// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // TODO(mythria): Remove this define after this flag is turned on globally #define V8_IMMINENT_DEPRECATION_WARNINGS #include #include "src/base/platform/platform.h" #include "src/snapshot/snapshot.h" #include "src/v8.h" #include "test/cctest/cctest.h" #include "test/cctest/heap-tester.h" namespace v8 { namespace internal { #if 0 static void VerifyRegionMarking(Address page_start) { #ifdef ENABLE_CARDMARKING_WRITE_BARRIER Page* p = Page::FromAddress(page_start); p->SetRegionMarks(Page::kAllRegionsCleanMarks); for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr)); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { Page::FromAddress(addr)->MarkRegionDirty(addr); } for (Address addr = p->ObjectAreaStart(); addr < p->ObjectAreaEnd(); addr += kPointerSize) { CHECK(Page::FromAddress(addr)->IsRegionDirty(addr)); } #endif } #endif // TODO(gc) you can no longer allocate pages like this. Details are hidden. #if 0 TEST(Page) { byte* mem = NewArray(2*Page::kPageSize); CHECK(mem != NULL); Address start = reinterpret_cast
(mem); Address page_start = RoundUp(start, Page::kPageSize); Page* p = Page::FromAddress(page_start); // Initialized Page has heap pointer, normally set by memory_allocator. p->heap_ = CcTest::heap(); CHECK(p->address() == page_start); CHECK(p->is_valid()); p->opaque_header = 0; p->SetIsLargeObjectPage(false); CHECK(!p->next_page()->is_valid()); CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset); CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize); CHECK(p->Offset(page_start + Page::kObjectStartOffset) == Page::kObjectStartOffset); CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize); CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart()); CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd()); // test region marking VerifyRegionMarking(page_start); DeleteArray(mem); } #endif // Temporarily sets a given allocator in an isolate. class TestMemoryAllocatorScope { public: TestMemoryAllocatorScope(Isolate* isolate, MemoryAllocator* allocator) : isolate_(isolate), old_allocator_(isolate->memory_allocator_) { isolate->memory_allocator_ = allocator; } ~TestMemoryAllocatorScope() { isolate_->memory_allocator_ = old_allocator_; } private: Isolate* isolate_; MemoryAllocator* old_allocator_; DISALLOW_COPY_AND_ASSIGN(TestMemoryAllocatorScope); }; // Temporarily sets a given code range in an isolate. class TestCodeRangeScope { public: TestCodeRangeScope(Isolate* isolate, CodeRange* code_range) : isolate_(isolate), old_code_range_(isolate->code_range_) { isolate->code_range_ = code_range; } ~TestCodeRangeScope() { isolate_->code_range_ = old_code_range_; } private: Isolate* isolate_; CodeRange* old_code_range_; DISALLOW_COPY_AND_ASSIGN(TestCodeRangeScope); }; static void VerifyMemoryChunk(Isolate* isolate, Heap* heap, CodeRange* code_range, size_t reserve_area_size, size_t commit_area_size, size_t second_commit_area_size, Executability executable) { MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator); TestCodeRangeScope test_code_range_scope(isolate, code_range); size_t header_size = (executable == EXECUTABLE) ? MemoryAllocator::CodePageGuardStartOffset() : MemoryChunk::kObjectStartOffset; size_t guard_size = (executable == EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0; MemoryChunk* memory_chunk = memory_allocator->AllocateChunk(reserve_area_size, commit_area_size, executable, NULL); size_t alignment = code_range != NULL && code_range->valid() ? MemoryChunk::kAlignment : base::OS::CommitPageSize(); size_t reserved_size = ((executable == EXECUTABLE)) ? RoundUp(header_size + guard_size + reserve_area_size + guard_size, alignment) : RoundUp(header_size + reserve_area_size, base::OS::CommitPageSize()); CHECK(memory_chunk->size() == reserved_size); CHECK(memory_chunk->area_start() < memory_chunk->address() + memory_chunk->size()); CHECK(memory_chunk->area_end() <= memory_chunk->address() + memory_chunk->size()); CHECK(static_cast(memory_chunk->area_size()) == commit_area_size); Address area_start = memory_chunk->area_start(); memory_chunk->CommitArea(second_commit_area_size); CHECK(area_start == memory_chunk->area_start()); CHECK(memory_chunk->area_start() < memory_chunk->address() + memory_chunk->size()); CHECK(memory_chunk->area_end() <= memory_chunk->address() + memory_chunk->size()); CHECK(static_cast(memory_chunk->area_size()) == second_commit_area_size); memory_allocator->Free(memory_chunk); memory_allocator->TearDown(); delete memory_allocator; } TEST(Regress3540) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); const int pageSize = Page::kPageSize; MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK( memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_allocator_scope(isolate, memory_allocator); CodeRange* code_range = new CodeRange(isolate); const size_t code_range_size = 4 * pageSize; if (!code_range->SetUp( code_range_size + RoundUp(v8::base::OS::CommitPageSize() * kReservedCodeRangePages, MemoryChunk::kAlignment) + v8::internal::MemoryAllocator::CodePageAreaSize())) { return; } Address address; size_t size; size_t request_size = code_range_size - 2 * pageSize; address = code_range->AllocateRawMemory( request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()), &size); CHECK(address != NULL); Address null_address; size_t null_size; request_size = code_range_size - pageSize; null_address = code_range->AllocateRawMemory( request_size, request_size - (2 * MemoryAllocator::CodePageGuardSize()), &null_size); CHECK(null_address == NULL); code_range->FreeRawMemory(address, size); delete code_range; memory_allocator->TearDown(); delete memory_allocator; } static unsigned int Pseudorandom() { static uint32_t lo = 2345; lo = 18273 * (lo & 0xFFFFF) + (lo >> 16); return lo & 0xFFFFF; } TEST(MemoryChunk) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); size_t reserve_area_size = 1 * MB; size_t initial_commit_area_size, second_commit_area_size; for (int i = 0; i < 100; i++) { initial_commit_area_size = Pseudorandom(); second_commit_area_size = Pseudorandom(); // With CodeRange. CodeRange* code_range = new CodeRange(isolate); const size_t code_range_size = 32 * MB; if (!code_range->SetUp(code_range_size)) return; VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, EXECUTABLE); VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, NOT_EXECUTABLE); delete code_range; // Without CodeRange. code_range = NULL; VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, EXECUTABLE); VerifyMemoryChunk(isolate, heap, code_range, reserve_area_size, initial_commit_area_size, second_commit_area_size, NOT_EXECUTABLE); } } TEST(MemoryAllocator) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator != nullptr); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); { int total_pages = 0; OldSpace faked_space(heap, OLD_SPACE, NOT_EXECUTABLE); Page* first_page = memory_allocator->AllocatePage( faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE); first_page->InsertAfter(faked_space.anchor()->prev_page()); CHECK(first_page->is_valid()); CHECK(first_page->next_page() == faked_space.anchor()); total_pages++; for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) { CHECK(p->owner() == &faked_space); } // Again, we should get n or n - 1 pages. Page* other = memory_allocator->AllocatePage(faked_space.AreaSize(), &faked_space, NOT_EXECUTABLE); CHECK(other->is_valid()); total_pages++; other->InsertAfter(first_page); int page_count = 0; for (Page* p = first_page; p != faked_space.anchor(); p = p->next_page()) { CHECK(p->owner() == &faked_space); page_count++; } CHECK(total_pages == page_count); Page* second_page = first_page->next_page(); CHECK(second_page->is_valid()); // OldSpace's destructor will tear down the space and free up all pages. } memory_allocator->TearDown(); delete memory_allocator; } TEST(NewSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); NewSpace new_space(heap); CHECK(new_space.SetUp(CcTest::heap()->ReservedSemiSpaceSize(), CcTest::heap()->ReservedSemiSpaceSize())); CHECK(new_space.HasBeenSetUp()); while (new_space.Available() >= Page::kMaxRegularHeapObjectSize) { Object* obj = new_space.AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize) .ToObjectChecked(); CHECK(new_space.Contains(HeapObject::cast(obj))); } new_space.TearDown(); memory_allocator->TearDown(); delete