digit exponent. unsigned result_size = significant_digits + 7; SimpleStringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); builder.AddCharacter(decimal_rep[0]); if (significant_digits != 1) { builder.AddCharacter('.'); builder.AddString(decimal_rep + 1); int rep_length = StrLength(decimal_rep); builder.AddPadding('0', significant_digits - rep_length); } builder.AddCharacter('e'); builder.AddCharacter(negative_exponent ? '-' : '+'); builder.AddDecimalInteger(exponent); return builder.Finalize(); } char* DoubleToExponentialCString(double value, int f) { const int kMaxDigitsAfterPoint = 20; // f might be -1 to signal that f was undefined in JavaScript. DCHECK(f >= -1 && f <= kMaxDigitsAfterPoint); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; // f corresponds to the digits after the point. There is always one digit // before the point. The number of requested_digits equals hence f + 1. // And we have to add one character for the null-terminator. const int kV8DtoaBufferCapacity = kMaxDigitsAfterPoint + 1 + 1; // Make sure that the buffer is big enough, even if we fall back to the // shortest representation (which happens when f equals -1). DCHECK(kBase10MaximalLength <= kMaxDigitsAfterPoint + 1); char decimal_rep[kV8DtoaBufferCapacity]; int decimal_rep_length; if (f == -1) { DoubleToAscii(value, DTOA_SHORTEST, 0, Vector(decimal_rep, kV8DtoaBufferCapacity), &sign, &decimal_rep_length, &decimal_point); f = decimal_rep_length - 1; } else { DoubleToAscii(value, DTOA_PRECISION, f + 1, Vector(decimal_rep, kV8DtoaBufferCapacity), &sign, &decimal_rep_length, &decimal_point); } DCHECK(decimal_rep_length > 0); DCHECK(decimal_rep_length <= f + 1); int exponent = decimal_point - 1; char* result = CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1); return result; } char* DoubleToPrecisionCString(double value, int p) { const int kMinimalDigits = 1; const int kMaximalDigits = 21; DCHECK(p >= kMinimalDigits && p <= kMaximalDigits); USE(kMinimalDigits); bool negative = false; if (value < 0) { value = -value; negative = true; } // Find a sufficiently precise decimal representation of n. int decimal_point; int sign; // Add one for the terminating null character. const int kV8DtoaBufferCapacity = kMaximalDigits + 1; char decimal_rep[kV8DtoaBufferCapacity]; int decimal_rep_length; DoubleToAscii(value, DTOA_PRECISION, p, Vector(decimal_rep, kV8DtoaBufferCapacity), &sign, &decimal_rep_length, &decimal_point); DCHECK(decimal_rep_length <= p); int exponent = decimal_point - 1; char* result = NULL; if (exponent < -6 || exponent >= p) { result = CreateExponentialRepresentation(decimal_rep, exponent, negative, p); } else { // Use fixed notation. // // Leave room in the result for appending a minus, a period and in // the case where decimal_point is not positive for a zero in // front of the period. unsigned result_size = (decimal_point <= 0) ? -decimal_point + p + 3 : p + 2; SimpleStringBuilder builder(result_size + 1); if (negative) builder.AddCharacter('-'); if (decimal_point <= 0) { builder.AddString("0."); builder.AddPadding('0', -decimal_point); builder.AddString(decimal_rep); builder.AddPadding('0', p - decimal_rep_length); } else { const int m = Min(decimal_rep_length, decimal_point); builder.AddSubstring(decimal_rep, m); builder.AddPadding('0', decimal_point - decimal_rep_length); if (decimal_point < p) { builder.AddCharacter('.'); const int extra = negative ? 2 : 1; if (decimal_rep_length > decimal_point) { const int len = StrLength(decimal_rep + decimal_point); const int n = Min(len, p - (builder.position() - extra)); builder.AddSubstring(decimal_rep + decimal_point, n); } builder.AddPadding('0', extra + (p - builder.position())); } } result = builder.Finalize(); } return result; } char* DoubleToRadixCString(double value, int radix) { DCHECK(radix >= 2 && radix <= 36); DCHECK(std::isfinite(value)); DCHECK_NE(0.0, value); // Character array used for conversion. static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; // Temporary buffer for the result. We start with the decimal point in the // middle and write to the left for the integer part and to the right for the // fractional part. 1024 characters either way with additional space for sign // and decimal point should be sufficient. static const int kBufferSize = 2100; char buffer[kBufferSize]; int