// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Features shared by parsing and pre-parsing scanners. #include "src/parsing/scanner.h" #include #include #include "src/ast/ast-value-factory.h" #include "src/char-predicates-inl.h" #include "src/conversions-inl.h" #include "src/list-inl.h" #include "src/parsing/duplicate-finder.h" // For Scanner::FindSymbol namespace v8 { namespace internal { class Scanner::ErrorState { public: ErrorState(MessageTemplate::Template* message_stack, Scanner::Location* location_stack) : message_stack_(message_stack), old_message_(*message_stack), location_stack_(location_stack), old_location_(*location_stack) { *message_stack_ = MessageTemplate::kNone; *location_stack_ = Location::invalid(); } ~ErrorState() { *message_stack_ = old_message_; *location_stack_ = old_location_; } void MoveErrorTo(TokenDesc* dest) { if (*message_stack_ == MessageTemplate::kNone) { return; } if (dest->invalid_template_escape_message == MessageTemplate::kNone) { dest->invalid_template_escape_message = *message_stack_; dest->invalid_template_escape_location = *location_stack_; } *message_stack_ = MessageTemplate::kNone; *location_stack_ = Location::invalid(); } private: MessageTemplate::Template* const message_stack_; MessageTemplate::Template const old_message_; Scanner::Location* const location_stack_; Scanner::Location const old_location_; }; // ---------------------------------------------------------------------------- // Scanner::LiteralBuffer Handle Scanner::LiteralBuffer::Internalize(Isolate* isolate) const { if (is_one_byte()) { return isolate->factory()->InternalizeOneByteString(one_byte_literal()); } return isolate->factory()->InternalizeTwoByteString(two_byte_literal()); } int Scanner::LiteralBuffer::NewCapacity(int min_capacity) { int capacity = Max(min_capacity, backing_store_.length()); int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth); return new_capacity; } void Scanner::LiteralBuffer::ExpandBuffer() { Vector new_store = Vector::New(NewCapacity(kInitialCapacity)); MemCopy(new_store.start(), backing_store_.start(), position_); backing_store_.Dispose(); backing_store_ = new_store; } void Scanner::LiteralBuffer::ConvertToTwoByte() { DCHECK(is_one_byte_); Vector new_store; int new_content_size = position_ * kUC16Size; if (new_content_size >= backing_store_.length()) { // Ensure room for all currently read code units as UC16 as well // as the code unit about to be stored. new_store = Vector::New(NewCapacity(new_content_size)); } else { new_store = backing_store_; } uint8_t* src = backing_store_.start(); uint16_t* dst = reinterpret_cast(new_store.start()); for (int i = position_ - 1; i >= 0; i--) { dst[i] = src[i]; } if (new_store.start() != backing_store_.start()) { backing_store_.Dispose(); backing_store_ = new_store; } position_ = new_content_size; is_one_byte_ = false; } void Scanner::LiteralBuffer::AddCharSlow(uc32 code_unit) { if (position_ >= backing_store_.length()) ExpandBuffer(); if (is_one_byte_) { if (code_unit <= static_cast(unibrow::Latin1::kMaxChar)) { backing_store_[position_] = static_cast(code_unit); position_ += kOneByteSize; return; } ConvertToTwoByte(); } if (code_unit <= static_cast(unibrow::Utf16::kMaxNonSurrogateCharCode)) { *reinterpret_cast(&backing_store_[position_]) = code_unit; position_ += kUC16Size; } else { *reinterpret_cast(&backing_store_[position_]) = unibrow::Utf16::LeadSurrogate(code_unit); position_ += kUC16Size; if (position_ >= backing_store_.length()) ExpandBuffer(); *reinterpret_cast(&backing_store_[position_]) = unibrow::Utf16::TrailSurrogate(code_unit); position_ += kUC16Size; } } // ---------------------------------------------------------------------------- // Scanner::BookmarkScope const size_t Scanner::BookmarkScope::kBookmarkAtFirstPos = std::numeric_limits::max() - 2; const size_t Scanner::BookmarkScope::kNoBookmark = std::numeric_limits::max() - 1; const size_t Scanner::BookmarkScope::kBookmarkWasApplied = std::numeric_limits::max(); void Scanner::BookmarkScope::Set() { DCHECK_EQ(bookmark_, kNoBookmark); DCHECK_EQ(scanner_->next_next_.token, Token::UNINITIALIZED); // The first token is a bit special, since current_ will still be // uninitialized. In this case, store kBookmarkAtFirstPos and special-case it // when // applying the bookmark. DCHECK_IMPLIES( scanner_->current_.token == Token::UNINITIALIZED, scanner_->current_.location.beg_pos == scanner_->next_.location.beg_pos); bookmark_ = (scanner_->current_.token == Token::UNINITIALIZED) ? kBookmarkAtFirstPos : scanner_->location().beg_pos; } void Scanner::BookmarkScope::Apply() { DCHECK(HasBeenSet()); // Caller hasn't called SetBookmark. if (bookmark_ == kBookmarkAtFirstPos) { scanner_->SeekNext(0); } else { scanner_->SeekNext(bookmark_); scanner_->Next(); DCHECK_EQ(scanner_->location().beg_pos, static_cast(bookmark_)); } bookmark_ = kBookmarkWasApplied; } bool Scanner::BookmarkScope::HasBeenSet() { return bookmark_ != kNoBookmark && bookmark_ != kBookmarkWasApplied; } bool Scanner::BookmarkScope::HasBeenApplied() { return bookmark_ == kBookmarkWasApplied; } // ---------------------------------------------------------------------------- // Scanner Scanner::Scanner(UnicodeCache* unicode_cache) : unicode_cache_(unicode_cache), octal_pos_(Location::invalid()), octal_message_(MessageTemplate::kNone), found_html_comment_(false) {} void Scanner::Initialize(Utf16CharacterStream* source, bool is_module) { DCHECK_NOT_NULL(source); source_ = source; is_module_ = is_module; // Need to capture identifiers in order to recognize "get" and "set" // in object literals. Init(); has_line_terminator_before_next_ = true; Scan(); } template uc32 Scanner::ScanHexNumber(int expected_length) { DCHECK(expected_length <= 4); // prevent overflow int begin = source_pos() - 2; uc32 x = 0; for (int i = 0; i < expected_length; i++) { int d = HexValue(c0_); if (d < 0) { ReportScannerError(Location(begin, begin + expected_length + 2), unicode ? MessageTemplate::kInvalidUnicodeEscapeSequence : MessageTemplate::kInvalidHexEscapeSequence); return -1; } x = x * 16 + d; Advance(); } return x; } template uc32 Scanner::ScanUnlimitedLengthHexNumber(int max_value, int beg_pos) { uc32 x = 0; int d = HexValue(c0_); if (d < 0) return -1; while (d >= 0) { x = x * 16 + d; if (x > max_value) { ReportScannerError(Location(beg_pos, source_pos() + 1), MessageTemplate::kUndefinedUnicodeCodePoint); return -1; } Advance(); d = HexValue(c0_); } return x; } // Ensure that tokens can be stored in a byte. STATIC_ASSERT(Token::NUM_TOKENS <= 0x100); // Table of one-character tokens, by character (0x00..0x7f only). static const byte one_char_tokens[] = { Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::LPAREN, // 0x28 Token::RPAREN, // 0x29 Token::ILLEGAL, Token::ILLEGAL, Token::COMMA, // 0x2c Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::COLON, // 0x3a Token::SEMICOLON, // 0x3b Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::CONDITIONAL, // 0x3f Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::LBRACK, // 0x5b Token::ILLEGAL, Token::RBRACK, // 0x5d Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::ILLEGAL, Token::LBRACE, // 0x7b Token::ILLEGAL, Token::RBRACE, // 0x7d Token::BIT_NOT, // 0x7e Token::ILLEGAL }; Token::Value Scanner::Next() { if (next_.token == Token::EOS) { next_.location.beg_pos = current_.location.beg_pos; next_.location.end_pos = current_.location.end_pos; } current_ = next_; if (V8_UNLIKELY(next_next_.token != Token::UNINITIALIZED)) { next_ = next_next_; next_next_.token = Token::UNINITIALIZED; next_next_.contextual_token = Token::UNINITIALIZED; has_line_terminator_before_next_ = has_line_terminator_after_next_; return current_.token; } has_line_terminator_before_next_ = false; has_multiline_comment_before_next_ = false; if (static_cast(c0_) <= 0x7f) { Token::Value token = static_cast(one_char_tokens[c0_]); if (token != Token::ILLEGAL) { int pos = source_pos(); next_.token = token; next_.contextual_token = Token::UNINITIALIZED; next_.location.beg_pos = pos; next_.location.end_pos = pos + 1; next_.literal_chars = nullptr; next_.raw_literal_chars = nullptr; next_.invalid_template_escape_message = MessageTemplate::kNone; Advance(); return current_.token; } } Scan(); return current_.token; } Token::Value Scanner::PeekAhead() { DCHECK(next_.token != Token::DIV); DCHECK(next_.token != Token::ASSIGN_DIV); if (next_next_.token != Token::UNINITIALIZED) { return next_next_.token; } TokenDesc prev = current_; bool has_line_terminator_before_next = has_line_terminator_before_next_ || has_multiline_comment_before_next_; Next(); has_line_terminator_after_next_ = has_line_terminator_before_next_ || has_multiline_comment_before_next_; has_line_terminator_before_next_ = has_line_terminator_before_next; Token::Value ret = next_.token; next_next_ = next_; next_ = current_; current_ = prev; return ret; } Token::Value Scanner::SkipWhiteSpace() { int start_position = source_pos(); while (true) { while (true) { // Don't skip behind the end of input. if (c0_ == kEndOfInput) break; // Advance as long as character is a WhiteSpace or LineTerminator. // Remember if the latter is the case. if (unicode_cache_->IsLineTerminator(c0_)) { has_line_terminator_before_next_ = true; } else if (!unicode_cache_->IsWhiteSpace(c0_)) { break; } Advance(); } // If there is an HTML comment end '-->' at the beginning of a // line (with only whitespace in front of it), we treat the rest // of the line as a comment. This is in line with the way // SpiderMonkey handles it. if (c0_ != '-' || !has_line_terminator_before_next_) break; Advance(); if (c0_ != '-') { PushBack('-'); // undo Advance() break; } Advance(); if (c0_ != '>') { PushBack2('-', '-'); // undo 2x Advance(); break; } // Treat the rest of the line as a comment. Token::Value token = SkipSingleHTMLComment(); if (token == Token::ILLEGAL) { return token; } } // Return whether or not we skipped any characters. if (source_pos() == start_position) { return Token::ILLEGAL; } return Token::WHITESPACE; } Token::Value Scanner::SkipSingleHTMLComment() { if (is_module_) { ReportScannerError(source_pos(), MessageTemplate::kHtmlCommentInModule); return