// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COUNTERS_H_ #define V8_COUNTERS_H_ #include "include/v8.h" #include "src/allocation.h" #include "src/base/platform/elapsed-timer.h" #include "src/base/platform/time.h" #include "src/builtins.h" #include "src/globals.h" #include "src/objects.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { // StatsCounters is an interface for plugging into external // counters for monitoring. Counters can be looked up and // manipulated by name. class StatsTable { public: // Register an application-defined function where // counters can be looked up. void SetCounterFunction(CounterLookupCallback f) { lookup_function_ = f; } // Register an application-defined function to create // a histogram for passing to the AddHistogramSample function void SetCreateHistogramFunction(CreateHistogramCallback f) { create_histogram_function_ = f; } // Register an application-defined function to add a sample // to a histogram created with CreateHistogram function void SetAddHistogramSampleFunction(AddHistogramSampleCallback f) { add_histogram_sample_function_ = f; } bool HasCounterFunction() const { return lookup_function_ != NULL; } // Lookup the location of a counter by name. If the lookup // is successful, returns a non-NULL pointer for writing the // value of the counter. Each thread calling this function // may receive a different location to store it's counter. // The return value must not be cached and re-used across // threads, although a single thread is free to cache it. int* FindLocation(const char* name) { if (!lookup_function_) return NULL; return lookup_function_(name); } // Create a histogram by name. If the create is successful, // returns a non-NULL pointer for use with AddHistogramSample // function. min and max define the expected minimum and maximum // sample values. buckets is the maximum number of buckets // that the samples will be grouped into. void* CreateHistogram(const char* name, int min, int max, size_t buckets) { if (!create_histogram_function_) return NULL; return create_histogram_function_(name, min, max, buckets); } // Add a sample to a histogram created with the CreateHistogram // function. void AddHistogramSample(void* histogram, int sample) { if (!add_histogram_sample_function_) return; return add_histogram_sample_function_(histogram, sample); } private: StatsTable(); CounterLookupCallback lookup_function_; CreateHistogramCallback create_histogram_function_; AddHistogramSampleCallback add_histogram_sample_function_; friend class Isolate; DISALLOW_COPY_AND_ASSIGN(StatsTable); }; // StatsCounters are dynamically created values which can be tracked in // the StatsTable. They are designed to be lightweight to create and // easy to use. // // Internally, a counter represents a value in a row of a StatsTable. // The row has a 32bit value for each process/thread in the table and also // a name (stored in the table metadata). Since the storage location can be // thread-specific, this class cannot be shared across threads. class StatsCounter { public: StatsCounter() { } explicit StatsCounter(Isolate* isolate, const char* name) : isolate_(isolate), name_(name), ptr_(NULL), lookup_done_(false) { } // Sets the counter to a specific value. void Set(int value) { int* loc = GetPtr(); if (loc) *loc = value; } // Increments the counter. void Increment() { int* loc = GetPtr(); if (loc) (*loc)++; } void Increment(int value) { int* loc = GetPtr(); if (loc) (*loc) += value; } // Decrements the counter. void Decrement() { int* loc = GetPtr(); if (loc) (*loc)--; } void Decrement(int value) { int* loc = GetPtr(); if (loc) (*loc) -= value; } // Is this counter enabled? // Returns false if table is full. bool Enabled() { return GetPtr() != NULL; } // Get the internal pointer to the counter. This is used // by the code generator to emit code that manipulates a // given counter without calling the runtime system. int* GetInternalPointer() { int* loc = GetPtr(); DCHECK(loc != NULL); return loc; } // Reset the cached internal pointer. void Reset() { lookup_done_ = false; } protected: // Returns the cached address of this counter location. int* GetPtr() { if (lookup_done_) return ptr_; lookup_done_ = true; ptr_ = FindLocationInStatsTable(); return ptr_; } private: int* FindLocationInStatsTable() const; Isolate* isolate_; const char* name_; int* ptr_; bool lookup_done_; }; // A Histogram represents a dynamically created histogram in the StatsTable. // It will be registered with the histogram system on first use. class Histogram { public: Histogram() { } Histogram(const char* name, int min, int max, int num_buckets, Isolate* isolate) : name_(name), min_(min), max_(max), num_buckets_(num_buckets), histogram_(NULL), lookup_done_(false), isolate_(isolate) { } // Add a single sample to this histogram. void AddSample(int sample); // Returns true if this histogram is enabled. bool Enabled() { return GetHistogram() != NULL; } // Reset the cached internal pointer. void Reset() { lookup_done_ = false; } protected: // Returns the handle to the histogram. void* GetHistogram() { if (!lookup_done_) { lookup_done_ = true; histogram_ = CreateHistogram(); } return histogram_; } const char* name() { return name_; } Isolate* isolate() const { return isolate_; } private: void* CreateHistogram() const; const char* name_; int