// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "accessors.h" #include "api.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "compilation-cache.h" #include "debug.h" #include "global-handles.h" #include "mark-compact.h" #include "natives.h" #include "scanner.h" #include "scopeinfo.h" #include "v8threads.h" namespace v8 { namespace internal { #define ROOT_ALLOCATION(type, name) type* Heap::name##_; ROOT_LIST(ROOT_ALLOCATION) #undef ROOT_ALLOCATION #define STRUCT_ALLOCATION(NAME, Name, name) Map* Heap::name##_map_; STRUCT_LIST(STRUCT_ALLOCATION) #undef STRUCT_ALLOCATION #define SYMBOL_ALLOCATION(name, string) String* Heap::name##_; SYMBOL_LIST(SYMBOL_ALLOCATION) #undef SYMBOL_ALLOCATION String* Heap::hidden_symbol_; NewSpace Heap::new_space_; OldSpace* Heap::old_pointer_space_ = NULL; OldSpace* Heap::old_data_space_ = NULL; OldSpace* Heap::code_space_ = NULL; MapSpace* Heap::map_space_ = NULL; LargeObjectSpace* Heap::lo_space_ = NULL; static const int kMinimumPromotionLimit = 2*MB; static const int kMinimumAllocationLimit = 8*MB; int Heap::old_gen_promotion_limit_ = kMinimumPromotionLimit; int Heap::old_gen_allocation_limit_ = kMinimumAllocationLimit; int Heap::old_gen_exhausted_ = false; int Heap::amount_of_external_allocated_memory_ = 0; int Heap::amount_of_external_allocated_memory_at_last_global_gc_ = 0; // semispace_size_ should be a power of 2 and old_generation_size_ should be // a multiple of Page::kPageSize. int Heap::semispace_size_ = 2*MB; int Heap::old_generation_size_ = 512*MB; int Heap::initial_semispace_size_ = 256*KB; GCCallback Heap::global_gc_prologue_callback_ = NULL; GCCallback Heap::global_gc_epilogue_callback_ = NULL; // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap. int Heap::young_generation_size_ = 0; // Will be 2 * semispace_size_. // Double the new space after this many scavenge collections. int Heap::new_space_growth_limit_ = 8; int Heap::scavenge_count_ = 0; Heap::HeapState Heap::gc_state_ = NOT_IN_GC; int Heap::mc_count_ = 0; int Heap::gc_count_ = 0; int Heap::always_allocate_scope_depth_ = 0; bool Heap::context_disposed_pending_ = false; #ifdef DEBUG bool Heap::allocation_allowed_ = true; int Heap::allocation_timeout_ = 0; bool Heap::disallow_allocation_failure_ = false; #endif // DEBUG int Heap::Capacity() { if (!HasBeenSetup()) return 0; return new_space_.Capacity() + old_pointer_space_->Capacity() + old_data_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity(); } int Heap::Available() { if (!HasBeenSetup()) return 0; return new_space_.Available() + old_pointer_space_->Available() + old_data_space_->Available() + code_space_->Available() + map_space_->Available(); } bool Heap::HasBeenSetup() { return old_pointer_space_ != NULL && old_data_space_ != NULL && code_space_ != NULL && map_space_ != NULL && lo_space_ != NULL; } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) { // Is global GC requested? if (space != NEW_SPACE || FLAG_gc_global) { Counters::gc_compactor_caused_by_request.Increment(); return MARK_COMPACTOR; } // Is enough data promoted to justify a global GC? if (OldGenerationPromotionLimitReached()) { Counters::gc_compactor_caused_by_promoted_data.Increment(); return MARK_COMPACTOR; } // Have allocation in OLD and LO failed? if (old_gen_exhausted_) { Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment(); return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (MemoryAllocator::MaxAvailable() <= new_space_.Size()) { Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment(); return MARK_COMPACTOR; } // Default return SCAVENGER; } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled with ENABLE_LOGGING_AND_PROFILING and --log-gc is set. The // following logic is used to avoid double logging. #if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING) if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms(); #elif defined(DEBUG) if (FLAG_heap_stats) { new_space_.CollectStatistics(); ReportHeapStatistics("Before GC"); new_space_.ClearHistograms(); } #elif defined(ENABLE_LOGGING_AND_PROFILING) if (FLAG_log_gc) { new_space_.CollectStatistics(); new_space_.ReportStatistics(); new_space_.ClearHistograms(); } #endif } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING) if (FLAG_heap_stats) { ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } #elif defined(DEBUG) if (FLAG_heap_stats) ReportHeapStatistics("After GC"); #elif defined(ENABLE_LOGGING_AND_PROFILING) if (FLAG_log_gc) new_space_.ReportStatistics(); #endif } #endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) void Heap::GarbageCollectionPrologue() { gc_count_++; #ifdef DEBUG ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); allow_allocation(false); if (FLAG_verify_heap) { Verify(); } if (FLAG_gc_verbose) Print(); if (FLAG_print_rset) { // Not all spaces have remembered set bits that we care about. old_pointer_space_->PrintRSet(); map_space_->PrintRSet(); lo_space_->PrintRSet(); } #endif #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) ReportStatisticsBeforeGC(); #endif } int Heap::SizeOfObjects() { int total = 0; AllSpaces spaces; while (Space* space = spaces.next()) total += space->Size(); return total; } void Heap::GarbageCollectionEpilogue() { #ifdef DEBUG allow_allocation(true); ZapFromSpace(); if (FLAG_verify_heap) { Verify(); } if (FLAG_print_global_handles) GlobalHandles::Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); #endif Counters::alive_after_last_gc.Set(SizeOfObjects()); SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table_); Counters::symbol_table_capacity.Set(symbol_table->Capacity()); Counters::number_of_symbols.Set(symbol_table->NumberOfElements()); #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) ReportStatisticsAfterGC(); #endif #ifdef ENABLE_DEBUGGER_SUPPORT Debug::AfterGarbageCollection(); #endif } void Heap::CollectAllGarbage() { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. CollectGarbage(0, OLD_POINTER_SPACE); } void Heap::CollectAllGarbageIfContextDisposed() { // If the garbage collector interface is exposed through the global // gc() function, we avoid being clever about forcing GCs when // contexts are disposed and leave it to the embedder to make // informed decisions about when to force a collection. if (!FLAG_expose_gc && context_disposed_pending_) { HistogramTimerScope scope(&Counters::gc_context); CollectAllGarbage(); } context_disposed_pending_ = false; } void Heap::NotifyContextDisposed() { context_disposed_pending_ = true; } bool Heap::CollectGarbage(int requested_size, AllocationSpace space) { // The VM is in the GC state until exiting this function. VMState state(GC); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif { GCTracer tracer; GarbageCollectionPrologue(); // The GC count was incremented in the prologue. Tell the tracer about // it. tracer.set_gc_count(gc_count_); GarbageCollector collector = SelectGarbageCollector(space); // Tell the tracer which collector we've selected. tracer.set_collector(collector); HistogramTimer* rate = (collector == SCAVENGER) ? &Counters::gc_scavenger : &Counters::gc_compactor; rate->Start(); PerformGarbageCollection(space, collector, &tracer); rate->Stop(); GarbageCollectionEpilogue(); } #ifdef ENABLE_LOGGING_AND_PROFILING if (FLAG_log_gc) HeapProfiler::WriteSample(); #endif switch (space) { case NEW_SPACE: return new_space_.Available() >= requested_size; case OLD_POINTER_SPACE: return old_pointer_space_->Available() >= requested_size; case OLD_DATA_SPACE: return old_data_space_->Available() >= requested_size; case CODE_SPACE: return code_space_->Available() >= requested_size; case MAP_SPACE: return map_space_->Available() >= requested_size; case LO_SPACE: return lo_space_->Available() >= requested_size; } return false; } void Heap::PerformScavenge() { GCTracer tracer; PerformGarbageCollection(NEW_SPACE, SCAVENGER, &tracer); } #ifdef DEBUG // Helper class for verifying the symbol table. class SymbolTableVerifier : public ObjectVisitor { public: SymbolTableVerifier() { } void VisitPointers(Object** start, Object** end) { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { // Check that the symbol is actually a symbol. ASSERT((*p)->IsNull() || (*p)->IsUndefined() || (*p)->IsSymbol()); } } } }; #endif // DEBUG static void VerifySymbolTable() { #ifdef DEBUG SymbolTableVerifier verifier; SymbolTable* symbol_table = SymbolTable::cast(Heap::symbol_table()); symbol_table->IterateElements(&verifier); #endif // DEBUG } void Heap::PerformGarbageCollection(AllocationSpace space, GarbageCollector collector, GCTracer* tracer) { VerifySymbolTable(); if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) { ASSERT(!allocation_allowed_); global_gc_prologue_callback_(); } if (collector == MARK_COMPACTOR) { MarkCompact(tracer); int old_gen_size = PromotedSpaceSize(); old_gen_promotion_limit_ = old_gen_size + Max(kMinimumPromotionLimit, old_gen_size / 3); old_gen_allocation_limit_ = old_gen_size + Max(kMinimumAllocationLimit, old_gen_size / 3); old_gen_exhausted_ = false; // If we have used the mark-compact collector to collect the new // space, and it has not compacted the new space, we force a // separate scavenge collection. This is a hack. It covers the // case where (1) a new space collection was requested, (2) the // collector selection policy selected the mark-compact collector, // and (3) the mark-compact collector policy selected not to // compact the new space. In that case, there is no more (usable) // free space in the new space after the collection compared to // before. if (space == NEW_SPACE && !MarkCompactCollector::HasCompacted()) { Scavenge(); } } else { Scavenge(); } Counters::objs_since_last_young.Set(0); PostGarbageCollectionProcessing(); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. amount_of_external_allocated_memory_at_last_global_gc_ = amount_of_external_allocated_memory_; } if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) { ASSERT(!allocation_allowed_); global_gc_epilogue_callback_(); } VerifySymbolTable(); } void Heap::PostGarbageCollectionProcessing() { // Process weak handles post gc. GlobalHandles::PostGarbageCollectionProcessing(); // Update flat string readers. FlatStringReader::PostGarbageCollectionProcessing(); } void Heap::MarkCompact(GCTracer* tracer) { gc_state_ = MARK_COMPACT; mc_count_++; tracer->set_full_gc_count(mc_count_); LOG(ResourceEvent("markcompact", "begin")); MarkCompactCollector::Prepare(tracer); bool is_compacting = MarkCompactCollector::IsCompacting(); MarkCompactPrologue(is_compacting); MarkCompactCollector::CollectGarbage(); MarkCompactEpilogue(is_compacting); LOG(ResourceEvent("markcompact", "end")); gc_state_ = NOT_IN_GC; Shrink(); Counters::objs_since_last_full.Set(0); context_disposed_pending_ = false; } void Heap::MarkCompactPrologue(bool is_compacting) { // At any old GC clear the keyed lookup cache to enable collection of unused // maps. ClearKeyedLookupCache(); CompilationCache::MarkCompactPrologue(); Top::MarkCompactPrologue(is_compacting); ThreadManager::MarkCompactPrologue(is_compacting); } void Heap::MarkCompactEpilogue(bool is_compacting) { Top::MarkCompactEpilogue(is_compacting); ThreadManager::MarkCompactEpilogue(is_compacting); } Object* Heap::FindCodeObject(Address a) { Object* obj = code_space_->FindObject(a); if (obj->IsFailure()) { obj = lo_space_->FindObject(a); } ASSERT(!obj->IsFailure()); return obj; } // Helper class for copying HeapObjects class ScavengeVisitor: public ObjectVisitor { public: void VisitPointer(Object** p) { ScavengePointer(p); } void VisitPointers(Object** start, Object** end) { // Copy all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) ScavengePointer(p); } private: void ScavengePointer(Object** p) { Object* object = *p; if (!Heap::InNewSpace(object)) return; Heap::ScavengeObject(reinterpret_cast(p), reinterpret_cast(object)); } }; // A queue of pointers and maps of to-be-promoted objects during a // scavenge collection. class PromotionQueue { public: void Initialize(Address start_address) { front_ = rear_ = reinterpret_cast(start_address); } bool is_empty() { return front_ <= rear_; } void insert(HeapObject* object, Map* map) { *(--rear_) = object; *(--rear_) = map; // Assert no overflow into live objects. ASSERT(reinterpret_cast