Token::ILLEGAL; } return SkipSingleLineComment(); } Token::Value Scanner::SkipSingleLineComment() { Advance(); // The line terminator at the end of the line is not considered // to be part of the single-line comment; it is recognized // separately by the lexical grammar and becomes part of the // stream of input elements for the syntactic grammar (see // ECMA-262, section 7.4). while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) { Advance(); } return Token::WHITESPACE; } Token::Value Scanner::SkipSourceURLComment() { TryToParseSourceURLComment(); while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) { Advance(); } return Token::WHITESPACE; } void Scanner::TryToParseSourceURLComment() { // Magic comments are of the form: //[#@]\s=\s*\s*.* and this // function will just return if it cannot parse a magic comment. if (c0_ == kEndOfInput || !unicode_cache_->IsWhiteSpace(c0_)) return; Advance(); LiteralBuffer name; while (c0_ != kEndOfInput && !unicode_cache_->IsWhiteSpaceOrLineTerminator(c0_) && c0_ != '=') { name.AddChar(c0_); Advance(); } if (!name.is_one_byte()) return; Vector name_literal = name.one_byte_literal(); LiteralBuffer* value; if (name_literal == STATIC_CHAR_VECTOR("sourceURL")) { value = &source_url_; } else if (name_literal == STATIC_CHAR_VECTOR("sourceMappingURL")) { value = &source_mapping_url_; } else { return; } if (c0_ != '=') return; Advance(); value->Reset(); while (c0_ != kEndOfInput && unicode_cache_->IsWhiteSpace(c0_)) { Advance(); } while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) { // Disallowed characters. if (c0_ == '"' || c0_ == '\'') { value->Reset(); return; } if (unicode_cache_->IsWhiteSpace(c0_)) { break; } value->AddChar(c0_); Advance(); } // Allow whitespace at the end. while (c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) { if (!unicode_cache_->IsWhiteSpace(c0_)) { value->Reset(); break; } Advance(); } } Token::Value Scanner::SkipMultiLineComment() { DCHECK(c0_ == '*'); Advance(); while (c0_ != kEndOfInput) { uc32 ch = c0_; Advance(); if (c0_ != kEndOfInput && unicode_cache_->IsLineTerminator(ch)) { // Following ECMA-262, section 7.4, a comment containing // a newline will make the comment count as a line-terminator. has_multiline_comment_before_next_ = true; } // If we have reached the end of the multi-line comment, we // consume the '/' and insert a whitespace. This way all // multi-line comments are treated as whitespace. if (ch == '*' && c0_ == '/') { c0_ = ' '; return Token::WHITESPACE; } } // Unterminated multi-line comment. return Token::ILLEGAL; } Token::Value Scanner::ScanHtmlComment() { // Check for -= Advance(); if (c0_ == '-') { Advance(); if (c0_ == '>' && HasAnyLineTerminatorBeforeNext()) { // For compatibility with SpiderMonkey, we skip lines that // start with an HTML comment end '-->'. token = SkipSingleHTMLComment(); } else { token = Token::DEC; } } else if (c0_ == '=') { token = Select(Token::ASSIGN_SUB); } else { token = Token::SUB; } break; case '*': // * *= Advance(); if (c0_ == '*') { token = Select('=', Token::ASSIGN_EXP, Token::EXP); } else if (c0_ == '=') { token = Select(Token::ASSIGN_MUL); } else { token = Token::MUL; } break; case '%': // % %= token = Select('=', Token::ASSIGN_MOD, Token::MOD); break; case '/': // / // /* /= Advance(); if (c0_ == '/') { Advance(); if (c0_ == '#' || c0_ == '@') { Advance(); token = SkipSourceURLComment(); } else { PushBack(c0_); token = SkipSingleLineComment(); } } else if (c0_ == '*') { token = SkipMultiLineComment(); } else if (c0_ == '=') { token = Select(Token::ASSIGN_DIV); } else { token = Token::DIV; } break; case '&': // & && &= Advance(); if (c0_ == '&') { token = Select(Token::AND); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_AND); } else { token = Token::BIT_AND; } break; case '|': // | || |= Advance(); if (c0_ == '|') { token = Select(Token::OR); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_OR); } else { token = Token::BIT_OR; } break; case '^': // ^ ^= token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR); break; case '.': // . Number Advance(); if (IsDecimalDigit(c0_)) { token = ScanNumber(true); } else { token = Token::PERIOD; if (c0_ == '.') { Advance(); if (c0_ == '.') { Advance(); token = Token::ELLIPSIS; } else { PushBack('.'); } } } break; case ':': token = Select(Token::COLON); break; case ';': token = Select(Token::SEMICOLON); break; case ',': token = Select(Token::COMMA); break; case '(': token = Select(Token::LPAREN); break; case ')': token = Select(Token::RPAREN); break; case '[': token = Select(Token::LBRACK); break; case ']': token = Select(Token::RBRACK); break; case '{': token = Select(Token::LBRACE); break; case '}': token = Select(Token::RBRACE); break; case '?': token = Select(Token::CONDITIONAL); break; case '~': token = Select(Token::BIT_NOT); break; case '`': token = ScanTemplateStart(); break; default: if (c0_ == kEndOfInput) { token = Token::EOS; } else if (unicode_cache_->IsIdentifierStart(c0_)) { token = ScanIdentifierOrKeyword(); } else