memory_allocator; } TEST(OldSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); OldSpace* s = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(s != NULL); CHECK(s->SetUp()); while (s->Available() > 0) { s->AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize).ToObjectChecked(); } delete s; memory_allocator->TearDown(); delete memory_allocator; } TEST(CompactionSpace) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* memory_allocator = new MemoryAllocator(isolate); CHECK(memory_allocator != nullptr); CHECK( memory_allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, memory_allocator); CompactionSpace* compaction_space = new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(compaction_space != NULL); CHECK(compaction_space->SetUp()); OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(old_space != NULL); CHECK(old_space->SetUp()); // Cannot loop until "Available()" since we initially have 0 bytes available // and would thus neither grow, nor be able to allocate an object. const int kNumObjects = 100; const int kNumObjectsPerPage = compaction_space->AreaSize() / Page::kMaxRegularHeapObjectSize; const int kExpectedPages = (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage; for (int i = 0; i < kNumObjects; i++) { compaction_space->AllocateRawUnaligned(Page::kMaxRegularHeapObjectSize) .ToObjectChecked(); } int pages_in_old_space = old_space->CountTotalPages(); int pages_in_compaction_space = compaction_space->CountTotalPages(); CHECK_EQ(pages_in_compaction_space, kExpectedPages); CHECK_LE(pages_in_old_space, 1); old_space->MergeCompactionSpace(compaction_space); CHECK_EQ(old_space->CountTotalPages(), pages_in_old_space + pages_in_compaction_space); delete compaction_space; delete old_space; memory_allocator->TearDown(); delete memory_allocator; } TEST(CompactionSpaceUsingExternalMemory) { const int kObjectSize = 512; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); MemoryAllocator* allocator = new MemoryAllocator(isolate); CHECK(allocator != nullptr); CHECK(allocator->SetUp(heap->MaxReserved(), heap->MaxExecutableSize())); TestMemoryAllocatorScope test_scope(isolate, allocator); CompactionSpaceCollection* collection = new CompactionSpaceCollection(heap); CompactionSpace* compaction_space = collection->Get(OLD_SPACE); CHECK(compaction_space != NULL); CHECK(compaction_space->SetUp()); OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(old_space != NULL); CHECK(old_space->SetUp()); // The linear allocation area already counts as used bytes, making // exact testing impossible. heap->DisableInlineAllocation(); // Test: // * Allocate a backing store in old_space. // * Compute the number num_rest_objects of kObjectSize objects that fit into // of available memory. // kNumRestObjects. // * Add the rest of available memory to the compaction space. // * Allocate kNumRestObjects in the compaction space. // * Allocate one object more. // * Merge the compaction space and compare the expected number of pages. // Allocate a single object in old_space to initialize a backing page. old_space->AllocateRawUnaligned(kObjectSize).ToObjectChecked(); // Compute the number of objects that fit into the rest in old_space. intptr_t rest = static_cast(old_space->Available()); CHECK_GT(rest, 0); intptr_t num_rest_objects = rest / kObjectSize; // After allocating num_rest_objects in compaction_space we allocate a bit // more. const intptr_t kAdditionalCompactionMemory = kObjectSize; // We expect a single old_space page. const intptr_t kExpectedInitialOldSpacePages = 1; // We expect a single additional page in compaction space because we mostly // use external memory. const intptr_t kExpectedCompactionPages = 1; // We expect two pages to be reachable from old_space in the end. const intptr_t kExpectedOldSpacePagesAfterMerge = 2; CHECK_EQ(old_space->CountTotalPages(), kExpectedInitialOldSpacePages); CHECK_EQ(compaction_space->CountTotalPages(), 0); CHECK_EQ(compaction_space->Capacity(), 0); // Make the rest of memory available for compaction. old_space->DivideUponCompactionSpaces(&collection, 1, rest); CHECK_EQ(compaction_space->CountTotalPages(), 0); CHECK_EQ(compaction_space->Capacity(), rest); while (num_rest_objects-- > 