(rear_) >= Heap::new_space()->top()); } void remove(HeapObject** object, Map** map) { *object = *(--front_); *map = Map::cast(*(--front_)); // Assert no underflow. ASSERT(front_ >= rear_); } private: // The front of the queue is higher in memory than the rear. HeapObject** front_; HeapObject** rear_; }; // Shared state read by the scavenge collector and set by ScavengeObject. static PromotionQueue promotion_queue; #ifdef DEBUG // Visitor class to verify pointers in code or data space do not point into // new space. class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor { public: void VisitPointers(Object** start, Object**end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { ASSERT(!Heap::InNewSpace(HeapObject::cast(*current))); } } } }; static void VerifyNonPointerSpacePointers() { // Verify that there are no pointers to new space in spaces where we // do not expect them. VerifyNonPointerSpacePointersVisitor v; HeapObjectIterator code_it(Heap::code_space()); while (code_it.has_next()) { HeapObject* object = code_it.next(); if (object->IsCode()) { Code::cast(object)->ConvertICTargetsFromAddressToObject(); object->Iterate(&v); Code::cast(object)->ConvertICTargetsFromObjectToAddress(); } else { // If we find non-code objects in code space (e.g., free list // nodes) we want to verify them as well. object->Iterate(&v); } } HeapObjectIterator data_it(Heap::old_data_space()); while (data_it.has_next()) data_it.next()->Iterate(&v); } #endif void Heap::Scavenge() { #ifdef DEBUG if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers(); #endif gc_state_ = SCAVENGE; // Implements Cheney's copying algorithm LOG(ResourceEvent("scavenge", "begin")); scavenge_count_++; if (new_space_.Capacity() < new_space_.MaximumCapacity() && scavenge_count_ > new_space_growth_limit_) { // Double the size of the new space, and double the limit. The next // doubling attempt will occur after the current new_space_growth_limit_ // more collections. // TODO(1240712): NewSpace::Double has a return value which is // ignored here. new_space_.Double(); new_space_growth_limit_ *= 2; } // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_.Flip(); new_space_.ResetAllocationInfo(); // We need to sweep newly copied objects which can be either in the // to space or promoted to the old generation. For to-space // objects, we treat the bottom of the to space as a queue. Newly // copied and unswept objects lie between a 'front' mark and the // allocation pointer. // // Promoted objects can go into various old-generation spaces, and // can be allocated internally in the spaces (from the free list). // We treat the top of the to space as a queue of addresses of // promoted objects. The addresses of newly promoted and unswept // objects lie between a 'front' mark and a 'rear' mark that is // updated as a side effect of promoting an object. // // There is guaranteed to be enough room at the top of the to space // for the addresses of promoted objects: every object promoted // frees up its size in bytes from the top of the new space, and // objects are at least one pointer in size. Address new_space_front = new_space_.ToSpaceLow(); promotion_queue.Initialize(new_space_.ToSpaceHigh()); ScavengeVisitor scavenge_visitor; // Copy roots. IterateRoots(&scavenge_visitor); // Copy objects reachable from weak pointers. GlobalHandles::IterateWeakRoots(&scavenge_visitor); #if V8_HOST_ARCH_64_BIT // TODO(X64): Make this go away again. We currently disable RSets for // 64-bit-mode. HeapObjectIterator old_pointer_iterator(old_pointer_space_); while (old_pointer_iterator.has_next()) { HeapObject* heap_object = old_pointer_iterator.next(); heap_object->Iterate(&scavenge_visitor); } HeapObjectIterator map_iterator(map_space_); while (map_iterator.has_next()) { HeapObject* heap_object = map_iterator.next(); heap_object->Iterate(&scavenge_visitor); } LargeObjectIterator lo_iterator(lo_space_); while (lo_iterator.has_next()) { HeapObject* heap_object = lo_iterator.next(); if (heap_object->IsFixedArray()) { heap_object->Iterate(&scavenge_visitor); } } #else // V8_HOST_ARCH_64_BIT // Copy objects reachable from the old generation. By definition, // there are no intergenerational pointers in code or data spaces. IterateRSet(old_pointer_space_, &ScavengePointer); IterateRSet(map_space_, &ScavengePointer); lo_space_->IterateRSet(&ScavengePointer); #endif // V8_HOST_ARCH_64_BIT do { ASSERT(new_space_front <= new_space_.top()); // The addresses new_space_front and new_space_.top() define a // queue of unprocessed copied objects. Process them until the // queue is empty. while (new_space_front < new_space_.top()) { HeapObject* object = HeapObject::FromAddress(new_space_front); object->Iterate(&scavenge_visitor); new_space_front += object->Size(); } // Promote and process all the to-be-promoted objects. while (!promotion_queue.is_empty()) { HeapObject* source; Map* map; promotion_queue.remove(&source, &map); // Copy the from-space object to its new location (given by the // forwarding address) and fix its map. HeapObject* target = source->map_word().ToForwardingAddress(); CopyBlock(reinterpret_cast(target->address()), reinterpret_cast(source->address()), source->SizeFromMap(map)); target->set_map(map); #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) // Update NewSpace stats if necessary. RecordCopiedObject(target); #endif // Visit the newly copied object for pointers to new space. target->Iterate(&scavenge_visitor); UpdateRSet(target); } // Take another spin if there are now unswept objects in new space // (there are currently no more unswept promoted objects). } while (new_space_front < new_space_.top()); // Set age mark. new_space_.set_age_mark(new_space_.top()); LOG(ResourceEvent("scavenge", "end")); gc_state_ = NOT_IN_GC; } void Heap::ClearRSetRange(Address start, int size_in_bytes) { uint32_t start_bit; Address start_word_address = Page::ComputeRSetBitPosition(start, 0, &start_bit); uint32_t end_bit; Address end_word_address = Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize, 0, &end_bit); // We want to clear the bits in the starting word starting with the // first bit, and in the ending word up to and including the last // bit. Build a pair of bitmasks to do that. uint32_t start_bitmask = start_bit - 1; uint32_t end_bitmask = ~((end_bit << 1) - 1); // If the start address and end address are the same, we mask that // word once, otherwise mask the starting and ending word // separately and all the ones in between. if (start_word_address == end_word_address) { Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask); } else { Memory::uint32_at(start_word_address) &= start_bitmask; Memory::uint32_at(end_word_address) &= end_bitmask; start_word_address += kIntSize; memset(start_word_address, 0, end_word_address - start_word_address); } } class UpdateRSetVisitor: public ObjectVisitor { public: void VisitPointer(Object** p) { UpdateRSet(p); } void VisitPointers(Object** start, Object** end) { // Update a store into slots [start, end), used (a) to update remembered // set when promoting a young object to old space or (b) to rebuild // remembered sets after a mark-compact collection. for (Object** p = start; p < end; p++) UpdateRSet(p); } private: void UpdateRSet(Object** p) { // The remembered set should not be set. It should be clear for objects // newly copied to old space, and it is cleared before rebuilding in the // mark-compact collector. ASSERT(!Page::IsRSetSet(reinterpret_cast
(p), 0)); if (Heap::InNewSpace(*p)) { Page::SetRSet(reinterpret_cast
(p), 0); } } }; int Heap::UpdateRSet(HeapObject* obj) { #ifndef V8_HOST_ARCH_64_BIT // TODO(X64) Reenable RSet when we have a working 64-bit layout of Page. ASSERT(!InNewSpace(obj)); // Special handling of fixed arrays to iterate the body based on the start // address and offset. Just iterating the pointers as in UpdateRSetVisitor // will not work because Page::SetRSet needs to have the start of the // object. if (obj->IsFixedArray()) { FixedArray* array = FixedArray::cast(obj); int length = array->length(); for (int i = 0; i < length; i++) { int offset = FixedArray::kHeaderSize + i * kPointerSize; ASSERT(!Page::IsRSetSet(obj->address(), offset)); if (Heap::InNewSpace(array->get(i))) { Page::SetRSet(obj->address(), offset); } } } else if (!obj->IsCode()) { // Skip code object, we know it does not contain inter-generational // pointers. UpdateRSetVisitor v; obj->Iterate(&v); } #endif // V8_HOST_ARCH_64_BIT return obj->Size(); } void Heap::RebuildRSets() { // By definition, we do not care about remembered set bits in code or data // spaces. map_space_->ClearRSet(); RebuildRSets(map_space_); old_pointer_space_->ClearRSet(); RebuildRSets(old_pointer_space_); Heap::lo_space_->ClearRSet(); RebuildRSets(lo_space_); } void Heap::RebuildRSets(PagedSpace* space) { HeapObjectIterator it(space); while (it.has_next()) Heap::UpdateRSet(it.next()); } void Heap::RebuildRSets(LargeObjectSpace* space) { LargeObjectIterator it(space); while (it.has_next()) Heap::UpdateRSet(it.next()); } #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) void Heap::RecordCopiedObject(HeapObject* obj) { bool should_record = false; #ifdef DEBUG should_record = FLAG_heap_stats; #endif #ifdef ENABLE_LOGGING_AND_PROFILING should_record = should_record || FLAG_log_gc; #endif if (should_record) { if (new_space_.Contains(obj)) { new_space_.RecordAllocation(obj); } else { new_space_.RecordPromotion(obj); } } } #endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) HeapObject* Heap::MigrateObject(HeapObject* source, HeapObject* target, int size) { // Copy the content of source to target. CopyBlock(reinterpret_cast(target->address()), reinterpret_cast(source->address()), size); // Set the forwarding address. source->set_map_word(MapWord::FromForwardingAddress(target)); #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) // Update NewSpace stats if necessary. RecordCopiedObject(target); #endif return target; } static inline bool IsShortcutCandidate(HeapObject* object, Map* map) { STATIC_ASSERT(kNotStringTag != 0 && kSymbolTag != 0); ASSERT(object->map() == map); InstanceType type = map->instance_type(); if ((type & kShortcutTypeMask) != kShortcutTypeTag) return false; ASSERT(object->IsString() && !object->IsSymbol()); return ConsString::cast(object)->unchecked_second() == Heap::empty_string(); } void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) { ASSERT(InFromSpace(object)); MapWord first_word = object->map_word(); ASSERT(!first_word.IsForwardingAddress()); // Optimization: Bypass flattened ConsString objects. if (IsShortcutCandidate(object, first_word.ToMap())) { object = HeapObject::cast(ConsString::cast(object)->unchecked_first()); *p = object; // After patching *p we have to repeat the checks that object is in the // active semispace of the young generation and not already copied. if (!InNewSpace(object)) return; first_word = object->map_word(); if (first_word.IsForwardingAddress()) { *p = first_word.ToForwardingAddress(); return; } } int object_size = object->SizeFromMap(first_word.ToMap()); // We rely on live objects in new space to be at least two pointers, // so we can store the from-space address and map pointer of promoted // objects in the to space. ASSERT(object_size >= 2 * kPointerSize); // If the object should be promoted, we try to copy it to old space. if (ShouldBePromoted(object->address(), object_size)) { OldSpace* target_space = Heap::TargetSpace(object); ASSERT(target_space == Heap::old_pointer_space_ || target_space == Heap::old_data_space_); Object* result = target_space->AllocateRaw(object_size); if (!result->IsFailure()) { HeapObject* target = HeapObject::cast(result); if (target_space == Heap::old_pointer_space_) { // Save the from-space object pointer and its map pointer at the // top of the to space to be swept and copied later. Write the // forwarding address over the map word of the from-space // object. promotion_queue.insert(object, first_word.ToMap()); object->set_map_word(MapWord::FromForwardingAddress(target)); // Give the space allocated for the result a proper map by // treating it as a free list node (not linked into the free // list). FreeListNode* node = FreeListNode::FromAddress(target->address()); node->set_size(object_size); *p = target; } else { // Objects promoted to the data space can be copied immediately // and not revisited---we will never sweep that space for // pointers and the copied objects do not contain pointers to // new space objects. *p = MigrateObject(object, target, object_size); #ifdef DEBUG VerifyNonPointerSpacePointersVisitor v; (*p)->Iterate(&v); #endif } return; } } // The object should remain in new space or the old space allocation failed. Object* result = new_space_.AllocateRaw(object_size); // Failed allocation at this point is utterly unexpected. ASSERT(!result->IsFailure()); *p = MigrateObject(object, HeapObject::cast(result), object_size); } void Heap::ScavengePointer(HeapObject** p) { ScavengeObject(p, *p); } Object* Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result = AllocateRawMap(Map::kSize); if (result->IsFailure()) return result; // Map::cast cannot be used due to uninitialized map field. reinterpret_cast(result)->set_map(meta_map()); reinterpret_cast(result)->set_instance_type(instance_type); reinterpret_cast(result)->set_instance_size(instance_size); reinterpret_cast(result)->set_inobject_properties(0); reinterpret_cast(result)->set_unused_property_fields(0); return result; } Object* Heap::AllocateMap(InstanceType instance_type, int instance_size) { Object* result = AllocateRawMap(Map::kSize); if (result->IsFailure()) return result; Map* map = reinterpret_cast(result); map->set_map(meta_map()); map->set_instance_type(instance_type); map->set_prototype(null_value()); map->set_constructor(null_value()); map->set_instance_size(instance_size); map->set_inobject_properties(0); map->set_instance_descriptors(empty_descriptor_array()); map->set_code_cache(empty_fixed_array()); map->set_unused_property_fields(0); map->set_bit_field(0); map->set_bit_field2(0); return map; } bool Heap::CreateInitialMaps() { Object* obj = AllocatePartialMap(MAP_TYPE, Map::kSize); if (obj->IsFailure()) return false; // Map::cast cannot be used due to uninitialized map field. meta_map_ = reinterpret_cast(obj); meta_map()->set_map(meta_map()); obj = AllocatePartialMap(FIXED_ARRAY_TYPE, FixedArray::kHeaderSize); if (obj->IsFailure()) return false; fixed_array_map_ = Map::cast(obj); obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize); if (obj->IsFailure()) return false; oddball_map_ = Map::cast(obj); // Allocate the empty array obj = AllocateEmptyFixedArray(); if (obj->IsFailure()) return false; empty_fixed_array_ = FixedArray::cast(obj); obj = Allocate(oddball_map(), OLD_DATA_SPACE); if (obj->IsFailure()) return false; null_value_ = obj; // Allocate the empty descriptor array. AllocateMap can now be used. obj = AllocateEmptyFixedArray(); if (obj->IsFailure()) return false; // There is a check against empty_descriptor_array() in cast(). empty_descriptor_array_ = reinterpret_cast(obj); // Fix the instance_descriptors for the existing maps. meta_map()->set_instance_descriptors(empty_descriptor_array()); meta_map()->set_code_cache(empty_fixed_array()); fixed_array_map()->set_instance_descriptors(empty_descriptor_array()); fixed_array_map()->set_code_cache(empty_fixed_array()); oddball_map()->set_instance_descriptors(empty_descriptor_array()); oddball_map()->set_code_cache(empty_fixed_array()); // Fix prototype object for existing maps. meta_map()->set_prototype(null_value()); meta_map()->set_constructor(null_value()); fixed_array_map()->set_prototype(null_value()); fixed_array_map()->set_constructor(null_value()); oddball_map()->set_prototype(null_value()); oddball_map()->set_constructor(null_value()); obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize); if (obj->IsFailure()) return false; heap_number_map_ = Map::cast(obj); obj = AllocateMap(PROXY_TYPE, Proxy::kSize); if (obj->IsFailure()) return false; proxy_map_ = Map::cast(obj); #define ALLOCATE_STRING_MAP(type, size, name) \ obj = AllocateMap(type, size); \ if (obj->IsFailure()) return false; \ name##_map_ = Map::cast(obj); STRING_TYPE_LIST(ALLOCATE_STRING_MAP); #undef ALLOCATE_STRING_MAP obj = AllocateMap(SHORT_STRING_TYPE, SeqTwoByteString::kAlignedSize); if (obj->IsFailure()) return false; undetectable_short_string_map_ = Map::cast(obj); undetectable_short_string_map_->set_is_undetectable(); obj = AllocateMap(MEDIUM_STRING_TYPE, SeqTwoByteString::kAlignedSize); if (obj->IsFailure()) return false; undetectable_medium_string_map_ = Map::cast(obj); undetectable_medium_string_map_->set_is_undetectable(); obj = AllocateMap(LONG_STRING_TYPE, SeqTwoByteString::kAlignedSize); if (obj->IsFailure()) return false; undetectable_long_string_map_ = Map::cast(obj); undetectable_long_string_map_->set_is_undetectable(); obj = AllocateMap(SHORT_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize); if (obj->IsFailure()) return false; undetectable_short_ascii_string_map_ = Map::cast(obj); undetectable_short_ascii_string_map_->set_is_undetectable(); obj = AllocateMap(MEDIUM_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize); if (obj->IsFailure()) return false; undetectable_medium_ascii_string_map_ = Map::cast(obj); undetectable_medium_ascii_string_map_->set_is_undetectable(); obj = AllocateMap(LONG_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize); if (obj->IsFailure()) return false; undetectable_long_ascii_string_map_ = Map::cast(obj); undetectable_long_ascii_string_map_->set_is_undetectable(); obj = AllocateMap(BYTE_ARRAY_TYPE, Array::kAlignedSize); if (obj->IsFailure()) return false; byte_array_map_ = Map::cast(obj); obj = AllocateMap(CODE_TYPE, Code::kHeaderSize); if (obj->IsFailure()) return false; code_map_ = Map::cast(obj); obj = AllocateMap(FILLER_TYPE, kPointerSize); if (obj->IsFailure()) return false; one_word_filler_map_ = Map::cast(obj); obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize); if (obj->IsFailure()) return false; two_word_filler_map_ = Map::cast(obj); #define ALLOCATE_STRUCT_MAP(NAME, Name, name) \ obj = AllocateMap(NAME##_TYPE, Name::kSize); \ if (obj->IsFailure()) return false; \ name##_map_ = Map::cast(obj); STRUCT_LIST(ALLOCATE_STRUCT_MAP) #undef ALLOCATE_STRUCT_MAP obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize); if (obj->IsFailure()) return false; hash_table_map_ = Map::cast(obj); obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize); if (obj->IsFailure()) return false; context_map_ = Map::cast(obj); obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize); if (obj->IsFailure()) return false; catch_context_map_ = Map::cast(obj); obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize); if (obj->IsFailure()) return false; global_context_map_ = Map::cast(obj); obj = AllocateMap(JS_FUNCTION_TYPE, JSFunction::kSize); if (obj->IsFailure()) return false; boilerplate_function_map_ = Map::cast(obj); obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kSize); if (obj->IsFailure()) return false; shared_function_info_map_ = Map::cast(obj); ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array())); return true; } Object* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize); AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE; Object* result = AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE); if (result->IsFailure()) return result; HeapObject::cast(result)->set_map(heap_number_map()); HeapNumber::cast(result)->set_value(value); return result; } Object* Heap::AllocateHeapNumber(double value) { // Use general version, if we're forced to always allocate. if (always_allocate()) return AllocateHeapNumber(value, NOT_TENURED); // This version of AllocateHeapNumber is optimized for // allocation in new space. STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize); ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); Object* result = new_space_.AllocateRaw(HeapNumber::kSize); if (result->IsFailure()) return result; HeapObject::cast(result)->set_map(heap_number_map()); HeapNumber::cast(result)->set_value(value); return result; } Object* Heap::CreateOddball(Map* map, const char* to_string, Object* to_number) { Object* result = Allocate(map, OLD_DATA_SPACE); if (result->IsFailure()) return result; return Oddball::cast(result)->Initialize(to_string, to_number); } bool Heap::CreateApiObjects() { Object* obj; obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); if (obj->IsFailure()) return false; neander_map_ = Map::cast(obj); obj = Heap::AllocateJSObjectFromMap(neander_map_); if (obj->IsFailure()) return false; Object* elements = AllocateFixedArray(2); if (elements->IsFailure()) return false; FixedArray::cast(elements)->set(0, Smi::FromInt(0)); JSObject::cast(obj)->set_elements(FixedArray::cast(elements)); message_listeners_ = JSObject::cast(obj); return true; } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope; { CEntryStub stub; c_entry_code_ = *stub.GetCode(); } { CEntryDebugBreakStub stub; c_entry_debug_break_code_ = *stub.GetCode(); } { JSEntryStub stub; js_entry_code_ = *stub.GetCode(); } { JSConstructEntryStub stub; js_construct_entry_code_ = *stub.GetCode(); } } bool Heap::CreateInitialObjects() { Object* obj; // The -0 value must be set before NumberFromDouble works. obj = AllocateHeapNumber(-0.0, TENURED); if (obj->IsFailure()) return false; minus_zero_value_ = obj; ASSERT(signbit(minus_zero_value_->Number()) != 0); obj = AllocateHeapNumber(OS::nan_value(), TENURED); if (obj->IsFailure()) return false; nan_value_ = obj; obj = Allocate(oddball_map(), OLD_DATA_SPACE); if (obj->IsFailure()) return false; undefined_value_ = obj; ASSERT(!InNewSpace(undefined_value())); // Allocate initial symbol table. obj = SymbolTable::Allocate(kInitialSymbolTableSize); if (obj->IsFailure()) return false; symbol_table_ = obj; // Assign the print strings for oddballs after creating symboltable. Object* symbol = LookupAsciiSymbol("undefined"); if (symbol->IsFailure()) return false; Oddball::cast(undefined_value_)->set_to_string(String::cast(symbol)); Oddball::cast(undefined_value_)->set_to_number(nan_value_); // Assign the print strings for oddballs after creating symboltable. symbol = LookupAsciiSymbol("null"); if (symbol->IsFailure()) return false; Oddball::cast(null_value_)->set_to_string(String::cast(symbol)); Oddball::cast(null_value_)->set_to_number(Smi::FromInt(0)); // Allocate the null_value obj = Oddball::cast(null_value())->Initialize("null", Smi::FromInt(0)); if (obj->IsFailure()) return false; obj = CreateOddball(oddball_map(), "true", Smi::FromInt(1)); if (obj->IsFailure()) return false; true_value_ = obj; obj = CreateOddball(oddball_map(), "false", Smi::FromInt(0)); if (obj->IsFailure()) return false; false_value_ = obj; obj = CreateOddball(oddball_map(), "hole", Smi::FromInt(-1)); if (obj->IsFailure()) return false; the_hole_value_ = obj; // Allocate the empty string. obj = AllocateRawAsciiString(0, TENURED); if (obj->IsFailure()) return false; empty_string_ = String::cast(obj); #define SYMBOL_INITIALIZE(name, string) \ obj = LookupAsciiSymbol(string); \ if (obj->IsFailure()) return false; \ (name##_) = String::cast(obj); SYMBOL_LIST(SYMBOL_INITIALIZE) #undef