integer_cursor = kBufferSize / 2; int fraction_cursor = integer_cursor; bool negative = value < 0; if (negative) value = -value; // Split the value into an integer part and a fractional part. double integer = std::floor(value); double fraction = value - integer; // We only compute fractional digits up to the input double's precision. double delta = 0.5 * (Double(value).NextDouble() - value); if (fraction > delta) { // Insert decimal point. buffer[fraction_cursor++] = '.'; do { // Shift up by one digit. fraction *= radix; delta *= radix; // Write digit. int digit = static_cast(fraction); buffer[fraction_cursor++] = chars[digit]; // Calculate remainder. fraction -= digit; // Round to even. if (fraction > 0.5 || (fraction == 0.5 && (digit & 1))) { if (fraction + delta > 1) { // We need to back trace already written digits in case of carry-over. while (true) { fraction_cursor--; if (fraction_cursor == kBufferSize / 2) { CHECK_EQ('.', buffer[fraction_cursor]); // Carry over to the integer part. integer += 1; break; } char c = buffer[fraction_cursor]; // Reconstruct digit. int digit = c > '9' ? (c - 'a' + 10) : (c - '0'); if (digit + 1 < radix) { buffer[fraction_cursor++] = chars[digit + 1]; break; } } break; } } } while (fraction > delta); } // Compute integer digits. Fill unrepresented digits with zero. while (Double(integer / radix).Exponent() > 0) { integer /= radix; buffer[--integer_cursor] = '0'; } do { double remainder = modulo(integer, radix); buffer[--integer_cursor] = chars[static_cast(remainder)]; integer = (integer - remainder) / radix; } while (integer > 0); // Add sign and terminate string. if (negative) buffer[--integer_cursor] = '-'; buffer[fraction_cursor++] = '\0'; // Allocate new string as return value. char* result = NewArray(fraction_cursor - integer_cursor); memcpy(result, buffer + integer_cursor, fraction_cursor - integer_cursor); return result; } // ES6 18.2.4 parseFloat(string) double StringToDouble(UnicodeCache* unicode_cache, Handle string, int flags, double empty_string_val) { Handle flattened = String::Flatten(string); { DisallowHeapAllocation no_gc; String::FlatContent flat = flattened->GetFlatContent(); DCHECK(flat.IsFlat()); if (flat.IsOneByte()) { return StringToDouble(unicode_cache, flat.ToOneByteVector(), flags, empty_string_val); } else { return StringToDouble(unicode_cache, flat.ToUC16Vector(), flags, empty_string_val); } } } bool IsSpecialIndex(UnicodeCache* unicode_cache, String* string) { // Max length of canonical double: -X.XXXXXXXXXXXXXXXXX-eXXX const int kBufferSize = 24; const int length = string->length(); if (length == 0 || length > kBufferSize) return false; uint16_t buffer[kBufferSize]; String::WriteToFlat(string, buffer, 0, length); // If the first char is not a digit or a '-' or we can't match 'NaN' or // '(-)Infinity', bailout immediately. int offset = 0; if (!IsDecimalDigit(buffer[0])) { if (buffer[0] == '-') { if (length == 1) return false; // Just '-' is bad. if (!IsDecimalDigit(buffer[1])) { if (buffer[1] == 'I' && length == 9) { // Allow matching of '-Infinity' below. } else { return false; } } offset++; } else if (buffer[0] == 'I' && length == 8) { // Allow matching of 'Infinity' below. } else if (buffer[0] == 'N' && length == 3) { // Match NaN. return buffer[1] == 'a' && buffer[2] == 'N'; } else { return false; } } // Expected fast path: key is an integer. static const int kRepresentableIntegerLength = 15; // (-)XXXXXXXXXXXXXXX if (length - offset <= kRepresentableIntegerLength) { const int initial_offset = offset; bool matches = true; for (; offset < length; offset++) { matches &= IsDecimalDigit(buffer[offset]); } if (matches) { // Match 0 and -0. if (buffer[initial_offset] == '0') return initial_offset == length - 1; return true; } } // Slow path: test DoubleToString(StringToDouble(string)) == string. Vector vector(buffer, length); double d = StringToDouble(unicode_cache, vector, NO_FLAGS); if (std::isnan(d)) return false; // Compute reverse string. char reverse_buffer[kBufferSize + 1]; // Result will be /0 terminated. Vector reverse_vector(reverse_buffer, arraysize(reverse_buffer)); const char* reverse_string = DoubleToCString(d, reverse_vector); for (int i = 0; i < length; ++i) { if (static_cast(reverse_string[i]) != buffer[i]) return false; } return true; } } // namespace internal } // namespace v8