// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include "src/v8.h" #include "src/compilation-cache.h" #include "src/execution.h" #include "src/factory.h" #include "src/global-handles.h" #include "src/ic/ic.h" #include "src/macro-assembler.h" #include "test/cctest/cctest.h" using namespace v8::internal; static void CheckMap(Map* map, int type, int instance_size) { CHECK(map->IsHeapObject()); #ifdef DEBUG CHECK(CcTest::heap()->Contains(map)); #endif CHECK_EQ(CcTest::heap()->meta_map(), map->map()); CHECK_EQ(type, map->instance_type()); CHECK_EQ(instance_size, map->instance_size()); } TEST(HeapMaps) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); CheckMap(heap->meta_map(), MAP_TYPE, Map::kSize); CheckMap(heap->heap_number_map(), HEAP_NUMBER_TYPE, HeapNumber::kSize); CheckMap(heap->fixed_array_map(), FIXED_ARRAY_TYPE, kVariableSizeSentinel); CheckMap(heap->string_map(), STRING_TYPE, kVariableSizeSentinel); } static void CheckOddball(Isolate* isolate, Object* obj, const char* string) { CHECK(obj->IsOddball()); Handle handle(obj, isolate); Object* print_string = *Execution::ToString(isolate, handle).ToHandleChecked(); CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckSmi(Isolate* isolate, int value, const char* string) { Handle handle(Smi::FromInt(value), isolate); Object* print_string = *Execution::ToString(isolate, handle).ToHandleChecked(); CHECK(String::cast(print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckNumber(Isolate* isolate, double value, const char* string) { Handle number = isolate->factory()->NewNumber(value); CHECK(number->IsNumber()); Handle print_string = Execution::ToString(isolate, number).ToHandleChecked(); CHECK(String::cast(*print_string)->IsUtf8EqualTo(CStrVector(string))); } static void CheckFindCodeObject(Isolate* isolate) { // Test FindCodeObject #define __ assm. Assembler assm(isolate, NULL, 0); __ nop(); // supported on all architectures CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); CHECK(code->IsCode()); HeapObject* obj = HeapObject::cast(*code); Address obj_addr = obj->address(); for (int i = 0; i < obj->Size(); i += kPointerSize) { Object* found = isolate->FindCodeObject(obj_addr + i); CHECK_EQ(*code, found); } Handle copy = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); HeapObject* obj_copy = HeapObject::cast(*copy); Object* not_right = isolate->FindCodeObject(obj_copy->address() + obj_copy->Size() / 2); CHECK(not_right != *code); } TEST(HandleNull) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); LocalContext context; Handle n(reinterpret_cast(NULL), isolate); CHECK(!n.is_null()); } TEST(HeapObjects) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); HandleScope sc(isolate); Handle value = factory->NewNumber(1.000123); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(1.000123, value->Number()); value = factory->NewNumber(1.0); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1.0, value->Number()); value = factory->NewNumberFromInt(1024); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(1024.0, value->Number()); value = factory->NewNumberFromInt(Smi::kMinValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMinValue, Handle::cast(value)->value()); value = factory->NewNumberFromInt(Smi::kMaxValue); CHECK(value->IsSmi()); CHECK(value->IsNumber()); CHECK_EQ(Smi::kMaxValue, Handle::cast(value)->value()); #if !defined(V8_TARGET_ARCH_X64) && !defined(V8_TARGET_ARCH_ARM64) && \ !defined(V8_TARGET_ARCH_MIPS64) // TODO(lrn): We need a NumberFromIntptr function in order to test this. value = factory->NewNumberFromInt(Smi::kMinValue - 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(Smi::kMinValue - 1), value->Number()); #endif value = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(Smi::kMaxValue) + 1), value->Number()); value = factory->NewNumberFromUint(static_cast(1) << 31); CHECK(value->IsHeapNumber()); CHECK(value->IsNumber()); CHECK_EQ(static_cast(static_cast(1) << 31), value->Number()); // nan oddball checks CHECK(factory->nan_value()->IsNumber()); CHECK(std::isnan(factory->nan_value()->Number())); Handle s = factory->NewStringFromStaticChars("fisk hest "); CHECK(s->IsString()); CHECK_EQ(10, s->length()); Handle object_string = Handle::cast(factory->Object_string()); Handle global(CcTest::i_isolate()->context()->global_object()); v8::Maybe maybe = JSReceiver::HasOwnProperty(global, object_string); CHECK(maybe.has_value); CHECK(maybe.value); // Check ToString for oddballs CheckOddball(isolate, heap->true_value(), "true"); CheckOddball(isolate, heap->false_value(), "false"); CheckOddball(isolate, heap->null_value(), "null"); CheckOddball(isolate, heap->undefined_value(), "undefined"); // Check ToString for Smis CheckSmi(isolate, 0, "0"); CheckSmi(isolate, 42, "42"); CheckSmi(isolate, -42, "-42"); // Check ToString for Numbers CheckNumber(isolate, 1.1, "1.1"); CheckFindCodeObject(isolate); } TEST(Tagging) { CcTest::InitializeVM(); int request = 24; CHECK_EQ(request, static_cast(OBJECT_POINTER_ALIGN(request))); CHECK(Smi::FromInt(42)->IsSmi()); CHECK(Smi::FromInt(Smi::kMinValue)->IsSmi()); CHECK(Smi::FromInt(Smi::kMaxValue)->IsSmi()); } TEST(GarbageCollection) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); HandleScope sc(isolate); // Check GC. heap->CollectGarbage(NEW_SPACE); Handle global(CcTest::i_isolate()->context()->global_object()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle prop_namex = factory->InternalizeUtf8String("theSlotx"); Handle obj_name = factory->InternalizeUtf8String("theObject"); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); { HandleScope inner_scope(isolate); // Allocate a function and keep it in global object's property. Handle function = factory->NewFunction(name); JSReceiver::SetProperty(global, name, function, SLOPPY).Check(); // Allocate an object. Unrooted after leaving the scope. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); JSReceiver::SetProperty(obj, prop_namex, twenty_four, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(obj, prop_namex).ToHandleChecked()); } heap->CollectGarbage(NEW_SPACE); // Function should be alive. v8::Maybe maybe = JSReceiver::HasOwnProperty(global, name); CHECK(maybe.has_value); CHECK(maybe.value); // Check function is retained. Handle func_value = Object::GetProperty(global, name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); { HandleScope inner_scope(isolate); // Allocate another object, make it reachable from global. Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(global, obj_name, obj, SLOPPY).Check(); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); } // After gc, it should survive. heap->CollectGarbage(NEW_SPACE); maybe = JSReceiver::HasOwnProperty(global, obj_name); CHECK(maybe.has_value); CHECK(maybe.value); Handle obj = Object::GetProperty(global, obj_name).ToHandleChecked(); CHECK(obj->IsJSObject()); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); } static void VerifyStringAllocation(Isolate* isolate, const char* string) { HandleScope scope(isolate); Handle s = isolate->factory()->NewStringFromUtf8( CStrVector(string)).ToHandleChecked(); CHECK_EQ(StrLength(string), s->length()); for (int index = 0; index < s->length(); index++) { CHECK_EQ(static_cast(string[index]), s->Get(index)); } } TEST(String) { CcTest::InitializeVM(); Isolate* isolate = reinterpret_cast(CcTest::isolate()); VerifyStringAllocation(isolate, "a"); VerifyStringAllocation(isolate, "ab"); VerifyStringAllocation(isolate, "abc"); VerifyStringAllocation(isolate, "abcd"); VerifyStringAllocation(isolate, "fiskerdrengen er paa havet"); } TEST(LocalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* name = "Kasper the spunky"; Handle string = factory->NewStringFromAsciiChecked(name); CHECK_EQ(StrLength(name), string->length()); } TEST(GlobalHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); Handle h1; Handle h2; Handle h3; Handle h4; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); h3 = global_handles->Create(*i); h4 = global_handles->Create(*u); } // after gc, it should survive heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK((*h3)->IsString()); CHECK((*h4)->IsHeapNumber()); CHECK_EQ(*h3, *h1); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h3.location()); CHECK_EQ(*h4, *h2); GlobalHandles::Destroy(h2.location()); GlobalHandles::Destroy(h4.location()); } static bool WeakPointerCleared = false; static void TestWeakGlobalHandleCallback( const v8::WeakCallbackData& data) { std::pair*, int>* p = reinterpret_cast*, int>*>( data.GetParameter()); if (p->second == 1234) WeakPointerCleared = true; p->first->Reset(); } TEST(WeakGlobalHandlesScavenge) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scavenge treats weak pointers as normal roots. heap->CollectGarbage(NEW_SPACE); CHECK((*h1)->IsString()); CHECK((*h2)->IsHeapNumber()); CHECK(!WeakPointerCleared); CHECK(!global_handles->IsNearDeath(h2.location())); CHECK(!global_handles->IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); GlobalHandles::Destroy(h2.location()); } TEST(WeakGlobalHandlesMark) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h1; Handle h2; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); Handle u = factory->NewNumber(1.12344); h1 = global_handles->Create(*i); h2 = global_handles->Create(*u); } // Make sure the objects are promoted. heap->CollectGarbage(OLD_POINTER_SPACE); heap->CollectGarbage(NEW_SPACE); CHECK(!heap->InNewSpace(*h1) && !heap->InNewSpace(*h2)); std::pair*, int> handle_and_id(&h2, 1234); GlobalHandles::MakeWeak(h2.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); CHECK(!GlobalHandles::IsNearDeath(h1.location())); CHECK(!GlobalHandles::IsNearDeath(h2.location())); // Incremental marking potentially marked handles before they turned weak. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK((*h1)->IsString()); CHECK(WeakPointerCleared); CHECK(!GlobalHandles::IsNearDeath(h1.location())); GlobalHandles::Destroy(h1.location()); } TEST(DeleteWeakGlobalHandle) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); Factory* factory = isolate->factory(); GlobalHandles* global_handles = isolate->global_handles(); WeakPointerCleared = false; Handle h; { HandleScope scope(isolate); Handle i = factory->NewStringFromStaticChars("fisk"); h = global_handles->Create(*i); } std::pair*, int> handle_and_id(&h, 1234); GlobalHandles::MakeWeak(h.location(), reinterpret_cast(&handle_and_id), &TestWeakGlobalHandleCallback); // Scanvenge does not recognize weak reference. heap->CollectGarbage(NEW_SPACE); CHECK(!WeakPointerCleared); // Mark-compact treats weak reference properly. heap->CollectGarbage(OLD_POINTER_SPACE); CHECK(WeakPointerCleared); } static const char* not_so_random_string_table[] = { "abstract", "boolean", "break", "byte", "case", "catch", "char", "class", "const", "continue", "debugger", "default", "delete", "do", "double", "else", "enum", "export", "extends", "false", "final", "finally", "float", "for", "function", "goto", "if", "implements", "import", "in", "instanceof", "int", "interface", "long", "native", "new", "null", "package", "private", "protected", "public", "return", "short", "static", "super", "switch", "synchronized", "this", "throw", "throws", "transient", "true", "try", "typeof", "var", "void", "volatile", "while", "with", 0 }; static void CheckInternalizedStrings(const char** strings) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (const char* string = *strings; *strings != 0; string = *strings++) { HandleScope scope(isolate); Handle a = isolate->factory()->InternalizeUtf8String(CStrVector(string)); // InternalizeUtf8String may return a failure if a GC is needed. CHECK(a->IsInternalizedString()); Handle b = factory->InternalizeUtf8String(string); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); b = isolate->factory()->InternalizeUtf8String(CStrVector(string)); CHECK_EQ(*b, *a); CHECK(b->IsUtf8EqualTo(CStrVector(string))); } } TEST(StringTable) { CcTest::InitializeVM(); v8::HandleScope sc(CcTest::isolate()); CheckInternalizedStrings(not_so_random_string_table); CheckInternalizedStrings(not_so_random_string_table); } TEST(FunctionAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle twenty_three(Smi::FromInt(23), isolate); Handle twenty_four(Smi::FromInt(24), isolate); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check that we can add properties to function objects. JSReceiver::SetProperty(function, prop_name, twenty_four, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(24), *Object::GetProperty(function, prop_name).ToHandleChecked()); } TEST(ObjectProperties) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); // check for empty v8::Maybe maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(!maybe.value); // add first JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(maybe.value); // delete first JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(!maybe.value); // add first and then second JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, SLOPPY).Check(); maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(maybe.value); maybe = JSReceiver::HasOwnProperty(obj, second); CHECK(maybe.has_value); CHECK(maybe.value); // delete first and then second JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); maybe = JSReceiver::HasOwnProperty(obj, second); CHECK(maybe.has_value); CHECK(maybe.value); JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(!maybe.value); maybe = JSReceiver::HasOwnProperty(obj, second); CHECK(maybe.has_value); CHECK(!maybe.value); // add first and then second JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, SLOPPY).Check(); maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(maybe.value); maybe = JSReceiver::HasOwnProperty(obj, second); CHECK(maybe.has_value); CHECK(maybe.value); // delete second and then first JSReceiver::DeleteProperty(obj, second, JSReceiver::NORMAL_DELETION).Check(); maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(maybe.value); JSReceiver::DeleteProperty(obj, first, JSReceiver::NORMAL_DELETION).Check(); maybe = JSReceiver::HasOwnProperty(obj, first); CHECK(maybe.has_value); CHECK(!maybe.value); maybe = JSReceiver::HasOwnProperty(obj, second); CHECK(maybe.has_value); CHECK(!maybe.value); // check string and internalized string match const char* string1 = "fisk"; Handle s1 = factory->NewStringFromAsciiChecked(string1); JSReceiver::SetProperty(obj, s1, one, SLOPPY).Check(); Handle s1_string = factory->InternalizeUtf8String(string1); maybe = JSReceiver::HasOwnProperty(obj, s1_string); CHECK(maybe.has_value); CHECK(maybe.value); // check internalized string and string match const char* string2 = "fugl"; Handle s2_string = factory->InternalizeUtf8String(string2); JSReceiver::SetProperty(obj, s2_string, one, SLOPPY).Check(); Handle s2 = factory->NewStringFromAsciiChecked(string2); maybe = JSReceiver::HasOwnProperty(obj, s2); CHECK(maybe.has_value); CHECK(maybe.value); } TEST(JSObjectMaps) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("theFunction"); Handle function = factory->NewFunction(name); Handle prop_name = factory->InternalizeUtf8String("theSlot"); Handle obj = factory->NewJSObject(function); Handle initial_map(function->initial_map()); // Set a propery Handle twenty_three(Smi::FromInt(23), isolate); JSReceiver::SetProperty(obj, prop_name, twenty_three, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(23), *Object::GetProperty(obj, prop_name).ToHandleChecked()); // Check the map has changed CHECK(*initial_map != obj->map()); } TEST(JSArray) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle name = factory->InternalizeUtf8String("Array"); Handle fun_obj = Object::GetProperty( CcTest::i_isolate()->global_object(), name).ToHandleChecked(); Handle function = Handle::cast(fun_obj); // Allocate the object. Handle element; Handle object = factory->NewJSObject(function); Handle array = Handle::cast(object); // We just initialized the VM, no heap allocation failure yet. JSArray::Initialize(array, 0); // Set array length to 0. JSArray::SetElementsLength(array, handle(Smi::FromInt(0), isolate)).Check(); CHECK_EQ(Smi::FromInt(0), array->length()); // Must be in fast mode. CHECK(array->HasFastSmiOrObjectElements()); // array[length] = name. JSReceiver::SetElement(array, 0, name, NONE, SLOPPY).Check(); CHECK_EQ(Smi::FromInt(1), array->length()); element = i::Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); // Set array length with larger than smi value. Handle length = factory->NewNumberFromUint(static_cast(Smi::kMaxValue) + 1); JSArray::SetElementsLength(array, length).Check(); uint32_t int_length = 0; CHECK(length->ToArrayIndex(&int_length)); CHECK_EQ(*length, array->length()); CHECK(array->HasDictionaryElements()); // Must be in slow mode. // array[length] = name. JSReceiver::SetElement(array, int_length, name, NONE, SLOPPY).Check(); uint32_t new_int_length = 0; CHECK(array->length()->ToArrayIndex(&new_int_length)); CHECK_EQ(static_cast(int_length), new_int_length - 1); element = Object::GetElement(isolate, array, int_length).ToHandleChecked(); CHECK_EQ(*element, *name); element = Object::GetElement(isolate, array, 0).ToHandleChecked(); CHECK_EQ(*element, *name); } TEST(JSObjectCopy) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope sc(CcTest::isolate()); Handle object_string(String::cast(CcTest::heap()->Object_string())); Handle object = Object::GetProperty( CcTest::i_isolate()->global_object(), object_string).ToHandleChecked(); Handle constructor = Handle::cast(object); Handle obj = factory->NewJSObject(constructor); Handle first = factory->InternalizeUtf8String("first"); Handle second = factory->InternalizeUtf8String("second"); Handle one(Smi::FromInt(1), isolate); Handle two(Smi::FromInt(2), isolate); JSReceiver::SetProperty(obj, first, one, SLOPPY).Check(); JSReceiver::SetProperty(obj, second, two, SLOPPY).Check(); JSReceiver::SetElement(obj, 0, first, NONE, SLOPPY).Check(); JSReceiver::SetElement(obj, 1, second, NONE, SLOPPY).Check(); // Make the clone. Handle value1, value2; Handle clone = factory->CopyJSObject(obj); CHECK(!clone.is_identical_to(obj)); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); // Flip the values. JSReceiver::SetProperty(clone, first, two, SLOPPY).Check(); JSReceiver::SetProperty(clone, second, one, SLOPPY).Check(); JSReceiver::SetElement(clone, 0, second, NONE, SLOPPY).Check(); JSReceiver::SetElement(clone, 1, first, NONE, SLOPPY).Check(); value1 = Object::GetElement(isolate, obj, 1).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 0).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetElement(isolate, obj, 0).ToHandleChecked(); value2 = Object::GetElement(isolate, clone, 1).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, second).ToHandleChecked(); value2 = Object::GetProperty(clone, first).ToHandleChecked(); CHECK_EQ(*value1, *value2); value1 = Object::GetProperty(obj, first).ToHandleChecked(); value2 = Object::GetProperty(clone, second).ToHandleChecked(); CHECK_EQ(*value1, *value2); } TEST(StringAllocation) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); const unsigned char chars[] = { 0xe5, 0xa4, 0xa7 }; for (int length = 0; length < 100; length++) { v8::HandleScope scope(CcTest::isolate()); char* non_one_byte = NewArray(3 * length + 1); char* one_byte = NewArray(length + 1); non_one_byte[3 * length] = 0; one_byte[length] = 0; for (int i = 0; i < length; i++) { one_byte[i] = 'a'; non_one_byte[3 * i] = chars[0]; non_one_byte[3 * i + 1] = chars[1]; non_one_byte[3 * i + 2] = chars[2]; } Handle non_one_byte_sym = factory->InternalizeUtf8String( Vector(non_one_byte, 3 * length)); CHECK_EQ(length, non_one_byte_sym->length()); Handle one_byte_sym = factory->InternalizeOneByteString(OneByteVector(one_byte, length)); CHECK_EQ(length, one_byte_sym->length()); Handle non_one_byte_str = factory->NewStringFromUtf8(Vector(non_one_byte, 3 * length)) .ToHandleChecked(); non_one_byte_str->Hash(); CHECK_EQ(length, non_one_byte_str->length()); Handle one_byte_str = factory->NewStringFromUtf8(Vector(one_byte, length)) .ToHandleChecked(); one_byte_str->Hash(); CHECK_EQ(length, one_byte_str->length()); DeleteArray(non_one_byte); DeleteArray(one_byte); } } static int ObjectsFoundInHeap(Heap* heap, Handle objs[], int size) { // Count the number of objects found in the heap. int found_count = 0; HeapIterator iterator(heap); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { for (int i = 0; i < size; i++) { if (*objs[i] == obj) { found_count++; } } } return found_count; } TEST(Iteration) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Array of objects to scan haep for. const int objs_count = 6; Handle objs[objs_count]; int next_objs_index = 0; // Allocate a JS array to OLD_POINTER_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewJSArray(10); objs[next_objs_index++] = factory->NewJSArray(10, FAST_HOLEY_ELEMENTS, TENURED); // Allocate a small string to OLD_DATA_SPACE and NEW_SPACE objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij"); objs[next_objs_index++] = factory->NewStringFromStaticChars("abcdefghij", TENURED); // Allocate a large string (for large object space). int large_size = Page::kMaxRegularHeapObjectSize + 1; char* str = new char[large_size]; for (int i = 0; i < large_size - 1; ++i) str[i] = 'a'; str[large_size - 1] = '\0'; objs[next_objs_index++] = factory->NewStringFromAsciiChecked(str, TENURED); delete[] str; // Add a Map object to look for. objs[next_objs_index++] = Handle(HeapObject::cast(*objs[0])->map()); CHECK_EQ(objs_count, next_objs_index); CHECK_EQ(objs_count, ObjectsFoundInHeap(CcTest::heap(), objs, objs_count)); } TEST(EmptyHandleEscapeFrom) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Handle runaway; { v8::EscapableHandleScope nested(CcTest::isolate()); Handle empty; runaway = empty.EscapeFrom(&nested); } CHECK(runaway.is_null()); } static int LenFromSize(int size) { return (size - FixedArray::kHeaderSize) / kPointerSize; } TEST(Regression39128) { // Test case for crbug.com/39128. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); TestHeap* heap = CcTest::test_heap(); // Increase the chance of 'bump-the-pointer' allocation in old space. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); v8::HandleScope scope(CcTest::isolate()); // The plan: create JSObject which references objects in new space. // Then clone this object (forcing it to go into old space) and check // that region dirty marks are updated correctly. // Step 1: prepare a map for the object. We add 1 inobject property to it. // Create a map with single inobject property. Handle my_map = Map::Create(CcTest::i_isolate(), 1); int n_properties = my_map->inobject_properties(); CHECK_GT(n_properties, 0); int object_size = my_map->instance_size(); // Step 2: allocate a lot of objects so to almost fill new space: we need // just enough room to allocate JSObject and thus fill the newspace. int allocation_amount = Min(FixedArray::kMaxSize, Page::kMaxRegularHeapObjectSize + kPointerSize); int allocation_len = LenFromSize(allocation_amount); NewSpace* new_space = heap->new_space(); Address* top_addr = new_space->allocation_top_address(); Address* limit_addr = new_space->allocation_limit_address(); while ((*limit_addr - *top_addr) > allocation_amount) { CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(allocation_len).ToObjectChecked(); CHECK(new_space->Contains(array)); } // Step 3: now allocate fixed array and JSObject to fill the whole new space. int to_fill = static_cast(*limit_addr - *top_addr - object_size); int fixed_array_len = LenFromSize(to_fill); CHECK(fixed_array_len < FixedArray::kMaxLength); CHECK(!heap->always_allocate()); Object* array = heap->AllocateFixedArray(fixed_array_len).ToObjectChecked(); CHECK(new_space->Contains(array)); Object* object = heap->AllocateJSObjectFromMap(*my_map).ToObjectChecked(); CHECK(new_space->Contains(object)); JSObject* jsobject = JSObject::cast(object); CHECK_EQ(0, FixedArray::cast(jsobject->elements())->length()); CHECK_EQ(0, jsobject->properties()->length()); // Create a reference to object in new space in jsobject. FieldIndex index = FieldIndex::ForInObjectOffset( JSObject::kHeaderSize - kPointerSize); jsobject->FastPropertyAtPut(index, array); CHECK_EQ(0, static_cast(*limit_addr - *top_addr)); // Step 4: clone jsobject, but force always allocate first to create a clone // in old pointer space. Address old_pointer_space_top = heap->old_pointer_space()->top(); AlwaysAllocateScope aa_scope(isolate); Object* clone_obj = heap->CopyJSObject(jsobject).ToObjectChecked(); JSObject* clone = JSObject::cast(clone_obj); if (clone->address() != old_pointer_space_top) { // Alas, got allocated from free list, we cannot do checks. return; } CHECK(heap->old_pointer_space()->Contains(clone->address())); } UNINITIALIZED_TEST(TestCodeFlushing) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; v8::Isolate* isolate = v8::Isolate::New(); i::Isolate* i_isolate = reinterpret_cast(isolate); isolate->Enter(); Factory* factory = i_isolate->factory(); { v8::HandleScope scope(isolate); v8::Context::New(isolate)->Enter(); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(isolate); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(i_isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. i_isolate->heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); i_isolate->heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { i_isolate->heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } isolate->Exit(); isolate->Dispose(); } TEST(TestCodeFlushingPreAged) { // If we do not flush code this test is invalid. if (!FLAG_flush_code) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // Compile foo, but don't run it. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code has been run so will survive at least one GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // The code was only run once, so it should be pre-aged and collected on the // next GC. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); // Execute the function again twice, and ensure it is reset to the young age. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();" "foo();"); } // The code will survive at least two GC now that it is young again. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use full marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } // foo should no longer be in the compilation cache CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // Call foo to get it recompiled. CompileRun("foo()"); CHECK(function->shared()->is_compiled()); CHECK(function->is_compiled()); } TEST(TestCodeFlushingIncremental) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Simulate several GCs that use incremental marking. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); // This compile will compile the function again. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo();"); } // Simulate several GCs that use incremental marking but make sure // the loop breaks once the function is enqueued as a candidate. for (int i = 0; i < kAgingThreshold; i++) { SimulateIncrementalMarking(CcTest::heap()); if (!function->next_function_link()->IsUndefined()) break; CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); } // Force optimization while incremental marking is active and while // the function is enqueued as a candidate. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(TestCodeFlushingIncrementalScavenge) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); const char* source = "var foo = function() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo();" "var bar = function() {" " var x = 23;" "};" "bar();"; Handle foo_name = factory->InternalizeUtf8String("foo"); Handle bar_name = factory->InternalizeUtf8String("bar"); // Perfrom one initial GC to enable code flushing. CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check functions are compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); Handle func_value2 = Object::GetProperty(isolate->global_object(), bar_name).ToHandleChecked(); CHECK(func_value2->IsJSFunction()); Handle function2 = Handle::cast(func_value2); CHECK(function2->shared()->is_compiled()); // Clear references to functions so that one of them can die. { v8::HandleScope scope(CcTest::isolate()); CompileRun("foo = 0; bar = 0;"); } // Bump the code age so that flushing is triggered while the function // object is still located in new-space. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); function2->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then kill one of the functions. Finally // perform a scavenge while incremental marking is still running. SimulateIncrementalMarking(CcTest::heap()); *function2.location() = NULL; CcTest::heap()->CollectGarbage(NEW_SPACE, "test scavenge while marking"); // Simulate one final GC to make sure the candidate queue is sane. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(!function->shared()->is_compiled() || function->IsOptimized()); CHECK(!function->is_compiled() || function->IsOptimized()); } TEST(TestCodeFlushingIncrementalAbort) { // If we do not flush code this test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally) return; i::FLAG_allow_natives_syntax = true; i::FLAG_optimize_for_size = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); const char* source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle foo_name = factory->InternalizeUtf8String("foo"); // This compile will add the code to the compilation cache. { v8::HandleScope scope(CcTest::isolate()); CompileRun(source); } // Check function is compiled. Handle func_value = Object::GetProperty(isolate->global_object(), foo_name).ToHandleChecked(); CHECK(func_value->IsJSFunction()); Handle function = Handle::cast(func_value); CHECK(function->shared()->is_compiled()); // The code will survive at least two GCs. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(function->shared()->is_compiled()); // Bump the code age so that flushing is triggered. const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { function->shared()->code()->MakeOlder(static_cast(i % 2)); } // Simulate incremental marking so that the function is enqueued as // code flushing candidate. SimulateIncrementalMarking(heap); // Enable the debugger and add a breakpoint while incremental marking // is running so that incremental marking aborts and code flushing is // disabled. int position = 0; Handle breakpoint_object(Smi::FromInt(0), isolate); isolate->debug()->SetBreakPoint(function, breakpoint_object, &position); isolate->debug()->ClearAllBreakPoints(); // Force optimization now that code flushing is disabled. { v8::HandleScope scope(CcTest::isolate()); CompileRun("%OptimizeFunctionOnNextCall(foo); foo();"); } // Simulate one final GC to make sure the candidate queue is sane. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(function->shared()->is_compiled() || !function->IsOptimized()); CHECK(function->is_compiled() || !function->IsOptimized()); } TEST(CompilationCacheCachingBehavior) { // If we do not flush code, or have the compilation cache turned off, this // test is invalid. if (!FLAG_flush_code || !FLAG_flush_code_incrementally || !FLAG_compilation_cache) { return; } CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); CompilationCache* compilation_cache = isolate->compilation_cache(); v8::HandleScope scope(CcTest::isolate()); const char* raw_source = "function foo() {" " var x = 42;" " var y = 42;" " var z = x + y;" "};" "foo()"; Handle source = factory->InternalizeUtf8String(raw_source); Handle native_context = isolate->native_context(); { v8::HandleScope scope(CcTest::isolate()); CompileRun(raw_source); } // On first compilation, only a hash is inserted in the code cache. We can't // find that value. MaybeHandle info = compilation_cache->LookupScript( source, Handle(), 0, 0, true, native_context); CHECK(info.is_null()); { v8::HandleScope scope(CcTest::isolate()); CompileRun(raw_source); } // On second compilation, the hash is replaced by a real cache entry mapping // the source to the shared function info containing the code. info = compilation_cache->LookupScript(source, Handle(), 0, 0, true, native_context); CHECK(!info.is_null()); heap->CollectAllGarbage(Heap::kNoGCFlags); // On second compilation, the hash is replaced by a real cache entry mapping // the source to the shared function info containing the code. info = compilation_cache->LookupScript(source, Handle(), 0, 0, true, native_context); CHECK(!info.is_null()); while (!info.ToHandleChecked()->code()->IsOld()) { info.ToHandleChecked()->code()->MakeOlder(NO_MARKING_PARITY); } heap->CollectAllGarbage(Heap::kNoGCFlags); // Ensure code aging cleared the entry from the cache. info = compilation_cache->LookupScript(source, Handle(), 0, 0, true, native_context); CHECK(info.is_null()); { v8::HandleScope scope(CcTest::isolate()); CompileRun(raw_source); } // On first compilation, only a hash is inserted in the code cache. We can't // find that value. info = compilation_cache->LookupScript(source, Handle(), 0, 0, true, native_context); CHECK(info.is_null()); for (int i = 0; i < CompilationCacheTable::kHashGenerations; i++) { compilation_cache->MarkCompactPrologue(); } { v8::HandleScope scope(CcTest::isolate()); CompileRun(raw_source); } // If we aged the cache before caching the script, ensure that we didn't cache // on next compilation. info = compilation_cache->LookupScript(source, Handle(), 0, 0, true, native_context); CHECK(info.is_null()); } // Count the number of native contexts in the weak list of native contexts. int CountNativeContexts() { int count = 0; Object* object = CcTest::heap()->native_contexts_list(); while (!object->IsUndefined()) { count++; object = Context::cast(object)->get(Context::NEXT_CONTEXT_LINK); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context. static int CountOptimizedUserFunctions(v8::Handle context) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Object* object = icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST); while (object->IsJSFunction() && !JSFunction::cast(object)->IsBuiltin()) { count++; object = JSFunction::cast(object)->next_function_link(); } return count; } TEST(TestInternalWeakLists) { v8::V8::Initialize(); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; static const int kNumTestContexts = 10; Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create a number of global contests which gets linked together. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); // Collect garbage that might have been created by one of the // installed extensions. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); bool opt = (FLAG_always_opt && isolate->use_crankshaft()); CHECK_EQ(i + 1, CountNativeContexts()); ctx[i]->Enter(); // Create a handle scope so no function objects get stuch in the outer // handle scope HandleScope scope(isolate); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); // Remove function f1, and CompileRun("f1=null"); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[i])); } // Mark compact handles the weak references. isolate->compilation_cache()->Clear(); heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); // Get rid of f3 and f5 in the same way. CompileRun("f3=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); CompileRun("f5=null"); for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(NEW_SPACE); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[i])); } CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[i])); ctx[i]->Exit(); } // Force compilation cache cleanup. CcTest::heap()->NotifyContextDisposed(); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Dispose the native contexts one by one. for (int i = 0; i < kNumTestContexts; i++) { // TODO(dcarney): is there a better way to do this? i::Object** unsafe = reinterpret_cast(*ctx[i]); *unsafe = CcTest::heap()->undefined_value(); ctx[i].Clear(); // Scavenge treats these references as strong. for (int j = 0; j < 10; j++) { CcTest::heap()->CollectGarbage(i::NEW_SPACE); CHECK_EQ(kNumTestContexts - i, CountNativeContexts()); } // Mark compact handles the weak references. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(kNumTestContexts - i - 1, CountNativeContexts()); } CHECK_EQ(0, CountNativeContexts()); } // Count the number of native contexts in the weak list of native contexts // causing a GC after the specified number of elements. static int CountNativeContextsWithGC(Isolate* isolate, int n) { Heap* heap = isolate->heap(); int count = 0; Handle object(heap->native_contexts_list(), isolate); while (!object->IsUndefined()) { count++; if (count == n) heap->CollectAllGarbage(Heap::kNoGCFlags); object = Handle(Context::cast(*object)->get(Context::NEXT_CONTEXT_LINK), isolate); } return count; } // Count the number of user functions in the weak list of optimized // functions attached to a native context causing a GC after the // specified number of elements. static int CountOptimizedUserFunctionsWithGC(v8::Handle context, int n) { int count = 0; Handle icontext = v8::Utils::OpenHandle(*context); Isolate* isolate = icontext->GetIsolate(); Handle object(icontext->get(Context::OPTIMIZED_FUNCTIONS_LIST), isolate); while (object->IsJSFunction() && !Handle::cast(object)->IsBuiltin()) { count++; if (count == n) isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags); object = Handle( Object::cast(JSFunction::cast(*object)->next_function_link()), isolate); } return count; } TEST(TestInternalWeakListsTraverseWithGC) { v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); static const int kNumTestContexts = 10; HandleScope scope(isolate); v8::Handle ctx[kNumTestContexts]; CHECK_EQ(0, CountNativeContexts()); // Create an number of contexts and check the length of the weak list both // with and without GCs while iterating the list. for (int i = 0; i < kNumTestContexts; i++) { ctx[i] = v8::Context::New(CcTest::isolate()); CHECK_EQ(i + 1, CountNativeContexts()); CHECK_EQ(i + 1, CountNativeContextsWithGC(isolate, i / 2 + 1)); } bool opt = (FLAG_always_opt && isolate->use_crankshaft()); // Compile a number of functions the length of the weak list of optimized // functions both with and without GCs while iterating the list. ctx[0]->Enter(); const char* source = "function f1() { };" "function f2() { };" "function f3() { };" "function f4() { };" "function f5() { };"; CompileRun(source); CHECK_EQ(0, CountOptimizedUserFunctions(ctx[0])); CompileRun("f1()"); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 1 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f2()"); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 2 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f3()"); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 3 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 1)); CompileRun("f4()"); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 4 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 2)); CompileRun("f5()"); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctions(ctx[0])); CHECK_EQ(opt ? 5 : 0, CountOptimizedUserFunctionsWithGC(ctx[0], 4)); ctx[0]->Exit(); } TEST(TestSizeOfObjects) { v8::V8::Initialize(); // Get initial heap size after several full GCs, which will stabilize // the heap size and return with sweeping finished completely. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); MarkCompactCollector* collector = CcTest::heap()->mark_compact_collector(); if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } int initial_size = static_cast(CcTest::heap()->SizeOfObjects()); { // Allocate objects on several different old-space pages so that // concurrent sweeper threads will be busy sweeping the old space on // subsequent GC runs. AlwaysAllocateScope always_allocate(CcTest::i_isolate()); int filler_size = static_cast(FixedArray::SizeFor(8192)); for (int i = 1; i <= 100; i++) { CcTest::test_heap()->AllocateFixedArray(8192, TENURED).ToObjectChecked(); CHECK_EQ(initial_size + i * filler_size, static_cast(CcTest::heap()->SizeOfObjects())); } } // The heap size should go back to initial size after a full GC, even // though sweeping didn't finish yet. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Normally sweeping would not be complete here, but no guarantees. CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); // Waiting for sweeper threads should not change heap size. if (collector->sweeping_in_progress()) { collector->EnsureSweepingCompleted(); } CHECK_EQ(initial_size, static_cast(CcTest::heap()->SizeOfObjects())); } TEST(TestSizeOfObjectsVsHeapIteratorPrecision) { CcTest::InitializeVM(); HeapIterator iterator(CcTest::heap()); intptr_t size_of_objects_1 = CcTest::heap()->SizeOfObjects(); intptr_t size_of_objects_2 = 0; for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (!obj->IsFreeSpace()) { size_of_objects_2 += obj->Size(); } } // Delta must be within 5% of the larger result. // TODO(gc): Tighten this up by distinguishing between byte // arrays that are real and those that merely mark free space // on the heap. if (size_of_objects_1 > size_of_objects_2) { intptr_t delta = size_of_objects_1 - size_of_objects_2; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_1 / 20, delta); } else { intptr_t delta = size_of_objects_2 - size_of_objects_1; PrintF("Heap::SizeOfObjects: %" V8_PTR_PREFIX "d, " "Iterator: %" V8_PTR_PREFIX "d, " "delta: %" V8_PTR_PREFIX "d\n", size_of_objects_1, size_of_objects_2, delta); CHECK_GT(size_of_objects_2 / 20, delta); } } static void FillUpNewSpace(NewSpace* new_space) { // Fill up new space to the point that it is completely full. Make sure // that the scavenger does not undo the filling. Heap* heap = new_space->heap(); Isolate* isolate = heap->isolate(); Factory* factory = isolate->factory(); HandleScope scope(isolate); AlwaysAllocateScope always_allocate(isolate); intptr_t available = new_space->Capacity() - new_space->Size(); intptr_t number_of_fillers = (available / FixedArray::SizeFor(32)) - 1; for (intptr_t i = 0; i < number_of_fillers; i++) { CHECK(heap->InNewSpace(*factory->NewFixedArray(32, NOT_TENURED))); } } TEST(GrowAndShrinkNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); NewSpace* new_space = heap->new_space(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } // Explicitly growing should double the space capacity. intptr_t old_capacity, new_capacity; old_capacity = new_space->TotalCapacity(); new_space->Grow(); new_capacity = new_space->TotalCapacity(); CHECK(2 * old_capacity == new_capacity); old_capacity = new_space->TotalCapacity(); FillUpNewSpace(new_space); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); // Explicitly shrinking should not affect space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); // Let the scavenger empty the new space. heap->CollectGarbage(NEW_SPACE); CHECK_LE(new_space->Size(), old_capacity); // Explicitly shrinking should halve the space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == 2 * new_capacity); // Consecutive shrinking should not affect space capacity. old_capacity = new_space->TotalCapacity(); new_space->Shrink(); new_space->Shrink(); new_space->Shrink(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); } TEST(CollectingAllAvailableGarbageShrinksNewSpace) { CcTest::InitializeVM(); Heap* heap = CcTest::heap(); if (heap->ReservedSemiSpaceSize() == heap->InitialSemiSpaceSize() || heap->MaxSemiSpaceSize() == heap->InitialSemiSpaceSize()) { // The max size cannot exceed the reserved size, since semispaces must be // always within the reserved space. We can't test new space growing and // shrinking if the reserved size is the same as the minimum (initial) size. return; } v8::HandleScope scope(CcTest::isolate()); NewSpace* new_space = heap->new_space(); intptr_t old_capacity, new_capacity; old_capacity = new_space->TotalCapacity(); new_space->Grow(); new_capacity = new_space->TotalCapacity(); CHECK(2 * old_capacity == new_capacity); FillUpNewSpace(new_space); heap->CollectAllAvailableGarbage(); new_capacity = new_space->TotalCapacity(); CHECK(old_capacity == new_capacity); } static int NumberOfGlobalObjects() { int count = 0; HeapIterator iterator(CcTest::heap()); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsGlobalObject()) count++; } return count; } // Test that we don't embed maps from foreign contexts into // optimized code. TEST(LeakNativeContextViaMap) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = {x: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o.x; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); v8::Local::New(isolate, ctx1)->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } // Test that we don't embed functions from foreign contexts into // optimized code. TEST(LeakNativeContextViaFunction) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = function() { return 42; }"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f(x) { return x(); }" "for (var i = 0; i < 10; ++i) f(o);" "%OptimizeFunctionOnNextCall(f);" "f(o);"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapKeyed) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = [42, 43]"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() { return o[0]; }" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(LeakNativeContextViaMapProto) { i::FLAG_allow_natives_syntax = true; v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope outer_scope(isolate); v8::Persistent ctx1p; v8::Persistent ctx2p; { v8::HandleScope scope(isolate); ctx1p.Reset(isolate, v8::Context::New(isolate)); ctx2p.Reset(isolate, v8::Context::New(isolate)); v8::Local::New(isolate, ctx1p)->Enter(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(4, NumberOfGlobalObjects()); { v8::HandleScope inner_scope(isolate); CompileRun("var v = { y: 42}"); v8::Local ctx1 = v8::Local::New(isolate, ctx1p); v8::Local ctx2 = v8::Local::New(isolate, ctx2p); v8::Local v = ctx1->Global()->Get(v8_str("v")); ctx2->Enter(); ctx2->Global()->Set(v8_str("o"), v); v8::Local res = CompileRun( "function f() {" " var p = {x: 42};" " p.__proto__ = o;" " return p.x;" "}" "for (var i = 0; i < 10; ++i) f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(42, res->Int32Value()); ctx2->Global()->Set(v8_str("o"), v8::Int32::New(isolate, 0)); ctx2->Exit(); ctx1->Exit(); ctx1p.Reset(); isolate->ContextDisposedNotification(); } CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(2, NumberOfGlobalObjects()); ctx2p.Reset(); CcTest::heap()->CollectAllAvailableGarbage(); CHECK_EQ(0, NumberOfGlobalObjects()); } TEST(InstanceOfStubWriteBarrier) { i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; if (i::FLAG_force_marking_deque_overflows) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function foo () { }" "function mkbar () { return new (new Function(\"\")) (); }" "function f (x) { return (x instanceof foo); }" "function g () { f(mkbar()); }" "f(new foo()); f(new foo());" "%OptimizeFunctionOnNextCall(f);" "f(new foo()); g();"); } IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); while (!Marking::IsBlack(Marking::MarkBitFrom(f->code())) && !marking->IsStopped()) { // Discard any pending GC requests otherwise we will get GC when we enter // code below. marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } CHECK(marking->IsMarking()); { v8::HandleScope scope(CcTest::isolate()); v8::Handle global = CcTest::global(); v8::Handle g = v8::Handle::Cast(global->Get(v8_str("g"))); g->Call(global, 0, NULL); } CcTest::heap()->incremental_marking()->set_should_hurry(true); CcTest::heap()->CollectGarbage(OLD_POINTER_SPACE); } TEST(PrototypeTransitionClearing) { if (FLAG_never_compact) return; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); CompileRun("var base = {};"); Handle baseObject = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("base")))); int initialTransitions = baseObject->map()->NumberOfProtoTransitions(); CompileRun( "var live = [];" "for (var i = 0; i < 10; i++) {" " var object = {};" " var prototype = {};" " object.__proto__ = prototype;" " if (i >= 3) live.push(object, prototype);" "}"); // Verify that only dead prototype transitions are cleared. CHECK_EQ(initialTransitions + 10, baseObject->map()->NumberOfProtoTransitions()); CcTest::heap()->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); const int transitions = 10 - 3; CHECK_EQ(initialTransitions + transitions, baseObject->map()->NumberOfProtoTransitions()); // Verify that prototype transitions array was compacted. FixedArray* trans = baseObject->map()->GetPrototypeTransitions(); for (int i = initialTransitions; i < initialTransitions + transitions; i++) { int j = Map::kProtoTransitionHeaderSize + i * Map::kProtoTransitionElementsPerEntry; CHECK(trans->get(j + Map::kProtoTransitionMapOffset)->IsMap()); Object* proto = trans->get(j + Map::kProtoTransitionPrototypeOffset); CHECK(proto->IsJSObject()); } // Make sure next prototype is placed on an old-space evacuation candidate. Handle prototype; PagedSpace* space = CcTest::heap()->old_pointer_space(); { AlwaysAllocateScope always_allocate(isolate); SimulateFullSpace(space); prototype = factory->NewJSArray(32 * KB, FAST_HOLEY_ELEMENTS, TENURED); } // Add a prototype on an evacuation candidate and verify that transition // clearing correctly records slots in prototype transition array. i::FLAG_always_compact = true; Handle map(baseObject->map()); CHECK(!space->LastPage()->Contains( map->GetPrototypeTransitions()->address())); CHECK(space->LastPage()->Contains(prototype->address())); } TEST(ResetSharedFunctionInfoCountersDuringIncrementalMarking) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); // The following two calls will increment CcTest::heap()->global_ic_age(). const int kLongIdlePauseInMs = 1000; CcTest::isolate()->ContextDisposedNotification(); CcTest::isolate()->IdleNotification(kLongIdlePauseInMs); while (!marking->IsStopped() && !marking->IsComplete()) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } if (!marking->IsStopped() || marking->should_hurry()) { // We don't normally finish a GC via Step(), we normally finish by // setting the stack guard and then do the final steps in the stack // guard interrupt. But here we didn't ask for that, and there is no // JS code running to trigger the interrupt, so we explicitly finalize // here. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags, "Test finalizing incremental mark-sweep"); } CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } TEST(ResetSharedFunctionInfoCountersDuringMarkSweep) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; #ifdef VERIFY_HEAP i::FLAG_verify_heap = true; #endif CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft()) return; v8::HandleScope outer_scope(CcTest::isolate()); { v8::HandleScope scope(CcTest::isolate()); CompileRun( "function f () {" " var s = 0;" " for (var i = 0; i < 100; i++) s += i;" " return s;" "}" "f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); } Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->IsOptimized()); CcTest::heap()->incremental_marking()->Abort(); // The following two calls will increment CcTest::heap()->global_ic_age(). // Since incremental marking is off, IdleNotification will do full GC. const int kLongIdlePauseInMs = 1000; CcTest::isolate()->ContextDisposedNotification(); CcTest::isolate()->IdleNotification(kLongIdlePauseInMs); CHECK_EQ(CcTest::heap()->global_ic_age(), f->shared()->ic_age()); CHECK_EQ(0, f->shared()->opt_count()); CHECK_EQ(0, f->shared()->code()->profiler_ticks()); } TEST(IdleNotificationFinishMarking) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); SimulateFullSpace(CcTest::heap()->old_pointer_space()); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); CHECK_EQ(CcTest::heap()->gc_count(), 0); // TODO(hpayer): We cannot write proper unit test right now for heap. // The ideal test would call kMaxIdleMarkingDelayCounter to test the // marking delay counter. // Perform a huge incremental marking step but don't complete marking. intptr_t bytes_processed = 0; do { bytes_processed = marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::DO_NOT_FORCE_COMPLETION); CHECK(!marking->IsIdleMarkingDelayCounterLimitReached()); } while (bytes_processed); // The next invocations of incremental marking are not going to complete // marking // since the completion threshold is not reached for (size_t i = 0; i < IncrementalMarking::kMaxIdleMarkingDelayCounter - 2; i++) { marking->Step(1 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_MARKING, IncrementalMarking::DO_NOT_FORCE_COMPLETION); CHECK(!marking->IsIdleMarkingDelayCounterLimitReached()); } // The next idle notification has to finish incremental marking. const int kLongIdleTime = 1000000; CcTest::isolate()->IdleNotification(kLongIdleTime); CHECK_EQ(CcTest::heap()->gc_count(), 1); } // Test that HAllocateObject will always return an object in new-space. TEST(OptimizedAllocationAlwaysInNewSpace) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(CcTest::i_isolate()); v8::Local res = CompileRun( "function c(x) {" " this.x = x;" " for (var i = 0; i < 32; i++) {" " this['x' + i] = x;" " }" "}" "function f(x) { return new c(x); };" "f(1); f(2); f(3);" "%OptimizeFunctionOnNextCall(f);" "f(4);"); CHECK_EQ(4, res->ToObject()->GetRealNamedProperty(v8_str("x"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InNewSpace(*o)); } TEST(OptimizedPretenuringAllocationFolding) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array();" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}], [1.1]];" " }" " return elements[number_elements-1]" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(v8_str("0")); Handle int_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array)); v8::Local double_array = v8::Object::Cast(*res)->Get(v8_str("1")); Handle double_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringObjectArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [{}, {}, {}];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(o->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } TEST(OptimizedPretenuringMixedInObjectProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: {c: 2.2, d: {}}, b: 1.1};" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); FieldIndex idx1 = FieldIndex::ForPropertyIndex(o->map(), 0); FieldIndex idx2 = FieldIndex::ForPropertyIndex(o->map(), 1); CHECK(CcTest::heap()->InOldPointerSpace(o->RawFastPropertyAt(idx1))); if (!o->IsUnboxedDoubleField(idx2)) { CHECK(CcTest::heap()->InOldDataSpace(o->RawFastPropertyAt(idx2))); } else { CHECK_EQ(1.1, o->RawFastDoublePropertyAt(idx2)); } JSObject* inner_object = reinterpret_cast(o->RawFastPropertyAt(idx1)); CHECK(CcTest::heap()->InOldPointerSpace(inner_object)); if (!inner_object->IsUnboxedDoubleField(idx1)) { CHECK( CcTest::heap()->InOldDataSpace(inner_object->RawFastPropertyAt(idx1))); } else { CHECK_EQ(2.2, inner_object->RawFastDoublePropertyAt(idx1)); } CHECK(CcTest::heap()->InOldPointerSpace( inner_object->RawFastPropertyAt(idx2))); } TEST(OptimizedPretenuringDoubleArrayProperties) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = {a: 1.1, b: 2.2};" " }" " return elements[i - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldDataSpace(o->properties())); } TEST(OptimizedPretenuringdoubleArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [1.1, 2.2, 3.3];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldDataSpace(o->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } TEST(OptimizedPretenuringNestedMixedArrayLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = 100;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}, {}, {}], [1.1, 2.2, 3.3]];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();"); v8::Local res = CompileRun(source.start()); v8::Local int_array = v8::Object::Cast(*res)->Get(v8_str("0")); Handle int_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array)); v8::Local double_array = v8::Object::Cast(*res)->Get(v8_str("1")); Handle double_array_handle = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle->elements())); } TEST(OptimizedPretenuringNestedObjectLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[{}, {}, {}],[{}, {}, {}]];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local int_array_1 = v8::Object::Cast(*res)->Get(v8_str("0")); Handle int_array_handle_1 = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array_1)); v8::Local int_array_2 = v8::Object::Cast(*res)->Get(v8_str("1")); Handle int_array_handle_2 = v8::Utils::OpenHandle(*v8::Handle::Cast(int_array_2)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle_1)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle_1->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*int_array_handle_2)); CHECK(CcTest::heap()->InOldPointerSpace(int_array_handle_2->elements())); } TEST(OptimizedPretenuringNestedDoubleLiterals) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = [[1.1, 1.2, 1.3],[2.1, 2.2, 2.3]];" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated); v8::Local res = CompileRun(source.start()); v8::Local double_array_1 = v8::Object::Cast(*res)->Get(v8_str("0")); Handle double_array_handle_1 = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array_1)); v8::Local double_array_2 = v8::Object::Cast(*res)->Get(v8_str("1")); Handle double_array_handle_2 = v8::Utils::OpenHandle(*v8::Handle::Cast(double_array_2)); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle_1)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle_1->elements())); CHECK(CcTest::heap()->InOldPointerSpace(*double_array_handle_2)); CHECK(CcTest::heap()->InOldDataSpace(double_array_handle_2->elements())); } // Make sure pretenuring feedback is gathered for constructed objects as well // as for literals. TEST(OptimizedPretenuringConstructorCalls) { if (!i::FLAG_pretenuring_call_new) { // FLAG_pretenuring_call_new needs to be synced with the snapshot. return; } i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); // Call new is doing slack tracking for the first // JSFunction::kGenerousAllocationCount allocations, and we can't find // mementos during that time. i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function foo() {" " this.a = 3;" " this.b = {};" "}" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = new foo();" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated + JSFunction::kGenerousAllocationCount); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } TEST(OptimizedPretenuringCallNew) { if (!i::FLAG_pretenuring_call_new) { // FLAG_pretenuring_call_new needs to be synced with the snapshot. return; } i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); // Grow new space unitl maximum capacity reached. while (!CcTest::heap()->new_space()->IsAtMaximumCapacity()) { CcTest::heap()->new_space()->Grow(); } i::ScopedVector source(1024); // Call new is doing slack tracking for the first // JSFunction::kGenerousAllocationCount allocations, and we can't find // mementos during that time. i::SNPrintF( source, "var number_elements = %d;" "var elements = new Array(number_elements);" "function g() { this.a = 0; }" "function f() {" " for (var i = 0; i < number_elements; i++) {" " elements[i] = new g();" " }" " return elements[number_elements - 1];" "};" "f(); gc();" "f(); f();" "%%OptimizeFunctionOnNextCall(f);" "f();", AllocationSite::kPretenureMinimumCreated + JSFunction::kGenerousAllocationCount); v8::Local res = CompileRun(source.start()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InOldPointerSpace(*o)); } // Test regular array literals allocation. TEST(OptimizedAllocationArrayLiterals) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); if (!CcTest::i_isolate()->use_crankshaft() || i::FLAG_always_opt) return; if (i::FLAG_gc_global || i::FLAG_stress_compaction) return; v8::HandleScope scope(CcTest::isolate()); v8::Local res = CompileRun( "function f() {" " var numbers = new Array(1, 2, 3);" " numbers[0] = 3.14;" " return numbers;" "};" "f(); f(); f();" "%OptimizeFunctionOnNextCall(f);" "f();"); CHECK_EQ(static_cast(3.14), v8::Object::Cast(*res)->Get(v8_str("0"))->Int32Value()); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(res)); CHECK(CcTest::heap()->InNewSpace(o->elements())); } static int CountMapTransitions(Map* map) { return map->transitions()->number_of_transitions(); } // Test that map transitions are cleared and maps are collected with // incremental marking as well. TEST(Regress1465) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; i::FLAG_trace_incremental_marking = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 256; CompileRun("function F() {}"); { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); for (int i = 0; i < transitions_count; i++) { EmbeddedVector buffer; SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i); CompileRun(buffer.start()); } CompileRun("var root = new F;"); } Handle root = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("root")))); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(transitions_count, transitions_before); SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions(root->map()); CompileRun("%DebugPrint(root);"); CHECK_EQ(1, transitions_after); } #ifdef DEBUG static void AddTransitions(int transitions_count) { AlwaysAllocateScope always_allocate(CcTest::i_isolate()); for (int i = 0; i < transitions_count; i++) { EmbeddedVector buffer; SNPrintF(buffer, "var o = new F; o.prop%d = %d;", i, i); CompileRun(buffer.start()); } } static Handle GetByName(const char* name) { return v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str(name)))); } static void AddPropertyTo( int gc_count, Handle object, const char* property_name) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Handle prop_name = factory->InternalizeUtf8String(property_name); Handle twenty_three(Smi::FromInt(23), isolate); i::FLAG_gc_interval = gc_count; i::FLAG_gc_global = true; CcTest::heap()->set_allocation_timeout(gc_count); JSReceiver::SetProperty(object, prop_name, twenty_three, SLOPPY).Check(); } TEST(TransitionArrayShrinksDuringAllocToZero) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() { }"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); // Get rid of o CompileRun("o = new F;" "root = new F"); root = GetByName("root"); AddPropertyTo(2, root, "funny"); CcTest::heap()->CollectGarbage(NEW_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(1, transitions_after); } TEST(TransitionArrayShrinksDuringAllocToOne) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); root = GetByName("root"); AddPropertyTo(2, root, "funny"); CcTest::heap()->CollectGarbage(NEW_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(2, transitions_after); } TEST(TransitionArrayShrinksDuringAllocToOnePropertyFound) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 10; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); root = GetByName("root"); AddPropertyTo(0, root, "prop9"); CcTest::i_isolate()->heap()->CollectGarbage(OLD_POINTER_SPACE); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(1, transitions_after); } TEST(TransitionArraySimpleToFull) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); static const int transitions_count = 1; CompileRun("function F() {}"); AddTransitions(transitions_count); CompileRun("var root = new F;"); Handle root = GetByName("root"); // Count number of live transitions before marking. int transitions_before = CountMapTransitions(root->map()); CHECK_EQ(transitions_count, transitions_before); CompileRun("o = new F;" "root = new F"); root = GetByName("root"); DCHECK(root->map()->transitions()->IsSimpleTransition()); AddPropertyTo(2, root, "happy"); // Count number of live transitions after marking. Note that one transition // is left, because 'o' still holds an instance of one transition target. int transitions_after = CountMapTransitions( Map::cast(root->map()->GetBackPointer())); CHECK_EQ(1, transitions_after); } #endif // DEBUG TEST(Regress2143a) { i::FLAG_collect_maps = true; i::FLAG_incremental_marking = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); // Prepare a map transition from the root object together with a yet // untransitioned root object. CompileRun("var root = new Object;" "root.foo = 0;" "root = new Object;"); SimulateIncrementalMarking(CcTest::heap()); // Compile a StoreIC that performs the prepared map transition. This // will restart incremental marking and should make sure the root is // marked grey again. CompileRun("function f(o) {" " o.foo = 0;" "}" "f(new Object);" "f(root);"); // This bug only triggers with aggressive IC clearing. CcTest::heap()->AgeInlineCaches(); // Explicitly request GC to perform final marking step and sweeping. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); Handle root = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("root")))); // The root object should be in a sane state. CHECK(root->IsJSObject()); CHECK(root->map()->IsMap()); } TEST(Regress2143b) { i::FLAG_collect_maps = true; i::FLAG_incremental_marking = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); // Prepare a map transition from the root object together with a yet // untransitioned root object. CompileRun("var root = new Object;" "root.foo = 0;" "root = new Object;"); SimulateIncrementalMarking(CcTest::heap()); // Compile an optimized LStoreNamedField that performs the prepared // map transition. This will restart incremental marking and should // make sure the root is marked grey again. CompileRun("function f(o) {" " o.foo = 0;" "}" "f(new Object);" "f(new Object);" "%OptimizeFunctionOnNextCall(f);" "f(root);" "%DeoptimizeFunction(f);"); // This bug only triggers with aggressive IC clearing. CcTest::heap()->AgeInlineCaches(); // Explicitly request GC to perform final marking step and sweeping. CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); Handle root = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("root")))); // The root object should be in a sane state. CHECK(root->IsJSObject()); CHECK(root->map()->IsMap()); } TEST(ReleaseOverReservedPages) { if (FLAG_never_compact) return; i::FLAG_trace_gc = true; // The optimizer can allocate stuff, messing up the test. i::FLAG_crankshaft = false; i::FLAG_always_opt = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); v8::HandleScope scope(CcTest::isolate()); static const int number_of_test_pages = 20; // Prepare many pages with low live-bytes count. PagedSpace* old_pointer_space = heap->old_pointer_space(); CHECK_EQ(1, old_pointer_space->CountTotalPages()); for (int i = 0; i < number_of_test_pages; i++) { AlwaysAllocateScope always_allocate(isolate); SimulateFullSpace(old_pointer_space); factory->NewFixedArray(1, TENURED); } CHECK_EQ(number_of_test_pages + 1, old_pointer_space->CountTotalPages()); // Triggering one GC will cause a lot of garbage to be discovered but // even spread across all allocated pages. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask, "triggered for preparation"); CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages()); // Triggering subsequent GCs should cause at least half of the pages // to be released to the OS after at most two cycles. heap->CollectAllGarbage(Heap::kNoGCFlags, "triggered by test 1"); CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages()); heap->CollectAllGarbage(Heap::kNoGCFlags, "triggered by test 2"); CHECK_GE(number_of_test_pages + 1, old_pointer_space->CountTotalPages() * 2); // Triggering a last-resort GC should cause all pages to be released to the // OS so that other processes can seize the memory. If we get a failure here // where there are 2 pages left instead of 1, then we should increase the // size of the first page a little in SizeOfFirstPage in spaces.cc. The // first page should be small in order to reduce memory used when the VM // boots, but if the 20 small arrays don't fit on the first page then that's // an indication that it is too small. heap->CollectAllAvailableGarbage("triggered really hard"); CHECK_EQ(1, old_pointer_space->CountTotalPages()); } TEST(Regress2237) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); Handle slice(CcTest::heap()->empty_string()); { // Generate a parent that lives in new-space. v8::HandleScope inner_scope(CcTest::isolate()); const char* c = "This text is long enough to trigger sliced strings."; Handle s = factory->NewStringFromAsciiChecked(c); CHECK(s->IsSeqOneByteString()); CHECK(CcTest::heap()->InNewSpace(*s)); // Generate a sliced string that is based on the above parent and // lives in old-space. SimulateFullSpace(CcTest::heap()->new_space()); AlwaysAllocateScope always_allocate(isolate); Handle t = factory->NewProperSubString(s, 5, 35); CHECK(t->IsSlicedString()); CHECK(!CcTest::heap()->InNewSpace(*t)); *slice.location() = *t.location(); } CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString()); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK(SlicedString::cast(*slice)->parent()->IsSeqOneByteString()); } #ifdef OBJECT_PRINT TEST(PrintSharedFunctionInfo) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); const char* source = "f = function() { return 987654321; }\n" "g = function() { return 123456789; }\n"; CompileRun(source); Handle g = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("g")))); OFStream os(stdout); g->shared()->Print(os); os << std::endl; } #endif // OBJECT_PRINT TEST(Regress2211) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Handle value = v8_str("val string"); Smi* hash = Smi::FromInt(321); Factory* factory = CcTest::i_isolate()->factory(); for (int i = 0; i < 2; i++) { // Store identity hash first and common hidden property second. v8::Handle obj = v8::Object::New(CcTest::isolate()); Handle internal_obj = v8::Utils::OpenHandle(*obj); CHECK(internal_obj->HasFastProperties()); // In the first iteration, set hidden value first and identity hash second. // In the second iteration, reverse the order. if (i == 0) obj->SetHiddenValue(v8_str("key string"), value); JSObject::SetIdentityHash(internal_obj, handle(hash, CcTest::i_isolate())); if (i == 1) obj->SetHiddenValue(v8_str("key string"), value); // Check values. CHECK_EQ(hash, internal_obj->GetHiddenProperty(factory->identity_hash_string())); CHECK(value->Equals(obj->GetHiddenValue(v8_str("key string")))); // Check size. FieldIndex index = FieldIndex::ForDescriptor(internal_obj->map(), 0); ObjectHashTable* hashtable = ObjectHashTable::cast( internal_obj->RawFastPropertyAt(index)); // HashTable header (5) and 4 initial entries (8). CHECK_LE(hashtable->SizeFor(hashtable->length()), 13 * kPointerSize); } } TEST(IncrementalMarkingClearsTypeFeedbackInfo) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local fun1, fun2; { LocalContext env; CompileRun("function fun() {};"); fun1 = env->Global()->Get(v8_str("fun")); } { LocalContext env; CompileRun("function fun() {};"); fun2 = env->Global()->Get(v8_str("fun")); } // Prepare function f that contains type feedback for closures // originating from two different native contexts. CcTest::global()->Set(v8_str("fun1"), fun1); CcTest::global()->Set(v8_str("fun2"), fun2); CompileRun("function f(a, b) { a(); b(); } f(fun1, fun2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); Handle feedback_vector(f->shared()->feedback_vector()); int expected_slots = 2; CHECK_EQ(expected_slots, feedback_vector->ICSlots()); for (int i = 0; i < expected_slots; i++) { CHECK(feedback_vector->Get(FeedbackVectorICSlot(i))->IsJSFunction()); } SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(expected_slots, feedback_vector->ICSlots()); for (int i = 0; i < expected_slots; i++) { CHECK_EQ(feedback_vector->Get(FeedbackVectorICSlot(i)), *TypeFeedbackVector::UninitializedSentinel(CcTest::i_isolate())); } } static Code* FindFirstIC(Code* code, Code::Kind kind) { int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::CONSTRUCT_CALL) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID); for (RelocIterator it(code, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Code* target = Code::GetCodeFromTargetAddress(info->target_address()); if (target->is_inline_cache_stub() && target->kind() == kind) { return target; } } return NULL; } TEST(IncrementalMarkingPreservesMonomorphicIC) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); // Prepare function f that contains a monomorphic IC for object // originating from the same native context. CompileRun("function fun() { this.x = 1; }; var obj = new fun();" "function f(o) { return o.x; } f(obj); f(obj);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_before->ic_state() == MONOMORPHIC); SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_after->ic_state() == MONOMORPHIC); } TEST(IncrementalMarkingClearsMonomorphicIC) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local obj1; { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(v8_str("obj")); } // Prepare function f that contains a monomorphic IC for object // originating from a different native context. CcTest::global()->Set(v8_str("obj1"), obj1); CompileRun("function f(o) { return o.x; } f(obj1); f(obj1);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_before->ic_state() == MONOMORPHIC); // Fire context dispose notification. CcTest::isolate()->ContextDisposedNotification(); SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(IC::IsCleared(ic_after)); } TEST(IncrementalMarkingClearsPolymorphicIC) { if (i::FLAG_always_opt) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local obj1, obj2; { LocalContext env; CompileRun("function fun() { this.x = 1; }; var obj = new fun();"); obj1 = env->Global()->Get(v8_str("obj")); } { LocalContext env; CompileRun("function fun() { this.x = 2; }; var obj = new fun();"); obj2 = env->Global()->Get(v8_str("obj")); } // Prepare function f that contains a polymorphic IC for objects // originating from two different native contexts. CcTest::global()->Set(v8_str("obj1"), obj1); CcTest::global()->Set(v8_str("obj2"), obj2); CompileRun("function f(o) { return o.x; } f(obj1); f(obj1); f(obj2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); Code* ic_before = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(ic_before->ic_state() == POLYMORPHIC); // Fire context dispose notification. CcTest::isolate()->ContextDisposedNotification(); SimulateIncrementalMarking(CcTest::heap()); CcTest::heap()->CollectAllGarbage(Heap::kNoGCFlags); Code* ic_after = FindFirstIC(f->shared()->code(), Code::LOAD_IC); CHECK(IC::IsCleared(ic_after)); } class SourceResource : public v8::String::ExternalOneByteStringResource { public: explicit SourceResource(const char* data) : data_(data), length_(strlen(data)) { } virtual void Dispose() { i::DeleteArray(data_); data_ = NULL; } const char* data() const { return data_; } size_t length() const { return length_; } bool IsDisposed() { return data_ == NULL; } private: const char* data_; size_t length_; }; void ReleaseStackTraceDataTest(v8::Isolate* isolate, const char* source, const char* accessor) { // Test that the data retained by the Error.stack accessor is released // after the first time the accessor is fired. We use external string // to check whether the data is being released since the external string // resource's callback is fired when the external string is GC'ed. i::Isolate* i_isolate = reinterpret_cast(isolate); v8::HandleScope scope(isolate); SourceResource* resource = new SourceResource(i::StrDup(source)); { v8::HandleScope scope(isolate); v8::Handle source_string = v8::String::NewExternal(isolate, resource); i_isolate->heap()->CollectAllAvailableGarbage(); v8::Script::Compile(source_string)->Run(); CHECK(!resource->IsDisposed()); } // i_isolate->heap()->CollectAllAvailableGarbage(); CHECK(!resource->IsDisposed()); CompileRun(accessor); i_isolate->heap()->CollectAllAvailableGarbage(); // External source has been released. CHECK(resource->IsDisposed()); delete resource; } UNINITIALIZED_TEST(ReleaseStackTraceData) { if (i::FLAG_always_opt) { // TODO(ulan): Remove this once the memory leak via code_next_link is fixed. // See: https://codereview.chromium.org/181833004/ return; } FLAG_use_ic = false; // ICs retain objects. FLAG_concurrent_recompilation = false; v8::Isolate* isolate = v8::Isolate::New(); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); static const char* source1 = "var error = null; " /* Normal Error */ "try { " " throw new Error(); " "} catch (e) { " " error = e; " "} "; static const char* source2 = "var error = null; " /* Stack overflow */ "try { " " (function f() { f(); })(); " "} catch (e) { " " error = e; " "} "; static const char* source3 = "var error = null; " /* Normal Error */ "try { " /* as prototype */ " throw new Error(); " "} catch (e) { " " error = {}; " " error.__proto__ = e; " "} "; static const char* source4 = "var error = null; " /* Stack overflow */ "try { " /* as prototype */ " (function f() { f(); })(); " "} catch (e) { " " error = {}; " " error.__proto__ = e; " "} "; static const char* getter = "error.stack"; static const char* setter = "error.stack = 0"; ReleaseStackTraceDataTest(isolate, source1, setter); ReleaseStackTraceDataTest(isolate, source2, setter); // We do not test source3 and source4 with setter, since the setter is // supposed to (untypically) write to the receiver, not the holder. This is // to emulate the behavior of a data property. ReleaseStackTraceDataTest(isolate, source1, getter); ReleaseStackTraceDataTest(isolate, source2, getter); ReleaseStackTraceDataTest(isolate, source3, getter); ReleaseStackTraceDataTest(isolate, source4, getter); } isolate->Dispose(); } TEST(Regress159140) { i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Prepare several closures that are all eligible for code flushing // because all reachable ones are not optimized. Make sure that the // optimized code object is directly reachable through a handle so // that it is marked black during incremental marking. Handle code; { HandleScope inner_scope(isolate); CompileRun("function h(x) {}" "function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "var g = mkClosure();" "f(1); f(2);" "g(1); g(2);" "h(1); h(2);" "%OptimizeFunctionOnNextCall(f); f(3);" "%OptimizeFunctionOnNextCall(h); h(3);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->is_compiled()); CompileRun("f = null;"); Handle g = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("g")))); CHECK(g->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { g->code()->MakeOlder(static_cast(i % 2)); } code = inner_scope.CloseAndEscape(Handle(f->code())); } // Simulate incremental marking so that the functions are enqueued as // code flushing candidates. Then optimize one function. Finally // finish the GC to complete code flushing. SimulateIncrementalMarking(heap); CompileRun("%OptimizeFunctionOnNextCall(g); g(3);"); heap->CollectAllGarbage(Heap::kNoGCFlags); // Unoptimized code is missing and the deoptimizer will go ballistic. CompileRun("g('bozo');"); } TEST(Regress165495) { i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Prepare an optimized closure that the optimized code map will get // populated. Then age the unoptimized code to trigger code flushing // but make sure the optimized code is unreachable. { HandleScope inner_scope(isolate); CompileRun("function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "f(1); f(2);" "%OptimizeFunctionOnNextCall(f); f(3);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } CompileRun("f = null;"); } // Simulate incremental marking so that unoptimized code is flushed // even though it still is cached in the optimized code map. SimulateIncrementalMarking(heap); heap->CollectAllGarbage(Heap::kNoGCFlags); // Make a new closure that will get code installed from the code map. // Unoptimized code is missing and the deoptimizer will go ballistic. CompileRun("var g = mkClosure(); g('bozo');"); } TEST(Regress169209) { i::FLAG_stress_compaction = false; i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Prepare a shared function info eligible for code flushing for which // the unoptimized code will be replaced during optimization. Handle shared1; { HandleScope inner_scope(isolate); CompileRun("function f() { return 'foobar'; }" "function g(x) { if (x) f(); }" "f();" "g(false);" "g(false);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } shared1 = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); } // Prepare a shared function info eligible for code flushing that will // represent the dangling tail of the candidate list. Handle shared2; { HandleScope inner_scope(isolate); CompileRun("function flushMe() { return 0; }" "flushMe(1);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("flushMe")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } shared2 = inner_scope.CloseAndEscape(handle(f->shared(), isolate)); } // Simulate incremental marking and collect code flushing candidates. SimulateIncrementalMarking(heap); CHECK(shared1->code()->gc_metadata() != NULL); // Optimize function and make sure the unoptimized code is replaced. #ifdef DEBUG FLAG_stop_at = "f"; #endif CompileRun("%OptimizeFunctionOnNextCall(g);" "g(false);"); // Finish garbage collection cycle. heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK(shared1->code()->gc_metadata() == NULL); } // Helper function that simulates a fill new-space in the heap. static inline void AllocateAllButNBytes(v8::internal::NewSpace* space, int extra_bytes) { int space_remaining = static_cast( *space->allocation_limit_address() - *space->allocation_top_address()); CHECK(space_remaining >= extra_bytes); int new_linear_size = space_remaining - extra_bytes; v8::internal::AllocationResult allocation = space->AllocateRaw(new_linear_size); v8::internal::FreeListNode* node = v8::internal::FreeListNode::cast(allocation.ToObjectChecked()); node->set_size(space->heap(), new_linear_size); } TEST(Regress169928) { i::FLAG_allow_natives_syntax = true; i::FLAG_crankshaft = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); // Some flags turn Scavenge collections into Mark-sweep collections // and hence are incompatible with this test case. if (FLAG_gc_global || FLAG_stress_compaction) return; // Prepare the environment CompileRun("function fastliteralcase(literal, value) {" " literal[0] = value;" " return literal;" "}" "function get_standard_literal() {" " var literal = [1, 2, 3];" " return literal;" "}" "obj = fastliteralcase(get_standard_literal(), 1);" "obj = fastliteralcase(get_standard_literal(), 1.5);" "obj = fastliteralcase(get_standard_literal(), 2);"); // prepare the heap v8::Local mote_code_string = v8_str("fastliteralcase(mote, 2.5);"); v8::Local array_name = v8_str("mote"); CcTest::global()->Set(array_name, v8::Int32::New(CcTest::isolate(), 0)); // First make sure we flip spaces CcTest::heap()->CollectGarbage(NEW_SPACE); // Allocate the object. Handle array_data = factory->NewFixedArray(2, NOT_TENURED); array_data->set(0, Smi::FromInt(1)); array_data->set(1, Smi::FromInt(2)); AllocateAllButNBytes(CcTest::heap()->new_space(), JSArray::kSize + AllocationMemento::kSize + kPointerSize); Handle array = factory->NewJSArrayWithElements(array_data, FAST_SMI_ELEMENTS, NOT_TENURED); CHECK_EQ(Smi::FromInt(2), array->length()); CHECK(array->HasFastSmiOrObjectElements()); // We need filler the size of AllocationMemento object, plus an extra // fill pointer value. HeapObject* obj = NULL; AllocationResult allocation = CcTest::heap()->new_space()->AllocateRaw( AllocationMemento::kSize + kPointerSize); CHECK(allocation.To(&obj)); Address addr_obj = obj->address(); CcTest::heap()->CreateFillerObjectAt( addr_obj, AllocationMemento::kSize + kPointerSize); // Give the array a name, making sure not to allocate strings. v8::Handle array_obj = v8::Utils::ToLocal(array); CcTest::global()->Set(array_name, array_obj); // This should crash with a protection violation if we are running a build // with the bug. AlwaysAllocateScope aa_scope(isolate); v8::Script::Compile(mote_code_string)->Run(); } TEST(Regress168801) { if (i::FLAG_never_compact) return; i::FLAG_always_compact = true; i::FLAG_cache_optimized_code = false; i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Ensure the code ends up on an evacuation candidate. SimulateFullSpace(heap->code_space()); // Prepare an unoptimized function that is eligible for code flushing. Handle function; { HandleScope inner_scope(isolate); CompileRun("function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "f(1); f(2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } function = inner_scope.CloseAndEscape(handle(*f, isolate)); } // Simulate incremental marking so that unoptimized function is enqueued as a // candidate for code flushing. The shared function info however will not be // explicitly enqueued. SimulateIncrementalMarking(heap); // Now optimize the function so that it is taken off the candidate list. { HandleScope inner_scope(isolate); CompileRun("%OptimizeFunctionOnNextCall(f); f(3);"); } // This cycle will bust the heap and subsequent cycles will go ballistic. heap->CollectAllGarbage(Heap::kNoGCFlags); heap->CollectAllGarbage(Heap::kNoGCFlags); } TEST(Regress173458) { if (i::FLAG_never_compact) return; i::FLAG_always_compact = true; i::FLAG_cache_optimized_code = false; i::FLAG_allow_natives_syntax = true; i::FLAG_flush_code_incrementally = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); HandleScope scope(isolate); // Perform one initial GC to enable code flushing. heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); // Ensure the code ends up on an evacuation candidate. SimulateFullSpace(heap->code_space()); // Prepare an unoptimized function that is eligible for code flushing. Handle function; { HandleScope inner_scope(isolate); CompileRun("function mkClosure() {" " return function(x) { return x + 1; };" "}" "var f = mkClosure();" "f(1); f(2);"); Handle f = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("f")))); CHECK(f->is_compiled()); const int kAgingThreshold = 6; for (int i = 0; i < kAgingThreshold; i++) { f->shared()->code()->MakeOlder(static_cast(i % 2)); } function = inner_scope.CloseAndEscape(handle(*f, isolate)); } // Simulate incremental marking so that unoptimized function is enqueued as a // candidate for code flushing. The shared function info however will not be // explicitly enqueued. SimulateIncrementalMarking(heap); // Now enable the debugger which in turn will disable code flushing. CHECK(isolate->debug()->Load()); // This cycle will bust the heap and subsequent cycles will go ballistic. heap->CollectAllGarbage(Heap::kNoGCFlags); heap->CollectAllGarbage(Heap::kNoGCFlags); } class DummyVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { } }; TEST(DeferredHandles) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); v8::HandleScope scope(reinterpret_cast(isolate)); HandleScopeData* data = isolate->handle_scope_data(); Handle init(heap->empty_string(), isolate); while (data->next < data->limit) { Handle obj(heap->empty_string(), isolate); } // An entire block of handles has been filled. // Next handle would require a new block. DCHECK(data->next == data->limit); DeferredHandleScope deferred(isolate); DummyVisitor visitor; isolate->handle_scope_implementer()->Iterate(&visitor); delete deferred.Detach(); } TEST(IncrementalMarkingStepMakesBigProgressWithLargeObjects) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CompileRun("function f(n) {" " var a = new Array(n);" " for (var i = 0; i < n; i += 100) a[i] = i;" "};" "f(10 * 1024 * 1024);"); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); if (marking->IsStopped()) marking->Start(); // This big step should be sufficient to mark the whole array. marking->Step(100 * MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); DCHECK(marking->IsComplete()); } TEST(DisableInlineAllocation) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); CompileRun("function test() {" " var x = [];" " for (var i = 0; i < 10; i++) {" " x[i] = [ {}, [1,2,3], [1,x,3] ];" " }" "}" "function run() {" " %OptimizeFunctionOnNextCall(test);" " test();" " %DeoptimizeFunction(test);" "}"); // Warm-up with inline allocation enabled. CompileRun("test(); test(); run();"); // Run test with inline allocation disabled. CcTest::heap()->DisableInlineAllocation(); CompileRun("run()"); // Run test with inline allocation re-enabled. CcTest::heap()->EnableInlineAllocation(); CompileRun("run()"); } static int AllocationSitesCount(Heap* heap) { int count = 0; for (Object* site = heap->allocation_sites_list(); !(site->IsUndefined()); site = AllocationSite::cast(site)->weak_next()) { count++; } return count; } TEST(EnsureAllocationSiteDependentCodesProcessed) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); GlobalHandles* global_handles = isolate->global_handles(); if (!isolate->use_crankshaft()) return; // The allocation site at the head of the list is ours. Handle site; { LocalContext context; v8::HandleScope scope(context->GetIsolate()); int count = AllocationSitesCount(heap); CompileRun("var bar = function() { return (new Array()); };" "var a = bar();" "bar();" "bar();"); // One allocation site should have been created. int new_count = AllocationSitesCount(heap); CHECK_EQ(new_count, (count + 1)); site = Handle::cast( global_handles->Create( AllocationSite::cast(heap->allocation_sites_list()))); CompileRun("%OptimizeFunctionOnNextCall(bar); bar();"); DependentCode::GroupStartIndexes starts(site->dependent_code()); CHECK_GE(starts.number_of_entries(), 1); int index = starts.at(DependentCode::kAllocationSiteTransitionChangedGroup); CHECK(site->dependent_code()->is_code_at(index)); Code* function_bar = site->dependent_code()->code_at(index); Handle bar_handle = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("bar")))); CHECK_EQ(bar_handle->code(), function_bar); } // Now make sure that a gc should get rid of the function, even though we // still have the allocation site alive. for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(Heap::kNoGCFlags); } // The site still exists because of our global handle, but the code is no // longer referred to by dependent_code(). DependentCode::GroupStartIndexes starts(site->dependent_code()); int index = starts.at(DependentCode::kAllocationSiteTransitionChangedGroup); CHECK(!(site->dependent_code()->is_code_at(index))); } TEST(CellsInOptimizedCodeAreWeak) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; i::FLAG_weak_embedded_objects_in_optimized_code = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun("bar = (function() {" " function bar() {" " return foo(1);" " };" " var foo = function(x) { with (x) { return 1 + x; } };" " bar(foo);" " bar(foo);" " bar(foo);" " %OptimizeFunctionOnNextCall(bar);" " bar(foo);" " return bar;})();"); Handle bar = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("bar")))); code = scope.CloseAndEscape(Handle(bar->code())); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } DCHECK(code->marked_for_deoptimization()); } TEST(ObjectsInOptimizedCodeAreWeak) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; i::FLAG_weak_embedded_objects_in_optimized_code = true; i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); Handle code; { LocalContext context; HandleScope scope(heap->isolate()); CompileRun("function bar() {" " return foo(1);" "};" "function foo(x) { with (x) { return 1 + x; } };" "bar();" "bar();" "bar();" "%OptimizeFunctionOnNextCall(bar);" "bar();"); Handle bar = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str("bar")))); code = scope.CloseAndEscape(Handle(bar->code())); } // Now make sure that a gc should get rid of the function for (int i = 0; i < 4; i++) { heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } DCHECK(code->marked_for_deoptimization()); } TEST(NoWeakHashTableLeakWithIncrementalMarking) { if (i::FLAG_always_opt || !i::FLAG_crankshaft) return; if (!i::FLAG_incremental_marking) return; i::FLAG_weak_embedded_objects_in_optimized_code = true; i::FLAG_allow_natives_syntax = true; i::FLAG_compilation_cache = false; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); for (int i = 0; i < 3; i++) { SimulateIncrementalMarking(heap); { LocalContext context; HandleScope scope(heap->isolate()); EmbeddedVector source; SNPrintF(source, "function bar%d() {" " return foo%d(1);" "};" "function foo%d(x) { with (x) { return 1 + x; } };" "bar%d();" "bar%d();" "bar%d();" "%%OptimizeFunctionOnNextCall(bar%d);" "bar%d();", i, i, i, i, i, i, i, i); CompileRun(source.start()); } heap->CollectAllGarbage(i::Heap::kNoGCFlags); } int elements = 0; if (heap->weak_object_to_code_table()->IsHashTable()) { WeakHashTable* t = WeakHashTable::cast(heap->weak_object_to_code_table()); elements = t->NumberOfElements(); } CHECK_EQ(0, elements); } static Handle OptimizeDummyFunction(const char* name) { EmbeddedVector source; SNPrintF(source, "function %s() { return 0; }" "%s(); %s();" "%%OptimizeFunctionOnNextCall(%s);" "%s();", name, name, name, name, name); CompileRun(source.start()); Handle fun = v8::Utils::OpenHandle( *v8::Handle::Cast( CcTest::global()->Get(v8_str(name)))); return fun; } static int GetCodeChainLength(Code* code) { int result = 0; while (code->next_code_link()->IsCode()) { result++; code = Code::cast(code->next_code_link()); } return result; } TEST(NextCodeLinkIsWeak) { i::FLAG_allow_natives_syntax = true; i::FLAG_turbo_deoptimization = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); Handle code; heap->CollectAllAvailableGarbage(); int code_chain_length_before, code_chain_length_after; { HandleScope scope(heap->isolate()); Handle mortal = OptimizeDummyFunction("mortal"); Handle immortal = OptimizeDummyFunction("immortal"); CHECK_EQ(immortal->code()->next_code_link(), mortal->code()); code_chain_length_before = GetCodeChainLength(immortal->code()); // Keep the immortal code and let the mortal code die. code = scope.CloseAndEscape(Handle(immortal->code())); CompileRun("mortal = null; immortal = null;"); } heap->CollectAllAvailableGarbage(); // Now mortal code should be dead. code_chain_length_after = GetCodeChainLength(*code); CHECK_EQ(code_chain_length_before - 1, code_chain_length_after); } static Handle DummyOptimizedCode(Isolate* isolate) { i::byte buffer[i::Assembler::kMinimalBufferSize]; MacroAssembler masm(isolate, buffer, sizeof(buffer)); CodeDesc desc; masm.Push(isolate->factory()->undefined_value()); masm.Drop(1); masm.GetCode(&desc); Handle undefined(isolate->heap()->undefined_value(), isolate); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::OPTIMIZED_FUNCTION), undefined); CHECK(code->IsCode()); return code; } TEST(NextCodeLinkIsWeak2) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); if (!isolate->use_crankshaft()) return; HandleScope outer_scope(heap->isolate()); heap->CollectAllAvailableGarbage(); Handle context(Context::cast(heap->native_contexts_list()), isolate); Handle new_head; Handle old_head(context->get(Context::OPTIMIZED_CODE_LIST), isolate); { HandleScope scope(heap->isolate()); Handle immortal = DummyOptimizedCode(isolate); Handle mortal = DummyOptimizedCode(isolate); mortal->set_next_code_link(*old_head); immortal->set_next_code_link(*mortal); context->set(Context::OPTIMIZED_CODE_LIST, *immortal); new_head = scope.CloseAndEscape(immortal); } heap->CollectAllAvailableGarbage(); // Now mortal code should be