0) { compaction_space->AllocateRawUnaligned(kObjectSize).ToObjectChecked(); } // We only used external memory so far. CHECK_EQ(compaction_space->CountTotalPages(), 0); // Additional allocation. compaction_space->AllocateRawUnaligned(kAdditionalCompactionMemory) .ToObjectChecked(); // Now the compaction space shouldve also acquired a page. CHECK_EQ(compaction_space->CountTotalPages(), kExpectedCompactionPages); old_space->MergeCompactionSpace(compaction_space); CHECK_EQ(old_space->CountTotalPages(), kExpectedOldSpacePagesAfterMerge); delete collection; delete old_space; allocator->TearDown(); delete allocator; } CompactionSpaceCollection** HeapTester::InitializeCompactionSpaces( Heap* heap, int num_spaces) { CompactionSpaceCollection** spaces = new CompactionSpaceCollection*[num_spaces]; for (int i = 0; i < num_spaces; i++) { spaces[i] = new CompactionSpaceCollection(heap); } return spaces; } void HeapTester::DestroyCompactionSpaces(CompactionSpaceCollection** spaces, int num_spaces) { for (int i = 0; i < num_spaces; i++) { delete spaces[i]; } delete[] spaces; } void HeapTester::MergeCompactionSpaces(PagedSpace* space, CompactionSpaceCollection** spaces, int num_spaces) { AllocationSpace id = space->identity(); for (int i = 0; i < num_spaces; i++) { space->MergeCompactionSpace(spaces[i]->Get(id)); CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Size(), 0); CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Capacity(), 0); CHECK_EQ(spaces[i]->Get(id)->Waste(), 0); } } void HeapTester::AllocateInCompactionSpaces(CompactionSpaceCollection** spaces, AllocationSpace id, int num_spaces, int num_objects, int object_size) { for (int i = 0; i < num_spaces; i++) { for (int j = 0; j < num_objects; j++) { spaces[i]->Get(id)->AllocateRawUnaligned(object_size).ToObjectChecked(); } spaces[i]->Get(id)->EmptyAllocationInfo(); CHECK_EQ(spaces[i]->Get(id)->accounting_stats_.Size(), num_objects * object_size); CHECK_GE(spaces[i]->Get(id)->accounting_stats_.Capacity(), spaces[i]->Get(id)->accounting_stats_.Size()); } } void HeapTester::CompactionStats(CompactionSpaceCollection** spaces, AllocationSpace id, int num_spaces, intptr_t* capacity, intptr_t* size) { *capacity = 0; *size = 0; for (int i = 0; i < num_spaces; i++) { *capacity += spaces[i]->Get(id)->accounting_stats_.Capacity(); *size += spaces[i]->Get(id)->accounting_stats_.Size(); } } void HeapTester::TestCompactionSpaceDivide(int num_additional_objects, int object_size, int num_compaction_spaces, int additional_capacity_in_bytes) { Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); OldSpace* old_space = new OldSpace(heap, OLD_SPACE, NOT_EXECUTABLE); CHECK(old_space != nullptr); CHECK(old_space->SetUp()); old_space->AllocateRawUnaligned(object_size).ToObjectChecked(); old_space->EmptyAllocationInfo(); intptr_t rest_capacity = old_space->accounting_stats_.Capacity() - old_space->accounting_stats_.Size(); intptr_t capacity_for_compaction_space = rest_capacity / num_compaction_spaces; int num_objects_in_compaction_space = static_cast(capacity_for_compaction_space) / object_size + num_additional_objects; CHECK_GT(num_objects_in_compaction_space, 0); intptr_t initial_old_space_capacity = old_space->accounting_stats_.Capacity(); CompactionSpaceCollection** spaces = InitializeCompactionSpaces(heap, num_compaction_spaces); old_space->DivideUponCompactionSpaces(spaces, num_compaction_spaces, capacity_for_compaction_space); intptr_t compaction_capacity = 0; intptr_t compaction_size = 0; CompactionStats(spaces, OLD_SPACE, num_compaction_spaces, &compaction_capacity, &compaction_size); intptr_t old_space_capacity = old_space->accounting_stats_.Capacity(); intptr_t old_space_size = old_space->accounting_stats_.Size(); // Compaction space memory is subtracted from the original space's capacity. CHECK_EQ(old_space_capacity, initial_old_space_capacity - compaction_capacity); CHECK_EQ(compaction_size, 0); AllocateInCompactionSpaces(spaces, OLD_SPACE, num_compaction_spaces, num_objects_in_compaction_space, object_size); // Old space size and capacity should be the same as after