if (IsDecimalDigit(c0_)) { token = ScanNumber(false); } else { token = SkipWhiteSpace(); if (token == Token::ILLEGAL) { Advance(); } } break; } // Continue scanning for tokens as long as we're just skipping // whitespace. } while (token == Token::WHITESPACE); next_.location.end_pos = source_pos(); if (Token::IsContextualKeyword(token)) { next_.token = Token::IDENTIFIER; next_.contextual_token = token; } else { next_.token = token; next_.contextual_token = Token::UNINITIALIZED; } #ifdef DEBUG SanityCheckTokenDesc(current_); SanityCheckTokenDesc(next_); SanityCheckTokenDesc(next_next_); #endif } #ifdef DEBUG void Scanner::SanityCheckTokenDesc(const TokenDesc& token) const { // Most tokens should not have literal_chars or even raw_literal chars. // The rules are: // - UNINITIALIZED: we don't care. // - TEMPLATE_*: need both literal + raw literal chars. // - IDENTIFIERS, STRINGS, etc.: need a literal, but no raw literal. // - all others: should have neither. // Furthermore, only TEMPLATE_* tokens can have a // invalid_template_escape_message. switch (token.token) { case Token::UNINITIALIZED: // token.literal_chars & other members might be garbage. That's ok. break; case Token::TEMPLATE_SPAN: case Token::TEMPLATE_TAIL: DCHECK_NOT_NULL(token.raw_literal_chars); DCHECK_NOT_NULL(token.literal_chars); break; case Token::ESCAPED_KEYWORD: case Token::ESCAPED_STRICT_RESERVED_WORD: case Token::FUTURE_STRICT_RESERVED_WORD: case Token::IDENTIFIER: case Token::NUMBER: case Token::REGEXP_LITERAL: case Token::SMI: case Token::STRING: DCHECK_NOT_NULL(token.literal_chars); DCHECK_NULL(token.raw_literal_chars); DCHECK_EQ(token.invalid_template_escape_message, MessageTemplate::kNone); break; default: DCHECK_NULL(token.literal_chars); DCHECK_NULL(token.raw_literal_chars); DCHECK_EQ(token.invalid_template_escape_message, MessageTemplate::kNone); break; } DCHECK_IMPLIES(token.token != Token::IDENTIFIER, token.contextual_token == Token::UNINITIALIZED); DCHECK_IMPLIES(token.contextual_token != Token::UNINITIALIZED, token.token == Token::IDENTIFIER && Token::IsContextualKeyword(token.contextual_token)); DCHECK(!Token::IsContextualKeyword(token.token)); } #endif // DEBUG void Scanner::SeekForward(int pos) { // After this call, we will have the token at the given position as // the "next" token. The "current" token will be invalid. if (pos == next_.location.beg_pos) return; int current_pos = source_pos(); DCHECK_EQ(next_.location.end_pos, current_pos); // Positions inside the lookahead token aren't supported. DCHECK(pos >= current_pos); if (pos != current_pos) { source_->Seek(pos); Advance(); // This function is only called to seek to the location // of the end of a function (at the "}" token). It doesn't matter // whether there was a line terminator in the part we skip. has_line_terminator_before_next_ = false; has_multiline_comment_before_next_ = false; } Scan(); } template bool Scanner::ScanEscape() { uc32 c = c0_; Advance(); // Skip escaped newlines. if (!in_template_literal && c0_ != kEndOfInput && unicode_cache_->IsLineTerminator(c)) { // Allow escaped CR+LF newlines in multiline string literals. if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance(); return true; } switch (c) { case '\'': // fall through case '"' : // fall through case '\\': break; case 'b' : c = '\b'; break; case 'f' : c = '\f'; break; case 'n' : c = '\n'; break; case 'r' : c = '\r'; break; case 't' : c = '\t'; break; case 'u' : { c = ScanUnicodeEscape(); if (c < 0) return false; break; } case 'v': c = '\v'; break; case 'x': { c = ScanHexNumber(2); if (c < 0) return false; break; } case '0': // Fall through. case '1': // fall through case '2': // fall through case '3': // fall through case '4': // fall through case '5': // fall through case '6': // fall through case '7': c = ScanOctalEscape(c, 2); break; } // Other escaped characters are interpreted as their non-escaped version. AddLiteralChar(c); return true; } template uc32 Scanner::ScanOctalEscape(uc32 c, int length) { uc32 x = c - '0'; int i = 0; for (; i < length; i++) { int d = c0_ - '0'; if (d < 0 || d > 7) break; int nx = x * 8 + d; if (nx >= 256) break; x = nx; Advance(); } // Anything except '\0' is an octal escape sequence, illegal in strict mode. // Remember the position of octal escape sequences so that an error // can be reported later (in strict mode). // We don't report the error immediately, because the octal escape can // occur before the "use strict" directive. if (c != '0' || i > 0 || c0_ == '8' || c0_ == '9') { octal_pos_ = Location(source_pos() - i - 1, source_pos() - 1); octal_message_ = MessageTemplate::kStrictOctalEscape; } return x; } Token::Value Scanner::ScanString() { uc32 quote = c0_; Advance(); // consume quote LiteralScope literal(this); while (true) { if (c0_ > kMaxAscii) { HandleLeadSurrogate(); break; } if (c0_ == kEndOfInput || c0_ == '\n' || c0_ == '\r') return Token::ILLEGAL; if (c0_ == quote) { literal.Complete(); Advance(); return Token::STRING; } char c = static_cast(c0_); if (c == '\\') break; Advance(); AddLiteralChar(c); } while (c0_ != quote && c0_ != kEndOfInput && !unicode_cache_->IsLineTerminator(c0_)) { uc32 c = c0_; Advance(); if (c == '\\') { if (c0_ == kEndOfInput || !ScanEscape()) { return Token::ILLEGAL; } } else { AddLiteralChar(c); } } if (c0_ != quote) return Token::ILLEGAL; literal.Complete(); Advance(); // consume quote return Token::STRING; } Token::Value Scanner::ScanTemplateSpan() { // When scanning a TemplateSpan, we are looking for the following construct: // TEMPLATE_SPAN :: // ` LiteralChars* ${ // | } LiteralChars* ${ // // TEMPLATE_TAIL :: // ` LiteralChars* ` // | } LiteralChar* ` // // A TEMPLATE_SPAN should always be followed by an Expression, while a // TEMPLATE_TAIL terminates a TemplateLiteral and does not need to be // followed by an Expression. // These scoped helpers save and restore the original error state, so that we // can specially treat invalid escape sequences in templates (which are // handled by the parser). ErrorState scanner_error_state(&scanner_error_, &scanner_error_location_); ErrorState octal_error_state(&octal_message_, &octal_pos_); Token::Value result = Token::TEMPLATE_SPAN; LiteralScope literal(this); StartRawLiteral(); const bool capture_raw = true; const bool in_template_literal = true; while (true) { uc32 c = c0_; Advance(); if (c == '`') { result = Token::TEMPLATE_TAIL; ReduceRawLiteralLength(1); break; } else if (c == '$' && c0_ == '{') { Advance(); // Consume '{' ReduceRawLiteralLength(2); break; } else if (c == '\\') { if (c0_ != kEndOfInput && unicode_cache_->IsLineTerminator(c0_)) { // The TV of LineContinuation :: \ LineTerminatorSequence is the empty // code unit sequence. uc32 lastChar = c0_; Advance(); if (lastChar == '\r') { ReduceRawLiteralLength(1); // Remove \r if (c0_ == '\n') { Advance(); // Adds \n } else { AddRawLiteralChar('\n'); } } } else { bool success = ScanEscape(); USE(success); DCHECK_EQ(!success, has_error()); // For templates, invalid escape sequence checking is handled in the // parser. scanner_error_state.MoveErrorTo(&next_); octal_error_state.MoveErrorTo(&next_); } } else if (c < 0) { // Unterminated template literal PushBack(c); break; } else { // The TRV of LineTerminatorSequence :: is the CV 0x000A. // The TRV of LineTerminatorSequence :: is the sequence // consisting of the CV 0x000A. if (c == '\r') { ReduceRawLiteralLength(1); // Remove \r if (c0_ == '\n') { Advance(); // Adds \n } else { AddRawLiteralChar('\n'); } c = '\n'; } AddLiteralChar(c); } } literal.Complete(); next_.location.end_pos = source_pos(); next_.token = result; next_.contextual_token = Token::UNINITIALIZED; return result; } Token::Value Scanner::ScanTemplateStart() { DCHECK(next_next_.token == Token::UNINITIALIZED); DCHECK(c0_ == '`'); next_.location.beg_pos = source_pos(); Advance(); // Consume ` return ScanTemplateSpan(); } Handle Scanner::SourceUrl(Isolate* isolate) const { Handle tmp; if (source_url_.length() > 0) tmp = source_url_.Internalize(isolate); return tmp; } Handle Scanner::SourceMappingUrl(Isolate* isolate) const { Handle tmp; if (source_mapping_url_.length() > 0) tmp = source_mapping_url_.Internalize(isolate); return tmp; } void Scanner::ScanDecimalDigits() { while (IsDecimalDigit(c0_)) AddLiteralCharAdvance(); } Token::Value Scanner::ScanNumber(bool seen_period) { DCHECK(IsDecimalDigit(c0_)); // the first digit of the number or the fraction enum { DECIMAL, DECIMAL_WITH_LEADING_ZERO, HEX, OCTAL, IMPLICIT_OCTAL, BINARY } kind = DECIMAL; LiteralScope literal(this); bool at_start = !seen_period; int start_pos = source_pos(); // For reporting octal positions. if (seen_period) { // we have already seen a decimal point of the float AddLiteralChar('.'); ScanDecimalDigits(); // we know we have at least one digit } else { // if the first character is '0' we must check for octals and hex if (c0_ == '0') { AddLiteralCharAdvance(); // either 0, 0exxx, 0Exxx, 0.xxx, a hex number, a binary number or // an octal number. if (c0_ == 'x' || c0_ == 'X') { // hex number kind = HEX; AddLiteralCharAdvance(); if (!IsHexDigit(c0_)) { // we must have at least one hex digit after 'x'/'X' return Token::ILLEGAL; } while (IsHexDigit(c0_)) { AddLiteralCharAdvance(); } } else if (c0_ == 'o' || c0_ == 'O') { kind = OCTAL; AddLiteralCharAdvance(); if (!IsOctalDigit(c0_)) { // we must have at least one octal digit after 'o'/'O' return Token::ILLEGAL; } while (IsOctalDigit(c0_)) { AddLiteralCharAdvance(); } } else if (c0_ == 'b' || c0_ == 'B') { kind = BINARY; AddLiteralCharAdvance(); if (!IsBinaryDigit(c0_)) { // we must have at least one binary digit after 'b'/'B' return Token::ILLEGAL; } while (IsBinaryDigit(c0_)) { AddLiteralCharAdvance(); } } else if ('0' <= c0_ && c0_ <= '7') { // (possible) octal number kind = IMPLICIT_OCTAL; while (true) { if (c0_ == '8' || c0_ == '9') { at_start = false; kind = DECIMAL_WITH_LEADING_ZERO; break; } if (c0_ < '0' || '7' < c0_) { // Octal literal finished. octal_pos_ = Location(start_pos, source_pos()); octal_message_ = MessageTemplate::kStrictOctalLiteral; break; } AddLiteralCharAdvance(); } } else