// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_HEAP_INL_H_ #define V8_HEAP_INL_H_ #include "log.h" #include "v8-counters.h" namespace v8 { namespace internal { int Heap::MaxHeapObjectSize() { return Page::kMaxHeapObjectSize; } Object* Heap::AllocateRaw(int size_in_bytes, AllocationSpace space) { ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); #ifdef DEBUG if (FLAG_gc_interval >= 0 && !disallow_allocation_failure_ && Heap::allocation_timeout_-- <= 0) { return Failure::RetryAfterGC(size_in_bytes, space); } Counters::objs_since_last_full.Increment(); Counters::objs_since_last_young.Increment(); #endif if (NEW_SPACE == space) { return new_space_.AllocateRaw(size_in_bytes); } Object* result; if (OLD_POINTER_SPACE == space) { result = old_pointer_space_->AllocateRaw(size_in_bytes); } else if (OLD_DATA_SPACE == space) { result = old_data_space_->AllocateRaw(size_in_bytes); } else if (CODE_SPACE == space) { result = code_space_->AllocateRaw(size_in_bytes); } else if (LO_SPACE == space) { result = lo_space_->AllocateRaw(size_in_bytes); } else { ASSERT(MAP_SPACE == space); result = map_space_->AllocateRaw(size_in_bytes); } if (result->IsFailure()) old_gen_exhausted_ = true; return result; } Object* Heap::NumberFromInt32(int32_t value) { if (Smi::IsValid(value)) return Smi::FromInt(value); // Bypass NumberFromDouble to avoid various redundant checks. return AllocateHeapNumber(FastI2D(value)); } Object* Heap::NumberFromUint32(uint32_t value) { if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) { return Smi::FromInt((int32_t)value); } // Bypass NumberFromDouble to avoid various redundant checks. return AllocateHeapNumber(FastUI2D(value)); } Object* Heap::AllocateRawMap(int size_in_bytes) { #ifdef DEBUG Counters::objs_since_last_full.Increment(); Counters::objs_since_last_young.Increment(); #endif Object* result = map_space_->AllocateRaw(size_in_bytes); if (result->IsFailure()) old_gen_exhausted_ = true; return result; } bool Heap::InNewSpace(Object* object) { return new_space_.Contains(object); } bool Heap::InFromSpace(Object* object) { return new_space_.FromSpaceContains(object); } bool Heap::InToSpace(Object* object) { return new_space_.ToSpaceContains(object); } bool Heap::ShouldBePromoted(Address old_address, int object_size) { // An object should be promoted if: // - the object has survived a scavenge operation or // - to space is already 25% full. return old_address < new_space_.age_mark() || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2); } void Heap::RecordWrite(Address address, int offset) { if (new_space_.Contains(address)) return; ASSERT(!new_space_.FromSpaceContains(address)); SLOW_ASSERT(Contains(address + offset)); Page::SetRSet(address, offset); } OldSpace* Heap::TargetSpace(HeapObject* object) { // Heap numbers and sequential strings are promoted to old data space, all // other object types are promoted to old pointer space. We do not use // object->IsHeapNumber() and object->IsSeqString() because we already // know that object has the heap object tag. InstanceType type = object->map()->instance_type(); ASSERT((type != CODE_TYPE) && (type != MAP_TYPE)); bool has_pointers = type != HEAP_NUMBER_TYPE && (type >= FIRST_NONSTRING_TYPE || String::cast(object)->representation_tag() != kSeqStringTag); return has_pointers ? old_pointer_space_ : old_data_space_; } #define GC_GREEDY_CHECK() \ ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck()) // Do not use the identifier __object__ in a call to this macro. // // Call the function FUNCTION_CALL. If it fails with a RetryAfterGC // failure, call the garbage collector and retry the function. If the // garbage collector cannot reclaim the required space or the second // call fails with a RetryAfterGC failure, fail with out of memory. // If there is any other failure, return a null handle. If either // call succeeds, return a handle to the functions return value. // // Note that this macro always returns or raises a fatal error. #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \ do { \ GC_GREEDY_CHECK(); \ Object* __object__ = FUNCTION_CALL; \ if (__object__->IsFailure()) { \ if (__object__->IsRetryAfterGC()) { \ if (!Heap::CollectGarbage( \ Failure::cast(__object__)->requested(), \ Failure::cast(__object__)->allocation_space())) { \ /* TODO(1181417): Fix this. */ \ v8::internal::V8::FatalProcessOutOfMemory("CALL_HEAP_FUNCTION"); \ } \ __object__ = FUNCTION_CALL; \ if (__object__->IsFailure()) { \ if (__object__->IsRetryAfterGC()) { \ /* TODO(1181417): Fix this. */ \ v8::internal::V8::FatalProcessOutOfMemory("CALL_HEAP_FUNCTION"); \ } \ return Handle(); \ } \ } else { \ if (__object__->IsOutOfMemoryFailure()) { \ v8::internal::V8::FatalProcessOutOfMemory("CALL_HEAP_FUNCTION"); \ } \ return Handle(); \ } \ } \ return Handle(TYPE::cast(__object__)); \ } while (false) // Don't use the following names: __object__, __failure__. #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \ GC_GREEDY_CHECK(); \ Object* __object__ = FUNCTION_CALL; \ if (__object__->IsFailure()) { \ if (__object__->IsRetryAfterGC()) { \ Failure* __failure__ = Failure::cast(__object__); \ if (!Heap::CollectGarbage(__failure__->requested(), \ __failure__->allocation_space())) { \ /* TODO(1181417): Fix this. */ \ V8::FatalProcessOutOfMemory("Handles"); \ } \ __object__ = FUNCTION_CALL; \ if (__object__->IsFailure()) { \ if (__object__->IsRetryAfterGC()) { \ /* TODO(1181417): Fix this. */ \ V8::FatalProcessOutOfMemory("Handles"); \ } \ return; \ } \ } else { \ if (__object__->IsOutOfMemoryFailure()) { \ V8::FatalProcessOutOfMemory("Handles"); \ } \ UNREACHABLE(); \ } \ } #ifdef DEBUG inline bool Heap::allow_allocation(bool new_state) { bool old = allocation_allowed_; allocation_allowed_ = new_state; return old; } #endif } } // namespace v8::internal #endif // V8_HEAP_INL_H_