SYMBOL_INITIALIZE // Allocate the hidden symbol which is used to identify the hidden properties // in JSObjects. The hash code has a special value so that it will not match // the empty string when searching for the property. It cannot be part of the // SYMBOL_LIST because it needs to be allocated manually with the special // hash code in place. The hash code for the hidden_symbol is zero to ensure // that it will always be at the first entry in property descriptors. obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask); if (obj->IsFailure()) return false; hidden_symbol_ = String::cast(obj); // Allocate the proxy for __proto__. obj = AllocateProxy((Address) &Accessors::ObjectPrototype); if (obj->IsFailure()) return false; prototype_accessors_ = Proxy::cast(obj); // Allocate the code_stubs dictionary. obj = Dictionary::Allocate(4); if (obj->IsFailure()) return false; code_stubs_ = Dictionary::cast(obj); // Allocate the non_monomorphic_cache used in stub-cache.cc obj = Dictionary::Allocate(4); if (obj->IsFailure()) return false; non_monomorphic_cache_ = Dictionary::cast(obj); CreateFixedStubs(); // Allocate the number->string conversion cache obj = AllocateFixedArray(kNumberStringCacheSize * 2); if (obj->IsFailure()) return false; number_string_cache_ = FixedArray::cast(obj); // Allocate cache for single character strings. obj = AllocateFixedArray(String::kMaxAsciiCharCode+1); if (obj->IsFailure()) return false; single_character_string_cache_ = FixedArray::cast(obj); // Allocate cache for external strings pointing to native source code. obj = AllocateFixedArray(Natives::GetBuiltinsCount()); if (obj->IsFailure()) return false; natives_source_cache_ = FixedArray::cast(obj); // Handling of script id generation is in Factory::NewScript. last_script_id_ = undefined_value(); // Initialize keyed lookup cache. ClearKeyedLookupCache(); // Initialize compilation cache. CompilationCache::Clear(); return true; } static inline int double_get_hash(double d) { DoubleRepresentation rep(d); return ((static_cast(rep.bits) ^ static_cast(rep.bits >> 32)) & (Heap::kNumberStringCacheSize - 1)); } static inline int smi_get_hash(Smi* smi) { return (smi->value() & (Heap::kNumberStringCacheSize - 1)); } Object* Heap::GetNumberStringCache(Object* number) { int hash; if (number->IsSmi()) { hash = smi_get_hash(Smi::cast(number)); } else { hash = double_get_hash(number->Number()); } Object* key = number_string_cache_->get(hash * 2); if (key == number) { return String::cast(number_string_cache_->get(hash * 2 + 1)); } else if (key->IsHeapNumber() && number->IsHeapNumber() && key->Number() == number->Number()) { return String::cast(number_string_cache_->get(hash * 2 + 1)); } return undefined_value(); } void Heap::SetNumberStringCache(Object* number, String* string) { int hash; if (number->IsSmi()) { hash = smi_get_hash(Smi::cast(number)); number_string_cache_->set(hash * 2, number, SKIP_WRITE_BARRIER); } else { hash = double_get_hash(number->Number()); number_string_cache_->set(hash * 2, number); } number_string_cache_->set(hash * 2 + 1, string); } Object* Heap::SmiOrNumberFromDouble(double value, bool new_object, PretenureFlag pretenure) { // We need to distinguish the minus zero value and this cannot be // done after conversion to int. Doing this by comparing bit // patterns is faster than using fpclassify() et al. static const DoubleRepresentation plus_zero(0.0); static const DoubleRepresentation minus_zero(-0.0); static const DoubleRepresentation nan(OS::nan_value()); ASSERT(minus_zero_value_ != NULL); ASSERT(sizeof(plus_zero.value) == sizeof(plus_zero.bits)); DoubleRepresentation rep(value); if (rep.bits == plus_zero.bits) return Smi::FromInt(0); // not uncommon if (rep.bits == minus_zero.bits) { return new_object ? AllocateHeapNumber(-0.0, pretenure) : minus_zero_value_; } if (rep.bits == nan.bits) { return new_object ? AllocateHeapNumber(OS::nan_value(), pretenure) : nan_value_; } // Try to represent the value as a tagged small integer. int int_value = FastD2I(value); if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { return Smi::FromInt(int_value); } // Materialize the value in the heap. return AllocateHeapNumber(value, pretenure); } Object* Heap::NewNumberFromDouble(double value, PretenureFlag pretenure) { return SmiOrNumberFromDouble(value, true /* number object must be new */, pretenure); } Object* Heap::NumberFromDouble(double value, PretenureFlag pretenure) { return SmiOrNumberFromDouble(value, false /* use preallocated NaN, -0.0 */, pretenure); } Object* Heap::AllocateProxy(Address proxy, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate proxies in paged spaces. STATIC_ASSERT(Proxy::kSize <= Page::kMaxHeapObjectSize); AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE; Object* result = Allocate(proxy_map(), space); if (result->IsFailure()) return result; Proxy::cast(result)->set_proxy(proxy); return result; } Object* Heap::AllocateSharedFunctionInfo(Object* name) { Object* result = Allocate(shared_function_info_map(), NEW_SPACE); if (result->IsFailure()) return result; SharedFunctionInfo* share = SharedFunctionInfo::cast(result); share->set_name(name); Code* illegal = Builtins::builtin(Builtins::Illegal); share->set_code(illegal); share->set_expected_nof_properties(0); share->set_length(0); share->set_formal_parameter_count(0); share->set_instance_class_name(Object_symbol()); share->set_function_data(undefined_value()); share->set_script(undefined_value()); share->set_start_position_and_type(0); share->set_debug_info(undefined_value()); share->set_inferred_name(empty_string()); return result; } Object* Heap::AllocateConsString(String* first, String* second) { int first_length = first->length(); int second_length = second->length(); int length = first_length + second_length; bool is_ascii = first->IsAsciiRepresentation() && second->IsAsciiRepresentation(); // If the resulting string is small make a flat string. if (length < String::kMinNonFlatLength) { ASSERT(first->IsFlat()); ASSERT(second->IsFlat()); if (is_ascii) { Object* result = AllocateRawAsciiString(length); if (result->IsFailure()) return result; // Copy the characters into the new object. char* dest = SeqAsciiString::cast(result)->GetChars(); String::WriteToFlat(first, dest, 0, first_length); String::WriteToFlat(second, dest + first_length, 0, second_length); return result; } else { Object* result = AllocateRawTwoByteString(length); if (result->IsFailure()) return result; // Copy the characters into the new object. uc16* dest = SeqTwoByteString::cast(result)->GetChars(); String::WriteToFlat(first, dest, 0, first_length); String::WriteToFlat(second, dest + first_length, 0, second_length); return result; } } Map* map; if (length <= String::kMaxShortStringSize) { map = is_ascii ? short_cons_ascii_string_map() : short_cons_string_map(); } else if (length <= String::kMaxMediumStringSize) { map = is_ascii ? medium_cons_ascii_string_map() : medium_cons_string_map(); } else { map = is_ascii ? long_cons_ascii_string_map() : long_cons_string_map(); } Object* result = Allocate(map, NEW_SPACE); if (result->IsFailure()) return result; ASSERT(InNewSpace(result)); ConsString* cons_string = ConsString::cast(result); cons_string->set_first(first, SKIP_WRITE_BARRIER); cons_string->set_second(second, SKIP_WRITE_BARRIER); cons_string->set_length(length); return result; } Object* Heap::AllocateSlicedString(String* buffer, int start, int end) { int length = end - start; // If the resulting string is small make a sub string. if (end - start <= String::kMinNonFlatLength) { return Heap::AllocateSubString(buffer, start, end); } Map* map; if (length <= String::kMaxShortStringSize) { map = buffer->IsAsciiRepresentation() ? short_sliced_ascii_string_map() : short_sliced_string_map(); } else if (length <= String::kMaxMediumStringSize) { map = buffer->IsAsciiRepresentation() ? medium_sliced_ascii_string_map() : medium_sliced_string_map(); } else { map = buffer->IsAsciiRepresentation() ? long_sliced_ascii_string_map() : long_sliced_string_map(); } Object* result = Allocate(map, NEW_SPACE); if (result->IsFailure()) return result; SlicedString* sliced_string = SlicedString::cast(result); sliced_string->set_buffer(buffer); sliced_string->set_start(start); sliced_string->set_length(length); return result; } Object* Heap::AllocateSubString(String* buffer, int start, int end) { int length = end - start; if (length == 1) { return Heap::LookupSingleCharacterStringFromCode( buffer->Get(start)); } // Make an attempt to flatten the buffer to reduce access time. if (!buffer->IsFlat()) { buffer->TryFlatten(); } Object* result = buffer->IsAsciiRepresentation() ? AllocateRawAsciiString(length) : AllocateRawTwoByteString(length); if (result->IsFailure()) return result; // Copy the characters into the new object. String* string_result = String::cast(result); StringHasher hasher(length); int i = 0; for (; i < length && hasher.is_array_index(); i++) { uc32 c = buffer->Get(start + i); hasher.AddCharacter(c); string_result->Set(i, c); } for (; i < length; i++) { uc32 c = buffer->Get(start + i); hasher.AddCharacterNoIndex(c); string_result->Set(i, c); } string_result->set_length_field(hasher.GetHashField()); return result; } Object* Heap::AllocateExternalStringFromAscii( ExternalAsciiString::Resource* resource) { Map* map; int length = resource->length(); if (length <= String::kMaxShortStringSize) { map = short_external_ascii_string_map(); } else if (length <= String::kMaxMediumStringSize) { map = medium_external_ascii_string_map(); } else { map = long_external_ascii_string_map(); } Object* result = Allocate(map, NEW_SPACE); if (result->IsFailure()) return result; ExternalAsciiString* external_string = ExternalAsciiString::cast(result); external_string->set_length(length); external_string->set_resource(resource); return result; } Object* Heap::AllocateExternalStringFromTwoByte( ExternalTwoByteString::Resource* resource) { int length = resource->length(); Map* map = ExternalTwoByteString::StringMap(length); Object* result = Allocate(map, NEW_SPACE); if (result->IsFailure()) return result; ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result); external_string->set_length(length); external_string->set_resource(resource); return result; } Object* Heap::LookupSingleCharacterStringFromCode(uint16_t code) { if (code <= String::kMaxAsciiCharCode) { Object* value = Heap::single_character_string_cache()->get(code); if (value != Heap::undefined_value()) return value; char buffer[1]; buffer[0] = static_cast(code); Object* result = LookupSymbol(Vector(buffer, 1)); if (result->IsFailure()) return result; Heap::single_character_string_cache()->set(code, result); return result; } Object* result = Heap::AllocateRawTwoByteString(1); if (result->IsFailure()) return result; String* answer = String::cast(result); answer->Set(0, code); return answer; } Object* Heap::AllocateByteArray(int length, PretenureFlag pretenure) { if (pretenure == NOT_TENURED) { return AllocateByteArray(length); } int size = ByteArray::SizeFor(length); AllocationSpace space = size > MaxHeapObjectSize() ? LO_SPACE : OLD_DATA_SPACE; Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); if (result->IsFailure()) return result; reinterpret_cast(result)->set_map(byte_array_map()); reinterpret_cast(result)->set_length(length); return result; } Object* Heap::AllocateByteArray(int length) { int size = ByteArray::SizeFor(length); AllocationSpace space = size > MaxHeapObjectSize() ? LO_SPACE : NEW_SPACE; Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); if (result->IsFailure()) return result; reinterpret_cast(result)->set_map(byte_array_map()); reinterpret_cast(result)->set_length(length); return result; } void Heap::CreateFillerObjectAt(Address addr, int size) { if (size == 0) return; HeapObject* filler = HeapObject::FromAddress(addr); if (size == kPointerSize) { filler->set_map(Heap::one_word_filler_map()); } else { filler->set_map(Heap::byte_array_map()); ByteArray::cast(filler)->set_length(ByteArray::LengthFor(size)); } } Object* Heap::CreateCode(const CodeDesc& desc, ZoneScopeInfo* sinfo, Code::Flags flags, Handle self_reference) { // Compute size int body_size = RoundUp(desc.instr_size + desc.reloc_size, kObjectAlignment); int sinfo_size = 0; if (sinfo != NULL) sinfo_size = sinfo->Serialize(NULL); int obj_size = Code::SizeFor(body_size, sinfo_size); ASSERT(IsAligned(obj_size, Code::kCodeAlignment)); Object* result; if (obj_size > MaxHeapObjectSize()) { result = lo_space_->AllocateRawCode(obj_size); } else { result = code_space_->AllocateRaw(obj_size); } if (result->IsFailure()) return result; // Initialize the object HeapObject::cast(result)->set_map(code_map()); Code* code = Code::cast(result); code->set_instruction_size(desc.instr_size); code->set_relocation_size(desc.reloc_size); code->set_sinfo_size(sinfo_size); code->set_flags(flags); code->set_ic_flag(Code::IC_TARGET_IS_ADDRESS); // Allow self references to created code object by patching the handle to // point to the newly allocated Code object. if (!self_reference.is_null()) { *(self_reference.location()) = code; } // Migrate generated code. // The generated code can contain Object** values (typically from handles) // that are dereferenced during the copy to point directly to the actual heap // objects. These pointers can include references to the code object itself, // through the self_reference parameter. code->CopyFrom(desc); if (sinfo != NULL) sinfo->Serialize(code); // write scope info #ifdef DEBUG code->Verify(); #endif return code; } Object* Heap::CopyCode(Code* code) { // Allocate an object the same size as the code object. int obj_size = code->Size(); Object* result; if (obj_size > MaxHeapObjectSize()) { result = lo_space_->AllocateRawCode(obj_size); } else { result = code_space_->AllocateRaw(obj_size); } if (result->IsFailure()) return result; // Copy code object. Address old_addr = code->address(); Address new_addr = reinterpret_cast(result)->address(); CopyBlock(reinterpret_cast(new_addr), reinterpret_cast(old_addr), obj_size); // Relocate the copy. Code* new_code = Code::cast(result); new_code->Relocate(new_addr - old_addr); return new_code; } Object* Heap::Allocate(Map* map, AllocationSpace space) { ASSERT(gc_state_ == NOT_IN_GC); ASSERT(map->instance_type() != MAP_TYPE); Object* result = AllocateRaw(map->instance_size(), space, TargetSpaceId(map->instance_type())); if (result->IsFailure()) return result; HeapObject::cast(result)->set_map(map); return result; } Object* Heap::InitializeFunction(JSFunction* function, SharedFunctionInfo* shared, Object* prototype) { ASSERT(!prototype->IsMap()); function->initialize_properties(); function->initialize_elements(); function->set_shared(shared); function->set_prototype_or_initial_map(prototype); function->set_context(undefined_value()); function->set_literals(empty_fixed_array(), SKIP_WRITE_BARRIER); return function; } Object* Heap::AllocateFunctionPrototype(JSFunction* function) { // Allocate the prototype. Make sure to use the object function // from the function's context, since the function can be from a // different context. JSFunction* object_function = function->context()->global_context()->object_function(); Object* prototype = AllocateJSObject(object_function); if (prototype->IsFailure()) return prototype; // When creating the prototype for the function we must set its // constructor to the function. Object* result = JSObject::cast(prototype)->SetProperty(constructor_symbol(), function, DONT_ENUM); if (result->IsFailure()) return result; return prototype; } Object* Heap::AllocateFunction(Map* function_map, SharedFunctionInfo* shared, Object* prototype) { Object* result = Allocate(function_map, OLD_POINTER_SPACE); if (result->IsFailure()) return result; return InitializeFunction(JSFunction::cast(result), shared, prototype); } Object* Heap::AllocateArgumentsObject(Object* callee, int length) { // To get fast allocation and map sharing for arguments objects we // allocate them based on an arguments boilerplate. // This calls Copy directly rather than using Heap::AllocateRaw so we // duplicate the check here. ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); JSObject* boilerplate = Top::context()->global_context()->arguments_boilerplate(); // Make the clone. Map* map = boilerplate->map(); int object_size = map->instance_size(); Object* result = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); if (result->IsFailure()) return result; // Copy the content. The arguments boilerplate doesn't have any // fields that point to new space so it's safe to skip the write // barrier here. CopyBlock(reinterpret_cast(HeapObject::cast(result)->address()), reinterpret_cast(boilerplate->address()), object_size); // Set the two properties. JSObject::cast(result)->InObjectPropertyAtPut(arguments_callee_index, callee); JSObject::cast(result)->InObjectPropertyAtPut(arguments_length_index, Smi::FromInt(length), SKIP_WRITE_BARRIER); // Check the state of the object ASSERT(JSObject::cast(result)->HasFastProperties()); ASSERT(JSObject::cast(result)->HasFastElements()); return result; } Object* Heap::AllocateInitialMap(JSFunction* fun) { ASSERT(!fun->has_initial_map()); // First create a new map with the expected number of properties being // allocated in-object. int expected_nof_properties = fun->shared()->expected_nof_properties(); int instance_size = JSObject::kHeaderSize + expected_nof_properties * kPointerSize; if (instance_size > JSObject::kMaxInstanceSize) { instance_size = JSObject::kMaxInstanceSize; expected_nof_properties = (instance_size - JSObject::kHeaderSize) / kPointerSize; } Object* map_obj = Heap::AllocateMap(JS_OBJECT_TYPE, instance_size); if (map_obj->IsFailure()) return map_obj; // Fetch or allocate prototype. Object* prototype; if (fun->has_instance_prototype()) { prototype = fun->instance_prototype(); } else { prototype = AllocateFunctionPrototype(fun); if (prototype->IsFailure()) return prototype; } Map* map = Map::cast(map_obj); map->set_inobject_properties(expected_nof_properties); map->set_unused_property_fields(expected_nof_properties); map->set_prototype(prototype); return map; } void Heap::InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, Map* map) { obj->set_properties(properties); obj->initialize_elements(); // TODO(1240798): Initialize the object's body using valid initial values // according to the object's initial map. For example, if the map's // instance type is JS_ARRAY_TYPE, the length field should be initialized // to a number (eg, Smi::FromInt(0)) and the elements initialized to a // fixed array (eg, Heap::empty_fixed_array()). Currently, the object // verification code has to cope with (temporarily) invalid objects. See // for example, JSArray::JSArrayVerify). obj->InitializeBody(map->instance_size()); } Object* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) { // JSFunctions should be allocated using AllocateFunction to be // properly initialized. ASSERT(map->instance_type() != JS_FUNCTION_TYPE); // Allocate the backing storage for the properties. int prop_size = map->unused_property_fields() - map->inobject_properties(); Object* properties = AllocateFixedArray(prop_size); if (properties->IsFailure()) return properties; // Allocate the JSObject. AllocationSpace space = (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE; if (map->instance_size() > MaxHeapObjectSize()) space = LO_SPACE; Object* obj = Allocate(map, space); if (obj->IsFailure()) return obj; // Initialize the JSObject. InitializeJSObjectFromMap(JSObject::cast(obj), FixedArray::cast(properties), map); return obj; } Object* Heap::AllocateJSObject(JSFunction* constructor, PretenureFlag pretenure) { // Allocate the initial map if absent. if (!constructor->has_initial_map()) { Object* initial_map = AllocateInitialMap(constructor); if (initial_map->IsFailure()) return initial_map; constructor->set_initial_map(Map::cast(initial_map)); Map::cast(initial_map)->set_constructor(constructor); } // Allocate the object based on the constructors initial map. return AllocateJSObjectFromMap(constructor->initial_map(), pretenure); } Object* Heap::CopyJSObject(JSObject* source) { // Never used to copy functions. If functions need to be copied we // have to be careful to clear the literals array. ASSERT(!source->IsJSFunction()); // Make the clone. Map* map = source->map(); int object_size = map->instance_size(); Object* clone; // If we're forced to always allocate, we use the general allocation // functions which may leave us with an object in old space. if (always_allocate()) { clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); if (clone->IsFailure()) return clone; Address clone_address = HeapObject::cast(clone)->address(); CopyBlock(reinterpret_cast(clone_address), reinterpret_cast(source->address()), object_size); // Update write barrier for all fields that lie beyond the header. for (int offset = JSObject::kHeaderSize; offset < object_size; offset += kPointerSize) { RecordWrite(clone_address, offset); } } else { clone = new_space_.AllocateRaw(object_size); if (clone->IsFailure()) return clone; ASSERT(Heap::InNewSpace(clone)); // Since we know the clone is allocated in new space, we can copy // the contents without worrying about updating the write barrier. CopyBlock(reinterpret_cast(HeapObject::cast(clone)->address()), reinterpret_cast(source->address()), object_size); } FixedArray* elements = FixedArray::cast(source->elements()); FixedArray* properties = FixedArray::cast(source->properties()); // Update elements if necessary. if (elements->length()> 0) { Object* elem = CopyFixedArray(elements); if (elem->IsFailure()) return elem; JSObject::cast(clone)->set_elements(FixedArray::cast(elem)); } // Update properties if necessary. if (properties->length() > 0) { Object* prop = CopyFixedArray(properties); if (prop->IsFailure()) return prop; JSObject::cast(clone)->set_properties(FixedArray::cast(prop)); } // Return the new clone. return clone; } Object* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor, JSGlobalProxy* object) { // Allocate initial map if absent. if (!constructor->has_initial_map()) { Object* initial_map = AllocateInitialMap(constructor); if (initial_map->IsFailure()) return initial_map; constructor->set_initial_map(Map::cast(initial_map)); Map::cast(initial_map)->set_constructor(constructor); } Map* map = constructor->initial_map(); // Check that the already allocated object has the same size as // objects allocated using the constructor. ASSERT(map->instance_size() == object->map()->instance_size()); // Allocate the backing storage for the properties. int prop_size = map->unused_property_fields() - map->inobject_properties(); Object* properties = AllocateFixedArray(prop_size); if (properties->IsFailure()) return properties; // Reset the map for the object. object->set_map(constructor->initial_map()); // Reinitialize the object from the constructor map. InitializeJSObjectFromMap(object, FixedArray::cast(properties), map); return object; } Object* Heap::AllocateStringFromAscii(Vector string, PretenureFlag pretenure) { Object* result = AllocateRawAsciiString(string.length(), pretenure); if (result->IsFailure()) return result; // Copy the characters into the new object. SeqAsciiString* string_result = SeqAsciiString::cast(result); for (int i = 0; i < string.length(); i++) { string_result->SeqAsciiStringSet(i, string[i]); } return result; } Object* Heap::AllocateStringFromUtf8(Vector string, PretenureFlag pretenure) { // Count the number of characters in the UTF-8 string and check if // it is an ASCII string. Access decoder(Scanner::utf8_decoder()); decoder->Reset(string.start(), string.length()); int