if (c0_ == '8' || c0_ == '9') { kind = DECIMAL_WITH_LEADING_ZERO; } } // Parse decimal digits and allow trailing fractional part. if (kind == DECIMAL || kind == DECIMAL_WITH_LEADING_ZERO) { if (at_start) { uint64_t value = 0; while (IsDecimalDigit(c0_)) { value = 10 * value + (c0_ - '0'); uc32 first_char = c0_; Advance(); AddLiteralChar(first_char); } if (next_.literal_chars->one_byte_literal().length() <= 10 && value <= Smi::kMaxValue && c0_ != '.' && (c0_ == kEndOfInput || !unicode_cache_->IsIdentifierStart(c0_))) { next_.smi_value_ = static_cast(value); literal.Complete(); HandleLeadSurrogate(); if (kind == DECIMAL_WITH_LEADING_ZERO) { octal_pos_ = Location(start_pos, source_pos()); octal_message_ = MessageTemplate::kStrictDecimalWithLeadingZero; } return Token::SMI; } HandleLeadSurrogate(); } ScanDecimalDigits(); // optional if (c0_ == '.') { AddLiteralCharAdvance(); ScanDecimalDigits(); // optional } } } // scan exponent, if any if (c0_ == 'e' || c0_ == 'E') { DCHECK(kind != HEX); // 'e'/'E' must be scanned as part of the hex number if (!(kind == DECIMAL || kind == DECIMAL_WITH_LEADING_ZERO)) return Token::ILLEGAL; // scan exponent AddLiteralCharAdvance(); if (c0_ == '+' || c0_ == '-') AddLiteralCharAdvance(); if (!IsDecimalDigit(c0_)) { // we must have at least one decimal digit after 'e'/'E' return Token::ILLEGAL; } ScanDecimalDigits(); } // The source character immediately following a numeric literal must // not be an identifier start or a decimal digit; see ECMA-262 // section 7.8.3, page 17 (note that we read only one decimal digit // if the value is 0). if (IsDecimalDigit(c0_) || (c0_ != kEndOfInput && unicode_cache_->IsIdentifierStart(c0_))) return Token::ILLEGAL; literal.Complete(); if (kind == DECIMAL_WITH_LEADING_ZERO) { octal_pos_ = Location(start_pos, source_pos()); octal_message_ = MessageTemplate::kStrictDecimalWithLeadingZero; } return Token::NUMBER; } uc32 Scanner::ScanIdentifierUnicodeEscape() { Advance(); if (c0_ != 'u') return -1; Advance(); return ScanUnicodeEscape(); } template uc32 Scanner::ScanUnicodeEscape() { // Accept both \uxxxx and \u{xxxxxx}. In the latter case, the number of // hex digits between { } is arbitrary. \ and u have already been read. if (c0_ == '{') { int begin = source_pos() - 2; Advance(); uc32 cp = ScanUnlimitedLengthHexNumber(0x10ffff, begin); if (cp < 0 || c0_ != '}') { ReportScannerError(source_pos(), MessageTemplate::kInvalidUnicodeEscapeSequence); return -1; } Advance(); return cp; } const bool unicode = true; return ScanHexNumber(4); } // ---------------------------------------------------------------------------- // Keyword Matcher #define KEYWORDS(KEYWORD_GROUP, KEYWORD) \ KEYWORD_GROUP('a') \ KEYWORD("arguments", Token::ARGUMENTS) \ KEYWORD("as", Token::AS) \ KEYWORD("async", Token::ASYNC) \ KEYWORD("await", Token::AWAIT) \ KEYWORD("anonymous", Token::ANONYMOUS) \ KEYWORD_GROUP('b') \ KEYWORD("break", Token::BREAK) \ KEYWORD_GROUP('c') \ KEYWORD("case", Token::CASE) \ KEYWORD("catch", Token::CATCH) \ KEYWORD("class", Token::CLASS) \ KEYWORD("const", Token::CONST) \ KEYWORD("constructor", Token::CONSTRUCTOR) \ KEYWORD("continue", Token::CONTINUE) \ KEYWORD_GROUP('d') \ KEYWORD("debugger", Token::DEBUGGER) \ KEYWORD("default", Token::DEFAULT) \ KEYWORD("delete", Token::DELETE) \ KEYWORD("do", Token::DO) \ KEYWORD_GROUP('e') \ KEYWORD("else", Token::ELSE) \ KEYWORD("enum", Token::ENUM) \ KEYWORD("eval", Token::EVAL) \ KEYWORD("export", Token::EXPORT) \ KEYWORD("extends", Token::EXTENDS) \ KEYWORD_GROUP('f') \ KEYWORD("false", Token::FALSE_LITERAL) \ KEYWORD("finally", Token::FINALLY) \ KEYWORD("for", Token::FOR) \ KEYWORD("from", Token::FROM) \ KEYWORD("function", Token::FUNCTION) \ KEYWORD_GROUP('g') \ KEYWORD("get", Token::GET) \ KEYWORD_GROUP('i') \ KEYWORD("if", Token::IF) \ KEYWORD("implements", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("import", Token::IMPORT) \ KEYWORD("in", Token::IN) \ KEYWORD("instanceof", Token::INSTANCEOF) \ KEYWORD("interface", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD_GROUP('l') \ KEYWORD("let", Token::LET) \ KEYWORD_GROUP('n') \ KEYWORD("name", Token::NAME) \ KEYWORD("new", Token::NEW) \ KEYWORD("null", Token::NULL_LITERAL) \ KEYWORD_GROUP('o') \ KEYWORD("of", Token::OF) \ KEYWORD_GROUP('p') \ KEYWORD("package", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("private", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("protected", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD("prototype", Token::PROTOTYPE) \ KEYWORD("public", Token::FUTURE_STRICT_RESERVED_WORD) \ KEYWORD_GROUP('r') \ KEYWORD("return", Token::RETURN) \ KEYWORD_GROUP('s') \ KEYWORD("sent", Token::SENT) \ KEYWORD("set", Token::SET) \ KEYWORD("static", Token::STATIC) \ KEYWORD("super", Token::SUPER) \ KEYWORD("switch", Token::SWITCH) \ KEYWORD_GROUP('t') \ KEYWORD("target", Token::TARGET) \ KEYWORD("this", Token::THIS) \ KEYWORD("throw", Token::THROW) \ KEYWORD("true", Token::TRUE_LITERAL) \ KEYWORD("try", Token::TRY) \ KEYWORD("typeof", Token::TYPEOF) \ KEYWORD_GROUP('u') \ KEYWORD("undefined", Token::UNDEFINED) \ KEYWORD_GROUP('v') \ KEYWORD("var", Token::VAR) \ KEYWORD("void", Token::VOID) \ KEYWORD_GROUP('w') \ KEYWORD("while", Token::WHILE) \ KEYWORD("with", Token::WITH) \ KEYWORD_GROUP('y') \ KEYWORD("yield", Token::YIELD) \ KEYWORD_GROUP('_') \ KEYWORD("__proto__", Token::PROTO_UNDERSCORED) static Token::Value KeywordOrIdentifierToken(const uint8_t* input, int input_length) { DCHECK(input_length >= 1); const int kMinLength = 2; const int kMaxLength = 11; if (input_length < kMinLength || input_length > kMaxLength) { return Token::IDENTIFIER; } switch (input[0]) { default: #define KEYWORD_GROUP_CASE(ch) \ break; \ case ch: #define KEYWORD(keyword, token) \ { \ /* 'keyword' is a char array, so sizeof(keyword) is */ \ /* strlen(keyword) plus 1 for the NUL char. */ \ const int keyword_length = sizeof(keyword) - 1; \ STATIC_ASSERT(keyword_length >= kMinLength); \ STATIC_ASSERT(keyword_length <= kMaxLength); \ DCHECK_EQ(input[0], keyword[0]); \ DCHECK(token == Token::FUTURE_STRICT_RESERVED_WORD || \ 0 == strncmp(keyword, Token::String(token), sizeof(keyword))); \ if (input_length == keyword_length && input[1] == keyword[1] && \ (keyword_length <= 2 || input[2] == keyword[2]) && \ (keyword_length <= 3 || input[3] == keyword[3]) && \ (keyword_length <= 4 || input[4] == keyword[4]) && \ (keyword_length <= 5 || input[5] == keyword[5]) && \ (keyword_length <= 6 || input[6] == keyword[6]) && \ (keyword_length <= 7 || input[7] == keyword[7]) && \ (keyword_length <= 8 || input[8] == keyword[8]) && \ (keyword_length <= 9 || input[9] == keyword[9]) && \ (keyword_length <= 10 || input[10] == keyword[10])) { \ return token; \ } \ } KEYWORDS(KEYWORD_GROUP_CASE, KEYWORD) } return Token::IDENTIFIER; } Token::Value Scanner::ScanIdentifierOrKeyword() { DCHECK(unicode_cache_->IsIdentifierStart(c0_)); LiteralScope literal(this); if (IsInRange(c0_, 'a', 'z') || c0_ == '_') { do { char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); } while (IsInRange(c0_, 'a', 'z') || c0_ == '_'); if (IsDecimalDigit(c0_) || IsInRange(c0_, 'A', 'Z') || c0_ == '_' || c0_ == '$') { // Identifier starting with lowercase. char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); while (IsAsciiIdentifier(c0_)) { char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); } if (c0_ <= kMaxAscii && c0_ != '\\') { literal.Complete(); return Token::IDENTIFIER; } } else if (c0_ <= kMaxAscii && c0_ != '\\') { // Only a-z+ or _: could be a keyword or identifier. Vector chars = next_.literal_chars->one_byte_literal(); Token::Value token = KeywordOrIdentifierToken(chars.start(), chars.length()); if (token == Token::IDENTIFIER || token == Token::FUTURE_STRICT_RESERVED_WORD || Token::IsContextualKeyword(token)) literal.Complete(); return token; } HandleLeadSurrogate(); } else if (IsInRange(c0_, 'A', 'Z') || c0_ == '_' || c0_ == '$') { do { char first_char = static_cast(c0_); Advance(); AddLiteralChar(first_char); } while (IsAsciiIdentifier(c0_)); if (c0_ <= kMaxAscii && c0_ != '\\') { literal.Complete(); return Token::IDENTIFIER; } HandleLeadSurrogate(); } else if (c0_ == '\\') { // Scan identifier start character. uc32 c = ScanIdentifierUnicodeEscape(); // Only allow legal identifier start characters. if (c < 0 || c == '\\' || // No recursive escapes. !unicode_cache_->IsIdentifierStart(c)) { return Token::ILLEGAL; } AddLiteralChar(c); return ScanIdentifierSuffix(&literal, true); } else { uc32 first_char = c0_; Advance(); AddLiteralChar(first_char); } // Scan the rest of the identifier characters. while (c0_ != kEndOfInput && unicode_cache_->IsIdentifierPart(c0_)) { if (c0_ != '\\') { uc32 next_char = c0_; Advance(); AddLiteralChar(next_char); continue; } // Fallthrough if no longer able to complete keyword. return ScanIdentifierSuffix(&literal, false); } if (next_.literal_chars->is_one_byte()) { Vector chars = next_.literal_chars->one_byte_literal(); Token::Value token = KeywordOrIdentifierToken(chars.start(), chars.length()); if (token == Token::IDENTIFIER || token == Token::FUTURE_STRICT_RESERVED_WORD || Token::IsContextualKeyword(token)) literal.Complete(); return token; } literal.Complete(); return Token::IDENTIFIER; } Token::Value Scanner::ScanIdentifierSuffix(LiteralScope* literal, bool escaped) { // Scan the rest of the identifier characters. while (c0_ != kEndOfInput && unicode_cache_->IsIdentifierPart(c0_)) { if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); escaped = true; // Only allow legal identifier part characters. if (c < 0 || c == '\\' || !unicode_cache_->IsIdentifierPart(c)) { return Token::ILLEGAL; } AddLiteralChar(c); } else { AddLiteralChar(c0_); Advance(); } } literal->Complete(); if (escaped && next_.literal_chars->is_one_byte()) { Vector chars = next_.literal_chars->one_byte_literal(); Token::Value token = KeywordOrIdentifierToken(chars.start(), chars.length()); /* TODO(adamk): YIELD should be handled specially. */ if (token == Token::IDENTIFIER || Token::IsContextualKeyword(token)) { return token; } else if (token == Token::FUTURE_STRICT_RESERVED_WORD || token == Token::LET || token == Token::STATIC) { return Token::ESCAPED_STRICT_RESERVED_WORD; } else { return Token::ESCAPED_KEYWORD; } } return Token::IDENTIFIER; } bool Scanner::ScanRegExpPattern() { DCHECK(next_next_.token == Token::UNINITIALIZED); DCHECK(next_.token == Token::DIV || next_.token == Token::ASSIGN_DIV); // Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags bool in_character_class = false; bool seen_equal = (next_.token == Token::ASSIGN_DIV); // Previous token is either '/' or '/=', in the second case, the // pattern starts at =. next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1); next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0); // Scan regular expression body: According to ECMA-262, 3rd, 7.8.5, // the scanner should pass uninterpreted bodies to the RegExp // constructor. LiteralScope literal(this); if (seen_equal) { AddLiteralChar('='); } while (c0_ != '/' || in_character_class) { if (c0_ == kEndOfInput || unicode_cache_->IsLineTerminator(c0_)) return false; if (c0_ == '\\') { // Escape sequence. AddLiteralCharAdvance(); if (c0_ == kEndOfInput || unicode_cache_->IsLineTerminator(c0_)) return false; AddLiteralCharAdvance(); // If the escape allows more characters, i.e., \x??, \u????, or \c?, // only "safe" characters are allowed (letters, digits, underscore), // otherwise the escape isn't valid and the invalid character has // its normal meaning. I.e., we can just continue scanning without // worrying whether the following characters are part of the escape // or not, since any '/', '\\' or '[' is guaranteed to not be part // of the escape sequence. // TODO(896): At some point, parse RegExps more throughly to capture // octal esacpes in strict mode. } else { // Unescaped character. if (c0_ == '[') in_character_class = true; if (c0_ == ']') in_character_class = false; AddLiteralCharAdvance(); } } Advance(); // consume '/' literal.Complete(); next_.token = Token::REGEXP_LITERAL; next_.contextual_token = Token::UNINITIALIZED; return true; } Maybe Scanner::ScanRegExpFlags() { DCHECK(next_.token == Token::REGEXP_LITERAL); // Scan regular expression flags. int flags = 0; while (c0_ != kEndOfInput && unicode_cache_->IsIdentifierPart(c0_)) { RegExp::Flags flag = RegExp::kNone; switch (c0_) { case 'g': flag = RegExp::kGlobal; break; case 'i': flag = RegExp::kIgnoreCase; break; case 'm': flag = RegExp::kMultiline; break; case 's': if (FLAG_harmony_regexp_dotall) { flag = RegExp::kDotAll; } else { return Nothing(); } break; case 'u': flag = RegExp::kUnicode; break; case 'y': flag = RegExp::kSticky; break; default: return Nothing(); } if (flags & flag) { return Nothing(); } Advance(); flags |= flag; } next_.location.end_pos = source_pos(); return Just(RegExp::Flags(flags)); } const AstRawString* Scanner::CurrentSymbol( AstValueFactory* ast_value_factory) const { if (is_literal_one_byte()) { return ast_value_factory->GetOneByteString(literal_one_byte_string()); } return ast_value_factory->GetTwoByteString(literal_two_byte_string()); } const AstRawString* Scanner::NextSymbol( AstValueFactory* ast_value_factory) const { if (is_next_literal_one_byte()) { return ast_value_factory->GetOneByteString(next_literal_one_byte_string()); } return ast_value_factory->GetTwoByteString(next_literal_two_byte_string()); } const AstRawString* Scanner::CurrentRawSymbol( AstValueFactory* ast_value_factory) const { if (is_raw_literal_one_byte()) { return ast_value_factory->GetOneByteString(raw_literal_one_byte_string()); } return ast_value_factory->GetTwoByteString(raw_literal_two_byte_string()); } double Scanner::DoubleValue() { DCHECK(is_literal_one_byte()); return StringToDouble( unicode_cache_, literal_one_byte_string(), ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY); } bool Scanner::IsDuplicateSymbol(DuplicateFinder* duplicate_finder, AstValueFactory* ast_value_factory) const { DCHECK_NOT_NULL(duplicate_finder); DCHECK_NOT_NULL(ast_value_factory); const AstRawString* string = CurrentSymbol(ast_value_factory); return !duplicate_finder->known_symbols_.insert(string).second; } void Scanner::SeekNext(size_t position) { // Use with care: This cleanly resets most, but not all scanner state. // TODO(vogelheim): Fix this, or at least DCHECK the relevant conditions. // To re-scan from a given character position, we need to: // 1, Reset the current_, next_ and next_next_ tokens // (next_ + next_next_ will be overwrittem by Next(), // current_ will remain unchanged, so overwrite it fully.) current_ = {{0, 0}, nullptr, nullptr, 0, Token::UNINITIALIZED, MessageTemplate::kNone, {0, 0}, Token::UNINITIALIZED}; next_.token = Token::UNINITIALIZED; next_.contextual_token = Token::UNINITIALIZED; next_next_.token = Token::UNINITIALIZED; next_next_.contextual_token = Token::UNINITIALIZED; // 2, reset the source to the desired position, source_->Seek(position); // 3, re-scan, by scanning the look-ahead char + 1 token (next_). c0_ = source_->Advance(); Next(); DCHECK_EQ(next_.location.beg_pos, static_cast(position)); } } // namespace internal } // namespace v8