dividing. CHECK_EQ(old_space->accounting_stats_.Size(), old_space_size); CHECK_EQ(old_space->accounting_stats_.Capacity(), old_space_capacity); CompactionStats(spaces, OLD_SPACE, num_compaction_spaces, &compaction_capacity, &compaction_size); MergeCompactionSpaces(old_space, spaces, num_compaction_spaces); CHECK_EQ(old_space->accounting_stats_.Capacity(), old_space_capacity + compaction_capacity); CHECK_EQ(old_space->accounting_stats_.Size(), old_space_size + compaction_size); // We check against the expected end capacity. CHECK_EQ(old_space->accounting_stats_.Capacity(), initial_old_space_capacity + additional_capacity_in_bytes); DestroyCompactionSpaces(spaces, num_compaction_spaces); delete old_space; } HEAP_TEST(CompactionSpaceDivideSinglePage) { const int kObjectSize = KB; const int kCompactionSpaces = 4; // Since the bound for objects is tight and the dividing is best effort, we // subtract some objects to make sure we still fit in the initial page. // A CHECK makes sure that the overall number of allocated objects stays // > 0. const int kAdditionalObjects = -10; const int kAdditionalCapacityRequired = 0; TestCompactionSpaceDivide(kAdditionalObjects, kObjectSize, kCompactionSpaces, kAdditionalCapacityRequired); } HEAP_TEST(CompactionSpaceDivideMultiplePages) { const int kObjectSize = KB; const int kCompactionSpaces = 4; // Allocate half a page of objects to ensure that we need one more page per // compaction space. const int kAdditionalObjects = (Page::kPageSize / kObjectSize / 2); const int kAdditionalCapacityRequired = Page::kAllocatableMemory * kCompactionSpaces; TestCompactionSpaceDivide(kAdditionalObjects, kObjectSize, kCompactionSpaces, kAdditionalCapacityRequired); } TEST(LargeObjectSpace) { v8::V8::Initialize(); LargeObjectSpace* lo = CcTest::heap()->lo_space(); CHECK(lo != NULL); int lo_size = Page::kPageSize; Object* obj = lo->AllocateRaw(lo_size, NOT_EXECUTABLE).ToObjectChecked(); CHECK(obj->IsHeapObject()); HeapObject* ho = HeapObject::cast(obj); CHECK(lo->Contains(HeapObject::cast(obj))); CHECK(lo->FindObject(ho->address()) == obj); CHECK(lo->Contains(ho)); while (true) { intptr_t available = lo->Available(); { AllocationResult allocation = lo->AllocateRaw(lo_size, NOT_EXECUTABLE); if (allocation.IsRetry()) break; } // The available value is conservative such that it may report // zero prior to heap exhaustion. CHECK(lo->Available() < available || available == 0); } CHECK(!lo->IsEmpty()); CHECK(lo->AllocateRaw(lo_size, NOT_EXECUTABLE).IsRetry()); } TEST(SizeOfFirstPageIsLargeEnough) { if (i::FLAG_always_opt) return; // Bootstrapping without a snapshot causes more allocations. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); if (!isolate->snapshot_available()) return; if (Snapshot::EmbedsScript(isolate)) return; // If this test fails due to enabling experimental natives that are not part // of the snapshot, we may need to adjust CalculateFirstPageSizes. // Freshly initialized VM gets by with one page per space. for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) { // Debug code can be very large, so skip CODE_SPACE if we are generating it. if (i == CODE_SPACE && i::FLAG_debug_code) continue; CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages()); } // Executing the empty script gets by with one page per space. HandleScope scope(isolate); CompileRun("/*empty*/"); for (int i = FIRST_PAGED_SPACE; i <= LAST_PAGED_SPACE; i++) { // Debug code can be very large, so skip CODE_SPACE if we are generating it. if (i == CODE_SPACE && i::FLAG_debug_code) continue; CHECK_EQ(1, isolate->heap()->paged_space(i)->CountTotalPages()); } // No large objects required to perform the above steps. CHECK(isolate->heap()->lo_space()->IsEmpty()); } UNINITIALIZED_TEST(NewSpaceGrowsToTargetCapacity) { FLAG_target_semi_space_size = 2 * (Page::kPageSize / MB); if (FLAG_optimize_for_size) return; v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Isolate* i_isolate = reinterpret_cast(isolate); NewSpace* new_space = i_isolate->heap()->new_space(); // This test doesn't work if we start with a non-default new space // configuration. if (new_space->InitialTotalCapacity() == Page::kPageSize) { CHECK_EQ(new_space->CommittedMemory(), new_space->InitialTotalCapacity()); // Fill up the first (and only) page of the