chars = 0; bool is_ascii = true; while (decoder->has_more()) { uc32 r = decoder->GetNext(); if (r > String::kMaxAsciiCharCode) is_ascii = false; chars++; } // If the string is ascii, we do not need to convert the characters // since UTF8 is backwards compatible with ascii. if (is_ascii) return AllocateStringFromAscii(string, pretenure); Object* result = AllocateRawTwoByteString(chars, pretenure); if (result->IsFailure()) return result; // Convert and copy the characters into the new object. String* string_result = String::cast(result); decoder->Reset(string.start(), string.length()); for (int i = 0; i < chars; i++) { uc32 r = decoder->GetNext(); string_result->Set(i, r); } return result; } Object* Heap::AllocateStringFromTwoByte(Vector string, PretenureFlag pretenure) { // Check if the string is an ASCII string. int i = 0; while (i < string.length() && string[i] <= String::kMaxAsciiCharCode) i++; Object* result; if (i == string.length()) { // It's an ASCII string. result = AllocateRawAsciiString(string.length(), pretenure); } else { // It's not an ASCII string. result = AllocateRawTwoByteString(string.length(), pretenure); } if (result->IsFailure()) return result; // Copy the characters into the new object, which may be either ASCII or // UTF-16. String* string_result = String::cast(result); for (int i = 0; i < string.length(); i++) { string_result->Set(i, string[i]); } return result; } Map* Heap::SymbolMapForString(String* string) { // If the string is in new space it cannot be used as a symbol. if (InNewSpace(string)) return NULL; // Find the corresponding symbol map for strings. Map* map = string->map(); if (map == short_ascii_string_map()) return short_ascii_symbol_map(); if (map == medium_ascii_string_map()) return medium_ascii_symbol_map(); if (map == long_ascii_string_map()) return long_ascii_symbol_map(); if (map == short_string_map()) return short_symbol_map(); if (map == medium_string_map()) return medium_symbol_map(); if (map == long_string_map()) return long_symbol_map(); if (map == short_cons_string_map()) return short_cons_symbol_map(); if (map == medium_cons_string_map()) return medium_cons_symbol_map(); if (map == long_cons_string_map()) return long_cons_symbol_map(); if (map == short_cons_ascii_string_map()) { return short_cons_ascii_symbol_map(); } if (map == medium_cons_ascii_string_map()) { return medium_cons_ascii_symbol_map(); } if (map == long_cons_ascii_string_map()) { return long_cons_ascii_symbol_map(); } if (map == short_sliced_string_map()) return short_sliced_symbol_map(); if (map == medium_sliced_string_map()) return medium_sliced_symbol_map(); if (map == long_sliced_string_map()) return long_sliced_symbol_map(); if (map == short_sliced_ascii_string_map()) { return short_sliced_ascii_symbol_map(); } if (map == medium_sliced_ascii_string_map()) { return medium_sliced_ascii_symbol_map(); } if (map == long_sliced_ascii_string_map()) { return long_sliced_ascii_symbol_map(); } if (map == short_external_string_map()) { return short_external_symbol_map(); } if (map == medium_external_string_map()) { return medium_external_symbol_map(); } if (map == long_external_string_map()) { return long_external_symbol_map(); } if (map == short_external_ascii_string_map()) { return short_external_ascii_symbol_map(); } if (map == medium_external_ascii_string_map()) { return medium_external_ascii_symbol_map(); } if (map == long_external_ascii_string_map()) { return long_external_ascii_symbol_map(); } // No match found. return NULL; } Object* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer, int chars, uint32_t length_field) { // Ensure the chars matches the number of characters in the buffer. ASSERT(static_cast(chars) == buffer->Length()); // Determine whether the string is ascii. bool is_ascii = true; while (buffer->has_more() && is_ascii) { if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) is_ascii = false; } buffer->Rewind(); // Compute map and object size. int size; Map* map; if (is_ascii) { if (chars <= String::kMaxShortStringSize) { map = short_ascii_symbol_map(); } else if (chars <= String::kMaxMediumStringSize) { map = medium_ascii_symbol_map(); } else { map = long_ascii_symbol_map(); } size = SeqAsciiString::SizeFor(chars); } else { if (chars <= String::kMaxShortStringSize) { map = short_symbol_map(); } else if (chars <= String::kMaxMediumStringSize) { map = medium_symbol_map(); } else { map = long_symbol_map(); } size = SeqTwoByteString::SizeFor(chars); } // Allocate string. AllocationSpace space = (size > MaxHeapObjectSize()) ? LO_SPACE : OLD_DATA_SPACE; Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); if (result->IsFailure()) return result; reinterpret_cast(result)->set_map(map); // The hash value contains the length of the string. String* answer = String::cast(result); answer->set_length_field(length_field); ASSERT_EQ(size, answer->Size()); // Fill in the characters. for (int i = 0; i < chars; i++) { answer->Set(i, buffer->GetNext()); } return answer; } Object* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) { AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE; int size = SeqAsciiString::SizeFor(length); if (size > MaxHeapObjectSize()) { space = LO_SPACE; } // Use AllocateRaw rather than Allocate because the object's size cannot be // determined from the map. Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); if (result->IsFailure()) return result; // Determine the map based on the string's length. Map* map; if (length <= String::kMaxShortStringSize) { map = short_ascii_string_map(); } else if (length <= String::kMaxMediumStringSize) { map = medium_ascii_string_map(); } else { map = long_ascii_string_map(); } // Partially initialize the object. HeapObject::cast(result)->set_map(map); String::cast(result)->set_length(length); ASSERT_EQ(size, HeapObject::cast(result)->Size()); return result; } Object* Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) { AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE; int size = SeqTwoByteString::SizeFor(length); if (size > MaxHeapObjectSize()) { space = LO_SPACE; } // Use AllocateRaw rather than Allocate because the object's size cannot be // determined from the map. Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); if (result->IsFailure()) return result; // Determine the map based on the string's length. Map* map; if (length <= String::kMaxShortStringSize) { map = short_string_map(); } else if (length <= String::kMaxMediumStringSize) { map = medium_string_map(); } else { map = long_string_map(); } // Partially initialize the object. HeapObject::cast(result)->set_map(map); String::cast(result)->set_length(length); ASSERT_EQ(size, HeapObject::cast(result)->Size()); return result; } Object* Heap::AllocateEmptyFixedArray() { int size = FixedArray::SizeFor(0); Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); if (result->IsFailure()) return result; // Initialize the object. reinterpret_cast(result)->set_map(fixed_array_map()); reinterpret_cast(result)->set_length(0); return result; } Object* Heap::AllocateRawFixedArray(int length) { // Use the general function if we're forced to always allocate. if (always_allocate()) return AllocateFixedArray(length, NOT_TENURED); // Allocate the raw data for a fixed array. int size = FixedArray::SizeFor(length); return (size > MaxHeapObjectSize()) ? lo_space_->AllocateRawFixedArray(size) : new_space_.AllocateRaw(size); } Object* Heap::CopyFixedArray(FixedArray* src) { int len = src->length(); Object* obj = AllocateRawFixedArray(len); if (obj->IsFailure()) return obj; if (Heap::InNewSpace(obj)) { HeapObject* dst = HeapObject::cast(obj); CopyBlock(reinterpret_cast(dst->address()), reinterpret_cast(src->address()), FixedArray::SizeFor(len)); return obj; } HeapObject::cast(obj)->set_map(src->map()); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content WriteBarrierMode mode = result->GetWriteBarrierMode(); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); return result; } Object* Heap::AllocateFixedArray(int length) { if (length == 0) return empty_fixed_array(); Object* result = AllocateRawFixedArray(length); if (!result->IsFailure()) { // Initialize header. reinterpret_cast(result)->set_map(fixed_array_map()); FixedArray* array = FixedArray::cast(result); array->set_length(length); Object* value = undefined_value(); // Initialize body. for (int index = 0; index < length; index++) { array->set(index, value, SKIP_WRITE_BARRIER); } } return result; } Object* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) { ASSERT(empty_fixed_array()->IsFixedArray()); if (length == 0) return empty_fixed_array(); int size = FixedArray::SizeFor(length); Object* result; if (size > MaxHeapObjectSize()) { result = lo_space_->AllocateRawFixedArray(size); } else { AllocationSpace space = (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE; result = AllocateRaw(size, space, OLD_POINTER_SPACE); } if (result->IsFailure()) return result; // Initialize the object. reinterpret_cast(result)->set_map(fixed_array_map()); FixedArray* array = FixedArray::cast(result); array->set_length(length); Object* value = undefined_value(); for (int index = 0; index < length; index++) { array->set(index, value, SKIP_WRITE_BARRIER); } return array; } Object* Heap::AllocateFixedArrayWithHoles(int length) { if (length == 0) return empty_fixed_array(); Object* result = AllocateRawFixedArray(length); if (!result->IsFailure()) { // Initialize header. reinterpret_cast(result)->set_map(fixed_array_map()); FixedArray* array = FixedArray::cast(result); array->set_length(length); // Initialize body. Object* value = the_hole_value(); for (int index = 0; index < length; index++) { array->set(index, value, SKIP_WRITE_BARRIER); } } return result; } Object* Heap::AllocateHashTable(int length) { Object* result = Heap::AllocateFixedArray(length); if (result->IsFailure()) return result; reinterpret_cast(result)->set_map(hash_table_map()); ASSERT(result->IsDictionary()); return result; } Object* Heap::AllocateGlobalContext() { Object* result = Heap::AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS); if (result->IsFailure()) return result; Context* context = reinterpret_cast(result); context->set_map(global_context_map()); ASSERT(context->IsGlobalContext()); ASSERT(result->IsContext()); return result; } Object* Heap::AllocateFunctionContext(int length, JSFunction* function) { ASSERT(length >= Context::MIN_CONTEXT_SLOTS); Object* result = Heap::AllocateFixedArray(length); if (result->IsFailure()) return result; Context* context = reinterpret_cast(result); context->set_map(context_map()); context->set_closure(function); context->set_fcontext(context); context->set_previous(NULL); context->set_extension(NULL); context->set_global(function->context()->global()); ASSERT(!context->IsGlobalContext()); ASSERT(context->is_function_context()); ASSERT(result->IsContext()); return result; } Object* Heap::AllocateWithContext(Context* previous, JSObject* extension, bool is_catch_context) { Object* result = Heap::AllocateFixedArray(Context::MIN_CONTEXT_SLOTS); if (result->IsFailure()) return result; Context* context = reinterpret_cast(result); context->set_map(is_catch_context ? catch_context_map() : context_map()); context->set_closure(previous->closure()); context->set_fcontext(previous->fcontext()); context->set_previous(previous); context->set_extension(extension); context->set_global(previous->global()); ASSERT(!context->IsGlobalContext()); ASSERT(!context->is_function_context()); ASSERT(result->IsContext()); return result; } Object* Heap::AllocateStruct(InstanceType type) { Map* map; switch (type) { #define MAKE_CASE(NAME, Name, name) case NAME##_TYPE: map = name##_map(); break; STRUCT_LIST(MAKE_CASE) #undef MAKE_CASE default: UNREACHABLE(); return Failure::InternalError(); } int size = map->instance_size(); AllocationSpace space = (size > MaxHeapObjectSize()) ? LO_SPACE : OLD_POINTER_SPACE; Object* result = Heap::Allocate(map, space); if (result->IsFailure()) return result; Struct::cast(result)->InitializeBody(size); return result; } #ifdef DEBUG void Heap::Print() { if (!HasBeenSetup()) return; Top::PrintStack(); AllSpaces spaces; while (Space* space = spaces.next()) space->Print(); } void Heap::ReportCodeStatistics(const char* title) { PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title); PagedSpace::ResetCodeStatistics(); // We do not look for code in new space, map space, or old space. If code // somehow ends up in those spaces, we would miss it here. code_space_->CollectCodeStatistics(); lo_space_->CollectCodeStatistics(); PagedSpace::ReportCodeStatistics(); } // This function expects that NewSpace's allocated objects histogram is // populated (via a call to CollectStatistics or else as a side effect of a // just-completed scavenge collection). void Heap::ReportHeapStatistics(const char* title) { USE(title); PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n", title, gc_count_); PrintF("mark-compact GC : %d\n", mc_count_); PrintF("old_gen_promotion_limit_ %d\n", old_gen_promotion_limit_); PrintF("old_gen_allocation_limit_ %d\n", old_gen_allocation_limit_); PrintF("\n"); PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles()); GlobalHandles::PrintStats(); PrintF("\n"); PrintF("Heap statistics : "); MemoryAllocator::ReportStatistics(); PrintF("To space : "); new_space_.ReportStatistics(); PrintF("Old pointer space : "); old_pointer_space_->ReportStatistics(); PrintF("Old data space : "); old_data_space_->ReportStatistics(); PrintF("Code space : "); code_space_->ReportStatistics(); PrintF("Map space : "); map_space_->ReportStatistics(); PrintF("Large object space : "); lo_space_->ReportStatistics(); PrintF(">>>>>> ========================================= >>>>>>\n"); } #endif // DEBUG bool Heap::Contains(HeapObject* value) { return Contains(value->address()); } bool Heap::Contains(Address addr) { if (OS::IsOutsideAllocatedSpace(addr)) return false; return HasBeenSetup() && (new_space_.ToSpaceContains(addr) || old_pointer_space_->Contains(addr) || old_data_space_->Contains(addr) || code_space_->Contains(addr) || map_space_->Contains(addr) || lo_space_->SlowContains(addr)); } bool Heap::InSpace(HeapObject* value, AllocationSpace space) { return InSpace(value->address(), space); } bool Heap::InSpace(Address addr, AllocationSpace space) { if (OS::IsOutsideAllocatedSpace(addr)) return false; if (!HasBeenSetup()) return false; switch (space) { case NEW_SPACE: return new_space_.ToSpaceContains(addr); case OLD_POINTER_SPACE: return old_pointer_space_->Contains(addr); case OLD_DATA_SPACE: return old_data_space_->Contains(addr); case CODE_SPACE: return code_space_->Contains(addr); case MAP_SPACE: return map_space_->Contains(addr); case LO_SPACE: return lo_space_->SlowContains(addr); } return false; } #ifdef DEBUG void Heap::Verify() { ASSERT(HasBeenSetup()); VerifyPointersVisitor visitor; Heap::IterateRoots(&visitor); AllSpaces spaces; while (Space* space = spaces.next()) { space->Verify(); } } #endif // DEBUG Object* Heap::LookupSymbol(Vector string) { Object* symbol = NULL; Object* new_table = SymbolTable::cast(symbol_table_)->LookupSymbol(string, &symbol); if (new_table->IsFailure()) return new_table; symbol_table_ = new_table; ASSERT(symbol != NULL); return symbol; } Object* Heap::LookupSymbol(String* string) { if (string->IsSymbol()) return string; Object* symbol = NULL; Object* new_table = SymbolTable::cast(symbol_table_)->LookupString(string, &symbol); if (new_table->IsFailure()) return new_table; symbol_table_ = new_table; ASSERT(symbol != NULL); return symbol; } bool Heap::LookupSymbolIfExists(String* string, String** symbol) { if (string->IsSymbol()) { *symbol = string; return true; } SymbolTable* table = SymbolTable::cast(symbol_table_); return table->LookupSymbolIfExists(string, symbol); } #ifdef DEBUG void Heap::ZapFromSpace() { ASSERT(HAS_HEAP_OBJECT_TAG(kFromSpaceZapValue)); for (Address a = new_space_.FromSpaceLow(); a < new_space_.FromSpaceHigh(); a += kPointerSize) { Memory::Address_at(a) = kFromSpaceZapValue; } } #endif // DEBUG int Heap::IterateRSetRange(Address object_start, Address object_end, Address rset_start, ObjectSlotCallback copy_object_func) { Address object_address = object_start; Address rset_address = rset_start; int set_bits_count = 0; // Loop over all the pointers in [object_start, object_end). while (object_address < object_end) { uint32_t rset_word = Memory::uint32_at(rset_address); if (rset_word != 0) { uint32_t result_rset = rset_word; for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) { // Do not dereference pointers at or past object_end. if ((rset_word & bitmask) != 0 && object_address < object_end) { Object** object_p = reinterpret_cast(object_address); if (Heap::InNewSpace(*object_p)) { copy_object_func(reinterpret_cast(object_p)); } // If this pointer does not need to be remembered anymore, clear // the remembered set bit. if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask; set_bits_count++; } object_address += kPointerSize; } // Update the remembered set if it has changed. if (result_rset != rset_word) { Memory::uint32_at(rset_address) = result_rset; } } else { // No bits in the word were set. This is the common case. object_address += kPointerSize * kBitsPerInt; } rset_address += kIntSize; } return set_bits_count; } void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) { ASSERT(Page::is_rset_in_use()); ASSERT(space == old_pointer_space_ || space == map_space_); static void* paged_rset_histogram = StatsTable::CreateHistogram( "V8.RSetPaged", 0, Page::kObjectAreaSize / kPointerSize, 30); PageIterator it(space, PageIterator::PAGES_IN_USE); while (it.has_next()) { Page* page = it.next(); int count = IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(), page->RSetStart(), copy_object_func); if (paged_rset_histogram != NULL) { StatsTable::AddHistogramSample(paged_rset_histogram, count); } } } #ifdef DEBUG #define SYNCHRONIZE_TAG(tag) v->Synchronize(tag) #else #define SYNCHRONIZE_TAG(tag) #endif void Heap::IterateRoots(ObjectVisitor* v) { IterateStrongRoots(v); v->VisitPointer(reinterpret_cast(&symbol_table_)); SYNCHRONIZE_TAG("symbol_table"); } void Heap::IterateStrongRoots(ObjectVisitor* v) { #define ROOT_ITERATE(type, name) \ v->VisitPointer(bit_cast(&name##_)); STRONG_ROOT_LIST(ROOT_ITERATE); #undef ROOT_ITERATE SYNCHRONIZE_TAG("strong_root_list"); #define STRUCT_MAP_ITERATE(NAME, Name, name) \ v->VisitPointer(bit_cast(&name##_map_)); STRUCT_LIST(STRUCT_MAP_ITERATE); #undef STRUCT_MAP_ITERATE SYNCHRONIZE_TAG("struct_map"); #define SYMBOL_ITERATE(name, string) \ v->VisitPointer(bit_cast(&name##_)); SYMBOL_LIST(SYMBOL_ITERATE) #undef SYMBOL_ITERATE v->VisitPointer(bit_cast(&hidden_symbol_)); SYNCHRONIZE_TAG("symbol"); Bootstrapper::Iterate(v); SYNCHRONIZE_TAG("bootstrapper"); Top::Iterate(v); SYNCHRONIZE_TAG("top"); #ifdef ENABLE_DEBUGGER_SUPPORT Debug::Iterate(v); #endif SYNCHRONIZE_TAG("debug"); CompilationCache::Iterate(v); SYNCHRONIZE_TAG("compilationcache"); // Iterate over local handles in handle scopes. HandleScopeImplementer::Iterate(v); SYNCHRONIZE_TAG("handlescope"); // Iterate over the builtin code objects and code stubs in the heap. Note // that it is not strictly necessary to iterate over code objects on // scavenge collections. We still do it here because this same function // is used by the mark-sweep collector and the deserializer. Builtins::IterateBuiltins(v); SYNCHRONIZE_TAG("builtins"); // Iterate over global handles. GlobalHandles::IterateRoots(v); SYNCHRONIZE_TAG("globalhandles"); // Iterate over pointers being held by inactive threads. ThreadManager::Iterate(v); SYNCHRONIZE_TAG("threadmanager"); } #undef SYNCHRONIZE_TAG // Flag is set when the heap has been configured. The heap can be repeatedly // configured through the API until it is setup. static bool heap_configured = false; // TODO(1236194): Since the heap size is configurable on the command line // and through the API, we should gracefully handle the case that the heap // size is not big enough to fit all the initial objects. bool Heap::ConfigureHeap(int semispace_size, int old_gen_size) { if (HasBeenSetup()) return false; if (semispace_size > 0) semispace_size_ = semispace_size; if (old_gen_size > 0) old_generation_size_ = old_gen_size; // The new space size must be a power of two to support single-bit testing // for containment. semispace_size_ = RoundUpToPowerOf2(semispace_size_); initial_semispace_size_ = Min(initial_semispace_size_, semispace_size_); young_generation_size_ = 2 * semispace_size_; // The old generation is paged. old_generation_size_ = RoundUp(old_generation_size_, Page::kPageSize); heap_configured = true; return true; } bool Heap::ConfigureHeapDefault() { return ConfigureHeap(FLAG_new_space_size, FLAG_old_space_size); } int Heap::PromotedSpaceSize() { return old_pointer_space_->Size() + old_data_space_->Size() + code_space_->Size() + map_space_->Size() + lo_space_->Size(); } int Heap::PromotedExternalMemorySize() { if (amount_of_external_allocated_memory_ <= amount_of_external_allocated_memory_at_last_global_gc_) return 0; return amount_of_external_allocated_memory_ - amount_of_external_allocated_memory_at_last_global_gc_; } bool Heap::Setup(bool create_heap_objects) { // Initialize heap spaces and initial maps and objects. Whenever something // goes wrong, just return false. The caller should check the results and // call Heap::TearDown() to release allocated memory. // // If the heap is not yet configured (eg, through the API), configure it. // Configuration is based on the flags new-space-size (really the semispace // size) and old-space-size if set or the initial values of semispace_size_ // and old_generation_size_ otherwise. if (!heap_configured) { if (!ConfigureHeapDefault()) return false; } // Setup memory allocator and allocate an initial chunk of memory. The // initial chunk is double the size of the new space to ensure that we can // find a pair of semispaces that are contiguous and aligned to their size. if (!MemoryAllocator::Setup(MaxCapacity())) return false; void* chunk = MemoryAllocator::ReserveInitialChunk(2 * young_generation_size_); if (chunk == NULL) return false; // Put the initial chunk of the old space at the start of the initial // chunk, then the two new space semispaces, then the initial chunk of // code space. Align the pair of semispaces to their size, which must be // a power of 2. ASSERT(IsPowerOf2(young_generation_size_)); Address code_space_start = reinterpret_cast