dead. CHECK_EQ(*old_head, new_head->next_code_link()); } static bool weak_ic_cleared = false; static void ClearWeakIC(const v8::WeakCallbackData& data) { printf("clear weak is called\n"); weak_ic_cleared = true; v8::Persistent* p = reinterpret_cast*>(data.GetParameter()); CHECK(p->IsNearDeath()); p->Reset(); } // Checks that the value returned by execution of the source is weak. void CheckWeakness(const char* source) { i::FLAG_stress_compaction = false; CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); v8::Persistent garbage; { v8::HandleScope scope(isolate); garbage.Reset(isolate, CompileRun(source)->ToObject()); } weak_ic_cleared = false; garbage.SetWeak(static_cast(&garbage), &ClearWeakIC); Heap* heap = CcTest::i_isolate()->heap(); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); CHECK(weak_ic_cleared); } // Each of the following "weak IC" tests creates an IC that embeds a map with // the prototype pointing to _proto_ and checks that the _proto_ dies on GC. TEST(WeakMapInMonomorphicLoadIC) { CheckWeakness("function loadIC(obj) {" " return obj.name;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " loadIC(obj);" " loadIC(obj);" " loadIC(obj);" " return proto;" " })();"); } TEST(WeakMapInMonomorphicKeyedLoadIC) { CheckWeakness("function keyedLoadIC(obj, field) {" " return obj[field];" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " keyedLoadIC(obj, 'name');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicStoreIC) { CheckWeakness("function storeIC(obj, value) {" " obj.name = value;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " storeIC(obj, 'x');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicKeyedStoreIC) { CheckWeakness("function keyedStoreIC(obj, field, value) {" " obj[field] = value;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " keyedStoreIC(obj, 'x');" " return proto;" " })();"); } TEST(WeakMapInMonomorphicCompareNilIC) { CheckWeakness("function compareNilIC(obj) {" " return obj == null;" "}" " (function() {" " var proto = {'name' : 'weak'};" " var obj = Object.create(proto);" " compareNilIC(obj);" " compareNilIC(obj);" " compareNilIC(obj);" " return proto;" " })();"); } TEST(WeakCell) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); v8::internal::Factory* factory = isolate->factory(); HandleScope outer_scope(isolate); Handle weak_cell1; { HandleScope inner_scope(isolate); Handle value = factory->NewFixedArray(1, NOT_TENURED); weak_cell1 = inner_scope.CloseAndEscape(factory->NewWeakCell(value)); } Handle survivor = factory->NewFixedArray(1, NOT_TENURED); Handle weak_cell2; { HandleScope inner_scope(isolate); weak_cell2 = inner_scope.CloseAndEscape(factory->NewWeakCell(survivor)); } CHECK(weak_cell1->value()->IsFixedArray()); CHECK_EQ(*survivor, weak_cell2->value()); heap->CollectGarbage(NEW_SPACE); CHECK(weak_cell1->value()->IsFixedArray()); CHECK_EQ(*survivor, weak_cell2->value()); heap->CollectGarbage(NEW_SPACE); CHECK(weak_cell1->value()->IsFixedArray()); CHECK_EQ(*survivor, weak_cell2->value()); heap->CollectAllAvailableGarbage(); CHECK(weak_cell1->cleared()); CHECK_EQ(*survivor, weak_cell2->value()); } TEST(WeakCellsWithIncrementalMarking) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::internal::Heap* heap = CcTest::heap(); v8::internal::Factory* factory = isolate->factory(); const int N = 16; HandleScope outer_scope(isolate); Handle survivor = factory->NewFixedArray(1, NOT_TENURED); Handle weak_cells[N]; for (int i = 0; i < N; i++) { HandleScope inner_scope(isolate); Handle value = i == 0 ? survivor : factory->NewFixedArray(1, NOT_TENURED); Handle weak_cell = factory->NewWeakCell(value); CHECK(weak_cell->value()->IsFixedArray()); IncrementalMarking* marking = heap->incremental_marking(); if (marking->IsStopped()) marking->Start(); marking->Step(128, IncrementalMarking::NO_GC_VIA_STACK_GUARD); heap->CollectGarbage(NEW_SPACE); CHECK(weak_cell->value()->IsFixedArray()); weak_cells[i] = inner_scope.CloseAndEscape(weak_cell); } heap->CollectAllGarbage(Heap::kNoGCFlags); CHECK_EQ(*survivor, weak_cells[0]->value()); for (int i = 1; i < N; i++) { CHECK(weak_cells[i]->cleared()); } } #ifdef DEBUG TEST(AddInstructionChangesNewSpacePromotion) { i::FLAG_allow_natives_syntax = true; i::FLAG_expose_gc = true; i::FLAG_stress_compaction = true; i::FLAG_gc_interval = 1000; CcTest::InitializeVM(); if (!i::FLAG_allocation_site_pretenuring) return; v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); CompileRun( "function add(a, b) {" " return a + b;" "}" "add(1, 2);" "add(\"a\", \"b\");" "var oldSpaceObject;" "gc();" "function crash(x) {" " var object = {a: null, b: null};" " var result = add(1.5, x | 0);" " object.a = result;" " oldSpaceObject = object;" " return object;" "}" "crash(1);" "crash(1);" "%OptimizeFunctionOnNextCall(crash);" "crash(1);"); v8::Handle global = CcTest::global(); v8::Handle g = v8::Handle::Cast(global->Get(v8_str("crash"))); v8::Handle args1[] = { v8_num(1) }; heap->DisableInlineAllocation(); heap->set_allocation_timeout(1); g->Call(global, 1, args1); heap->CollectAllGarbage(Heap::kAbortIncrementalMarkingMask); } void OnFatalErrorExpectOOM(const char* location, const char* message) { // Exit with 0 if the location matches our expectation. exit(strcmp(location, "CALL_AND_RETRY_LAST")); } TEST(CEntryStubOOM) { i::FLAG_allow_natives_syntax = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::V8::SetFatalErrorHandler(OnFatalErrorExpectOOM); v8::Handle result = CompileRun( "%SetFlags('--gc-interval=1');" "var a = [];" "a.__proto__ = [];" "a.unshift(1)"); CHECK(result->IsNumber()); } #endif // DEBUG static void InterruptCallback357137(v8::Isolate* isolate, void* data) { } static void RequestInterrupt(const v8::FunctionCallbackInfo& args) { CcTest::isolate()->RequestInterrupt(&InterruptCallback357137, NULL); } TEST(Regress357137) { CcTest::InitializeVM(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope hscope(isolate); v8::Handle global =v8::ObjectTemplate::New(isolate); global->Set(v8::String::NewFromUtf8(isolate, "interrupt"), v8::FunctionTemplate::New(isolate, RequestInterrupt)); v8::Local context = v8::Context::New(isolate, NULL, global); DCHECK(!context.IsEmpty()); v8::Context::Scope cscope(context); v8::Local result = CompileRun( "var locals = '';" "for (var i = 0; i < 512; i++) locals += 'var v' + i + '= 42;';" "eval('function f() {' + locals + 'return function() { return v0; }; }');" "interrupt();" // This triggers a fake stack overflow in f. "f()()"); CHECK_EQ(42.0, result->ToNumber()->Value()); } TEST(ArrayShiftSweeping) { i::FLAG_expose_gc = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); v8::Local result = CompileRun( "var array = new Array(40000);" "var tmp = new Array(100000);" "array[0] = 10;" "gc();" "gc();" "array.shift();" "array;"); Handle o = v8::Utils::OpenHandle(*v8::Handle::Cast(result)); CHECK(heap->InOldPointerSpace(o->elements())); CHECK(heap->InOldPointerSpace(*o)); Page* page = Page::FromAddress(o->elements()->address()); CHECK(page->parallel_sweeping() <= MemoryChunk::SWEEPING_FINALIZE || Marking::IsBlack(Marking::MarkBitFrom(o->elements()))); } UNINITIALIZED_TEST(PromotionQueue) { i::FLAG_expose_gc = true; i::FLAG_max_semi_space_size = 2; v8::Isolate* isolate = v8::Isolate::New(); i::Isolate* i_isolate = reinterpret_cast(isolate); { v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::New(isolate)->Enter(); Heap* heap = i_isolate->heap(); NewSpace* new_space = heap->new_space(); // In this test we will try to overwrite the promotion queue which is at the // end of to-space. To actually make that possible, we need at least two // semi-space pages and take advantage of fragmentation. // (1) Grow semi-space to two pages. // (2) Create a few small long living objects and call the scavenger to // move them to the other semi-space. // (3) Create a huge object, i.e., remainder of first semi-space page and // create another huge object which should be of maximum allocatable memory // size of the second semi-space page. // (4) Call the scavenger again. // What will happen is: the scavenger will promote the objects created in // (2) and will create promotion queue entries at the end of the second // semi-space page during the next scavenge when it promotes the objects to // the old generation. The first allocation of (3) will fill up the first // semi-space page. The second allocation in (3) will not fit into the // first semi-space page, but it will overwrite the promotion queue which // are in the second semi-space page. If the right guards are in place, the // promotion queue will be evacuated in that case. // Grow the semi-space to two pages to make semi-space copy overwrite the // promotion queue, which will be at the end of the second page. intptr_t old_capacity = new_space->TotalCapacity(); // If we are in a low memory config, we can't grow to two pages and we can't // run this test. This also means the issue we are testing cannot arise, as // there is no fragmentation. if (new_space->IsAtMaximumCapacity()) return; new_space->Grow(); CHECK(new_space->IsAtMaximumCapacity()); CHECK(2 * old_capacity == new_space->TotalCapacity()); // Call the scavenger two times to get an empty new space heap->CollectGarbage(NEW_SPACE); heap->CollectGarbage(NEW_SPACE); // First create a few objects which will survive a scavenge, and will get // promoted to the old generation later on. These objects will create // promotion queue entries at the end of the second semi-space page. const int number_handles = 12; Handle handles[number_handles]; for (int i = 0; i < number_handles; i++) { handles[i] = i_isolate->factory()->NewFixedArray(1, NOT_TENURED); } heap->CollectGarbage(NEW_SPACE); // Create the first huge object which will exactly fit the first semi-space // page. int new_linear_size = static_cast(*heap->new_space()->allocation_limit_address() - *heap->new_space()->allocation_top_address()); int length = new_linear_size / kPointerSize - FixedArray::kHeaderSize; Handle first = i_isolate->factory()->NewFixedArray(length, NOT_TENURED); CHECK(heap->InNewSpace(*first)); // Create the second huge object of maximum allocatable second semi-space // page size. new_linear_size = static_cast(*heap->new_space()->allocation_limit_address() - *heap->new_space()->allocation_top_address()); length = Page::kMaxRegularHeapObjectSize / kPointerSize - FixedArray::kHeaderSize; Handle second = i_isolate->factory()->NewFixedArray(length, NOT_TENURED); CHECK(heap->InNewSpace(*second)); // This scavenge will corrupt memory if the promotion queue is not // evacuated. heap->CollectGarbage(NEW_SPACE); } isolate->Dispose(); } TEST(Regress388880) { i::FLAG_expose_gc = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); Heap* heap = isolate->heap(); Handle map1 = Map::Create(isolate, 1); Handle map2 = Map::CopyWithField(map1, factory->NewStringFromStaticChars("foo"), HeapType::Any(isolate), NONE, Representation::Tagged(), OMIT_TRANSITION).ToHandleChecked(); int desired_offset = Page::kPageSize - map1->instance_size(); // Allocate fixed array in old pointer space so, that object allocated // afterwards would end at the end of the page. { SimulateFullSpace(heap->old_pointer_space()); int padding_size = desired_offset - Page::kObjectStartOffset; int padding_array_length = (padding_size - FixedArray::kHeaderSize) / kPointerSize; Handle temp2 = factory->NewFixedArray(padding_array_length, TENURED); Page* page = Page::FromAddress(temp2->address()); CHECK_EQ(Page::kObjectStartOffset, page->Offset(temp2->address())); } Handle o = factory->NewJSObjectFromMap(map1, TENURED, false); o->set_properties(*factory->empty_fixed_array()); // Ensure that the object allocated where we need it. Page* page = Page::FromAddress(o->address()); CHECK_EQ(desired_offset, page->Offset(o->address())); // Now we have an object right at the end of the page. // Enable incremental marking to trigger actions in Heap::AdjustLiveBytes() // that would cause crash. IncrementalMarking* marking = CcTest::heap()->incremental_marking(); marking->Abort(); marking->Start(); CHECK(marking->IsMarking()); // Now everything is set up for crashing in JSObject::MigrateFastToFast() // when it calls heap->AdjustLiveBytes(...). JSObject::MigrateToMap(o, map2); } TEST(Regress3631) { i::FLAG_expose_gc = true; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); Heap* heap = isolate->heap(); IncrementalMarking* marking = CcTest::heap()->incremental_marking(); v8::Local result = CompileRun( "var weak_map = new WeakMap();" "var future_keys = [];" "for (var i = 0; i < 50; i++) {" " var key = {'k' : i + 0.1};" " weak_map.set(key, 1);" " future_keys.push({'x' : i + 0.2});" "}" "weak_map"); if (marking->IsStopped()) { marking->Start(); } // Incrementally mark the backing store. Handle obj = v8::Utils::OpenHandle(*v8::Handle::Cast(result)); Handle weak_map(reinterpret_cast(*obj)); while (!Marking::IsBlack( Marking::MarkBitFrom(HeapObject::cast(weak_map->table()))) && !marking->IsStopped()) { marking->Step(MB, IncrementalMarking::NO_GC_VIA_STACK_GUARD); } // Stash the backing store in a handle. Handle save(weak_map->table(), isolate); // The following line will update the backing store. CompileRun( "for (var i = 0; i < 50; i++) {" " weak_map.set(future_keys[i], i);" "}"); heap->incremental_marking()->set_should_hurry(true); heap->CollectGarbage(OLD_POINTER_SPACE); } #ifdef DEBUG TEST(PathTracer) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local result = CompileRun("'abc'"); Handle o = v8::Utils::OpenHandle(*result); CcTest::i_isolate()->heap()->TracePathToObject(*o); } #endif // DEBUG