semi space. FillCurrentPage(new_space); // Try to allocate out of the new space. A new page should be added and // the // allocation should succeed. v8::internal::AllocationResult allocation = new_space->AllocateRawUnaligned(80); CHECK(!allocation.IsRetry()); CHECK_EQ(new_space->CommittedMemory(), 2 * Page::kPageSize); // Turn the allocation into a proper object so isolate teardown won't // crash. HeapObject* free_space = NULL; CHECK(allocation.To(&free_space)); new_space->heap()->CreateFillerObjectAt(free_space->address(), 80); } } isolate->Dispose(); } static HeapObject* AllocateUnaligned(NewSpace* space, int size) { AllocationResult allocation = space->AllocateRawUnaligned(size); CHECK(!allocation.IsRetry()); HeapObject* filler = NULL; CHECK(allocation.To(&filler)); space->heap()->CreateFillerObjectAt(filler->address(), size); return filler; } class Observer : public InlineAllocationObserver { public: explicit Observer(intptr_t step_size) : InlineAllocationObserver(step_size), count_(0) {} void Step(int bytes_allocated, Address, size_t) override { count_++; } int count() const { return count_; } private: int count_; }; UNINITIALIZED_TEST(InlineAllocationObserver) { v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Isolate* i_isolate = reinterpret_cast(isolate); NewSpace* new_space = i_isolate->heap()->new_space(); Observer observer1(128); new_space->AddInlineAllocationObserver(&observer1); // The observer should not get notified if we have only allocated less than // 128 bytes. AllocateUnaligned(new_space, 64); CHECK_EQ(observer1.count(), 0); // The observer should get called when we have allocated exactly 128 bytes. AllocateUnaligned(new_space, 64); CHECK_EQ(observer1.count(), 1); // Another >128 bytes should get another notification. AllocateUnaligned(new_space, 136); CHECK_EQ(observer1.count(), 2); // Allocating a large object should get only one notification. AllocateUnaligned(new_space, 1024); CHECK_EQ(observer1.count(), 3); // Allocating another 2048 bytes in small objects should get 16 // notifications. for (int i = 0; i < 64; ++i) { AllocateUnaligned(new_space, 32); } CHECK_EQ(observer1.count(), 19); // Multiple observers should work. Observer observer2(96); new_space->AddInlineAllocationObserver(&observer2); AllocateUnaligned(new_space, 2048); CHECK_EQ(observer1.count(), 20); CHECK_EQ(observer2.count(), 1); AllocateUnaligned(new_space, 104); CHECK_EQ(observer1.count(), 20); CHECK_EQ(observer2.count(), 2); // Callback should stop getting called after an observer is removed. new_space->RemoveInlineAllocationObserver(&observer1); AllocateUnaligned(new_space, 384); CHECK_EQ(observer1.count(), 20); // no more notifications. CHECK_EQ(observer2.count(), 3); // this one is still active. // Ensure that Pause/ResumeInlineAllocationObservers work correctly. AllocateUnaligned(new_space, 48); CHECK_EQ(observer2.count(), 3); new_space->PauseInlineAllocationObservers(); CHECK_EQ(observer2.count(), 3); AllocateUnaligned(new_space, 384); CHECK_EQ(observer2.count(), 3); new_space->ResumeInlineAllocationObservers(); CHECK_EQ(observer2.count(), 3); // Coupled with the 48 bytes allocated before the pause, another 48 bytes // allocated here should trigger a notification. AllocateUnaligned(new_space, 48); CHECK_EQ(observer2.count(), 4); new_space->RemoveInlineAllocationObserver(&observer2); AllocateUnaligned(new_space, 384); CHECK_EQ(observer1.count(), 20); CHECK_EQ(observer2.count(), 4); } isolate->Dispose(); } UNINITIALIZED_TEST(InlineAllocationObserverCadence) { v8::Isolate::CreateParams create_params; create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Isolate* i_isolate = reinterpret_cast(isolate); NewSpace* new_space = i_isolate->heap()->new_space(); Observer observer1(512); new_space->AddInlineAllocationObserver(&observer1); Observer observer2(576); new_space->AddInlineAllocationObserver(&observer2); for (int i = 0; i < 512; ++i) { AllocateUnaligned(new_space, 32); } new_space->RemoveInlineAllocationObserver(&observer1); new_space->RemoveInlineAllocationObserver(&observer2); CHECK_EQ(observer1.count(), 32); CHECK_EQ(observer2.count(), 28); } isolate->Dispose(); } } // namespace internal } // namespace v8