(chunk); Address new_space_start = RoundUp(code_space_start, young_generation_size_); Address old_space_start = new_space_start + young_generation_size_; int code_space_size = new_space_start - code_space_start; int old_space_size = young_generation_size_ - code_space_size; // Initialize new space. if (!new_space_.Setup(new_space_start, young_generation_size_)) return false; // Initialize old space, set the maximum capacity to the old generation // size. It will not contain code. old_pointer_space_ = new OldSpace(old_generation_size_, OLD_POINTER_SPACE, NOT_EXECUTABLE); if (old_pointer_space_ == NULL) return false; if (!old_pointer_space_->Setup(old_space_start, old_space_size >> 1)) { return false; } old_data_space_ = new OldSpace(old_generation_size_, OLD_DATA_SPACE, NOT_EXECUTABLE); if (old_data_space_ == NULL) return false; if (!old_data_space_->Setup(old_space_start + (old_space_size >> 1), old_space_size >> 1)) { return false; } // Initialize the code space, set its maximum capacity to the old // generation size. It needs executable memory. code_space_ = new OldSpace(old_generation_size_, CODE_SPACE, EXECUTABLE); if (code_space_ == NULL) return false; if (!code_space_->Setup(code_space_start, code_space_size)) return false; // Initialize map space. map_space_ = new MapSpace(kMaxMapSpaceSize, MAP_SPACE); if (map_space_ == NULL) return false; // Setting up a paged space without giving it a virtual memory range big // enough to hold at least a page will cause it to allocate. if (!map_space_->Setup(NULL, 0)) return false; // The large object code space may contain code or data. We set the memory // to be non-executable here for safety, but this means we need to enable it // explicitly when allocating large code objects. lo_space_ = new LargeObjectSpace(LO_SPACE); if (lo_space_ == NULL) return false; if (!lo_space_->Setup()) return false; if (create_heap_objects) { // Create initial maps. if (!CreateInitialMaps()) return false; if (!CreateApiObjects()) return false; // Create initial objects if (!CreateInitialObjects()) return false; } LOG(IntEvent("heap-capacity", Capacity())); LOG(IntEvent("heap-available", Available())); return true; } void Heap::TearDown() { GlobalHandles::TearDown(); new_space_.TearDown(); if (old_pointer_space_ != NULL) { old_pointer_space_->TearDown(); delete old_pointer_space_; old_pointer_space_ = NULL; } if (old_data_space_ != NULL) { old_data_space_->TearDown(); delete old_data_space_; old_data_space_ = NULL; } if (code_space_ != NULL) { code_space_->TearDown(); delete code_space_; code_space_ = NULL; } if (map_space_ != NULL) { map_space_->TearDown(); delete map_space_; map_space_ = NULL; } if (lo_space_ != NULL) { lo_space_->TearDown(); delete lo_space_; lo_space_ = NULL; } MemoryAllocator::TearDown(); } void Heap::Shrink() { // Try to shrink map, old, and code spaces. map_space_->Shrink(); old_pointer_space_->Shrink(); old_data_space_->Shrink(); code_space_->Shrink(); } #ifdef ENABLE_HEAP_PROTECTION void Heap::Protect() { if (HasBeenSetup()) { new_space_.Protect(); map_space_->Protect(); old_pointer_space_->Protect(); old_data_space_->Protect(); code_space_->Protect(); lo_space_->Protect(); } } void Heap::Unprotect() { if (HasBeenSetup()) { new_space_.Unprotect(); map_space_->Unprotect(); old_pointer_space_->Unprotect(); old_data_space_->Unprotect(); code_space_->Unprotect(); lo_space_->Unprotect(); } } #endif #ifdef DEBUG class PrintHandleVisitor: public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) PrintF(" handle %p to %p\n", p, *p); } }; void Heap::PrintHandles() { PrintF("Handles:\n"); PrintHandleVisitor v; HandleScopeImplementer::Iterate(&v); } #endif Space* AllSpaces::next() { switch (counter_++) { case NEW_SPACE: return Heap::new_space(); case OLD_POINTER_SPACE: return Heap::old_pointer_space(); case OLD_DATA_SPACE: return Heap::old_data_space(); case CODE_SPACE: return Heap::code_space(); case MAP_SPACE: return Heap::map_space(); case LO_SPACE: return Heap::lo_space(); default: return NULL; } } PagedSpace* PagedSpaces::next() { switch (counter_++) { case OLD_POINTER_SPACE: return Heap::old_pointer_space(); case OLD_DATA_SPACE: return Heap::old_data_space(); case CODE_SPACE: return Heap::code_space(); case MAP_SPACE: return Heap::map_space(); default: return NULL; } } OldSpace* OldSpaces::next() { switch (counter_++) { case OLD_POINTER_SPACE: return Heap::old_pointer_space(); case OLD_DATA_SPACE: return Heap::old_data_space(); case CODE_SPACE: return Heap::code_space(); default: return NULL; } } SpaceIterator::SpaceIterator() : current_space_(FIRST_SPACE), iterator_(NULL) { } SpaceIterator::~SpaceIterator() { // Delete active iterator if any. delete iterator_; } bool SpaceIterator::has_next() { // Iterate until no more spaces. return current_space_ != LAST_SPACE; } ObjectIterator* SpaceIterator::next() { if (iterator_ != NULL) { delete iterator_; iterator_ = NULL; // Move to the next space current_space_++; if (current_space_ > LAST_SPACE) { return NULL; } } // Return iterator for the new current space. return CreateIterator(); } // Create an iterator for the space to iterate. ObjectIterator* SpaceIterator::CreateIterator() { ASSERT(iterator_ == NULL); switch (current_space_) { case NEW_SPACE: iterator_ = new SemiSpaceIterator(Heap::new_space()); break; case OLD_POINTER_SPACE: iterator_ = new HeapObjectIterator(Heap::old_pointer_space()); break; case OLD_DATA_SPACE: iterator_ = new HeapObjectIterator(Heap::old_data_space()); break; case CODE_SPACE: iterator_ = new HeapObjectIterator(Heap::code_space()); break; case MAP_SPACE: iterator_ = new HeapObjectIterator(Heap::map_space()); break; case LO_SPACE: iterator_ = new LargeObjectIterator(Heap::lo_space()); break; } // Return the newly allocated iterator; ASSERT(iterator_ != NULL); return iterator_; } HeapIterator::HeapIterator() { Init(); } HeapIterator::~HeapIterator() { Shutdown(); } void HeapIterator::Init() { // Start the iteration. space_iterator_ = new SpaceIterator(); object_iterator_ = space_iterator_->next(); } void HeapIterator::Shutdown() { // Make sure the last iterator is deallocated. delete space_iterator_; space_iterator_ = NULL; object_iterator_ = NULL; } bool HeapIterator::has_next() { // No iterator means we are done. if (object_iterator_ == NULL) return false; if (object_iterator_->has_next_object()) { // If the current iterator has more objects we are fine. return true; } else { // Go though the spaces looking for one that has objects. while (space_iterator_->has_next()) { object_iterator_ = space_iterator_->next(); if (object_iterator_->has_next_object()) { return true; } } } // Done with the last space. object_iterator_ = NULL; return false; } HeapObject* HeapIterator::next() { if (has_next()) { return object_iterator_->next_object(); } else { return NULL; } } void HeapIterator::reset() { // Restart the iterator. Shutdown(); Init(); } // // HeapProfiler class implementation. // #ifdef ENABLE_LOGGING_AND_PROFILING void HeapProfiler::CollectStats(HeapObject* obj, HistogramInfo* info) { InstanceType type = obj->map()->instance_type(); ASSERT(0 <= type && type <= LAST_TYPE); info[type].increment_number(1); info[type].increment_bytes(obj->Size()); } #endif #ifdef ENABLE_LOGGING_AND_PROFILING void HeapProfiler::WriteSample() { LOG(HeapSampleBeginEvent("Heap", "allocated")); HistogramInfo info[LAST_TYPE+1]; #define DEF_TYPE_NAME(name) info[name].set_name(#name); INSTANCE_TYPE_LIST(DEF_TYPE_NAME) #undef DEF_TYPE_NAME HeapIterator iterator; while (iterator.has_next()) { CollectStats(iterator.next(), info); } // Lump all the string types together. int string_number = 0; int string_bytes = 0; #define INCREMENT_SIZE(type, size, name) \ string_number += info[type].number(); \ string_bytes += info[type].bytes(); STRING_TYPE_LIST(INCREMENT_SIZE) #undef INCREMENT_SIZE if (string_bytes > 0) { LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); } for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { if (info[i].bytes() > 0) { LOG(HeapSampleItemEvent(info[i].name(), info[i].number(), info[i].bytes())); } } LOG(HeapSampleEndEvent("Heap", "allocated")); } #endif #ifdef DEBUG static bool search_for_any_global; static Object* search_target; static bool found_target; static List object_stack(20); // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject. static const int kMarkTag = 2; static void MarkObjectRecursively(Object** p); class MarkObjectVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { // Copy all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) MarkObjectRecursively(p); } } }; static MarkObjectVisitor mark_visitor; static void MarkObjectRecursively(Object** p) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); Object* map = obj->map(); if (!map->IsHeapObject()) return; // visited before if (found_target) return; // stop if target found object_stack.Add(obj); if ((search_for_any_global && obj->IsJSGlobalObject()) || (!search_for_any_global && (obj == search_target))) { found_target = true; return; } if (obj->IsCode()) { Code::cast(obj)->ConvertICTargetsFromAddressToObject(); } // not visited yet Map* map_p = reinterpret_cast(HeapObject::cast(map)); Address map_addr = map_p->address(); obj->set_map(reinterpret_cast(map_addr + kMarkTag)); MarkObjectRecursively(&map); obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p), &mark_visitor); if (!found_target) // don't pop if found the target object_stack.RemoveLast(); } static void UnmarkObjectRecursively(Object** p); class UnmarkObjectVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { // Copy all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) UnmarkObjectRecursively(p); } } }; static UnmarkObjectVisitor unmark_visitor; static void UnmarkObjectRecursively(Object** p) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); Object* map = obj->map(); if (map->IsHeapObject()) return; // unmarked already Address map_addr = reinterpret_cast
(map); map_addr -= kMarkTag; ASSERT_TAG_ALIGNED(map_addr); HeapObject* map_p = HeapObject::FromAddress(map_addr); obj->set_map(reinterpret_cast(map_p)); UnmarkObjectRecursively(reinterpret_cast(&map_p)); obj->IterateBody(Map::cast(map_p)->instance_type(), obj->SizeFromMap(Map::cast(map_p)), &unmark_visitor); if (obj->IsCode()) { Code::cast(obj)->ConvertICTargetsFromObjectToAddress(); } } static void MarkRootObjectRecursively(Object** root) { if (search_for_any_global) { ASSERT(search_target == NULL); } else { ASSERT(search_target->IsHeapObject()); } found_target = false; object_stack.Clear(); MarkObjectRecursively(root); UnmarkObjectRecursively(root); if (found_target) { PrintF("=====================================\n"); PrintF("==== Path to object ====\n"); PrintF("=====================================\n\n"); ASSERT(!object_stack.is_empty()); for (int i = 0; i < object_stack.length(); i++) { if (i > 0) PrintF("\n |\n |\n V\n\n"); Object* obj = object_stack[i]; obj->Print(); } PrintF("=====================================\n"); } } // Helper class for visiting HeapObjects recursively. class MarkRootVisitor: public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { // Visit all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) MarkRootObjectRecursively(p); } } }; // Triggers a depth-first traversal of reachable objects from roots // and finds a path to a specific heap object and prints it. void Heap::TracePathToObject() { search_target = NULL; search_for_any_global = false; MarkRootVisitor root_visitor; IterateRoots(&root_visitor); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to any global object and prints it. Useful for // determining the source for leaks of global objects. void Heap::TracePathToGlobal() { search_target = NULL; search_for_any_global = true; MarkRootVisitor root_visitor; IterateRoots(&root_visitor); } #endif GCTracer::GCTracer() : start_time_(0.0), start_size_(0.0), gc_count_(0), full_gc_count_(0), is_compacting_(false), marked_count_(0) { // These two fields reflect the state of the previous full collection. // Set them before they are changed by the collector. previous_has_compacted_ = MarkCompactCollector::HasCompacted(); previous_marked_count_ = MarkCompactCollector::previous_marked_count(); if (!FLAG_trace_gc) return; start_time_ = OS::TimeCurrentMillis(); start_size_ = SizeOfHeapObjects(); } GCTracer::~GCTracer() { if (!FLAG_trace_gc) return; // Printf ONE line iff flag is set. PrintF("%s %.1f -> %.1f MB, %d ms.\n", CollectorString(), start_size_, SizeOfHeapObjects(), static_cast(OS::TimeCurrentMillis() - start_time_)); } const char* GCTracer::CollectorString() { switch (collector_) { case SCAVENGER: return "Scavenge"; case MARK_COMPACTOR: return MarkCompactCollector::HasCompacted() ? "Mark-compact" : "Mark-sweep"; } return "Unknown GC"; } #ifdef DEBUG bool Heap::GarbageCollectionGreedyCheck() { ASSERT(FLAG_gc_greedy); if (Bootstrapper::IsActive()) return true; if (disallow_allocation_failure()) return true; return CollectGarbage(0, NEW_SPACE); } #endif } } // namespace v8::internal