min_; int max_; int num_buckets_; void* histogram_; bool lookup_done_; Isolate* isolate_; }; // A HistogramTimer allows distributions of results to be created. class HistogramTimer : public Histogram { public: enum Resolution { MILLISECOND, MICROSECOND }; HistogramTimer() {} HistogramTimer(const char* name, int min, int max, Resolution resolution, int num_buckets, Isolate* isolate) : Histogram(name, min, max, num_buckets, isolate), resolution_(resolution) {} // Start the timer. void Start(); // Stop the timer and record the results. void Stop(); // Returns true if the timer is running. bool Running() { return Enabled() && timer_.IsStarted(); } // TODO(bmeurer): Remove this when HistogramTimerScope is fixed. #ifdef DEBUG base::ElapsedTimer* timer() { return &timer_; } #endif private: base::ElapsedTimer timer_; Resolution resolution_; }; // Helper class for scoping a HistogramTimer. // TODO(bmeurer): The ifdeffery is an ugly hack around the fact that the // Parser is currently reentrant (when it throws an error, we call back // into JavaScript and all bets are off), but ElapsedTimer is not // reentry-safe. Fix this properly and remove |allow_nesting|. class HistogramTimerScope BASE_EMBEDDED { public: explicit HistogramTimerScope(HistogramTimer* timer, bool allow_nesting = false) #ifdef DEBUG : timer_(timer), skipped_timer_start_(false) { if (timer_->timer()->IsStarted() && allow_nesting) { skipped_timer_start_ = true; } else { timer_->Start(); } } #else : timer_(timer) { timer_->Start(); } #endif ~HistogramTimerScope() { #ifdef DEBUG if (!skipped_timer_start_) { timer_->Stop(); } #else timer_->Stop(); #endif } private: HistogramTimer* timer_; #ifdef DEBUG bool skipped_timer_start_; #endif }; // A histogram timer that can aggregate events within a larger scope. // // Intended use of this timer is to have an outer (aggregating) and an inner // (to be aggregated) scope, where the inner scope measure the time of events, // and all those inner scope measurements will be summed up by the outer scope. // An example use might be to aggregate the time spent in lazy compilation // while running a script. // // Helpers: // - AggregatingHistogramTimerScope, the "outer" scope within which // times will be summed up. // - AggregatedHistogramTimerScope, the "inner" scope which defines the // events to be timed. class AggregatableHistogramTimer : public Histogram { public: AggregatableHistogramTimer() {} AggregatableHistogramTimer(const char* name, int min, int max, int num_buckets, Isolate* isolate) : Histogram(name, min, max, num_buckets, isolate) {} // Start/stop the "outer" scope. void Start() { time_ = base::TimeDelta(); } void Stop() { AddSample(static_cast(time_.InMicroseconds())); } // Add a time value ("inner" scope). void Add(base::TimeDelta other) { time_ += other; } private: base::TimeDelta time_; }; // A helper class for use with AggregatableHistogramTimer. This is the // outer-most timer scope used with an AggregatableHistogramTimer. It will // aggregate the information from the inner AggregatedHistogramTimerScope. class AggregatingHistogramTimerScope { public: explicit AggregatingHistogramTimerScope(AggregatableHistogramTimer* histogram) : histogram_(histogram) { histogram_->Start(); } ~AggregatingHistogramTimerScope() { histogram_->Stop(); } private: AggregatableHistogramTimer* histogram_; }; // A helper class for use with AggregatableHistogramTimer, the "inner" scope // which defines the events to be timed. class AggregatedHistogramTimerScope { public: explicit AggregatedHistogramTimerScope(AggregatableHistogramTimer* histogram) : histogram_(histogram) { timer_.Start(); } ~AggregatedHistogramTimerScope() { histogram_->Add(timer_.Elapsed()); } private: base::ElapsedTimer timer_; AggregatableHistogramTimer* histogram_; }; // AggretatedMemoryHistogram collects (time, value) sample pairs and turns // them into time-uniform samples for the backing historgram, such that the // backing histogram receives one sample every T ms, where the T is controlled // by the FLAG_histogram_interval. // // More formally: let F be a real-valued function that maps time to sample // values. We define F as a linear interpolation between adjacent samples. For // each time interval [x; x + T) the backing histogram gets one sample value // that is the average of F(t) in the interval. template class AggregatedMemoryHistogram { public: AggregatedMemoryHistogram() : is_initialized_(false), start_ms_(0.0), last_ms_(0.0), aggregate_value_(0.0), last_value_(0.0), backing_histogram_(NULL) {} explicit AggregatedMemoryHistogram(Histogram* backing_histogram) : AggregatedMemoryHistogram() { backing_histogram_ = backing_histogram; } // Invariants that hold before and after AddSample if // is_initialized_ is true: // // 1) For we processed samples that came in before start_ms_ and sent the // corresponding aggregated samples to backing histogram. // 2) (last_ms_, last_value_) is the last received sample. // 3) last_ms_ < start_ms_ + FLAG_histogram_interval. // 4) aggregate_value_ is the average of the function that is constructed by // linearly interpolating samples received between start_ms_ and last_ms_. void AddSample(double current_ms, double current_value); private: double Aggregate(double current_ms, double current_value); bool is_initialized_; double start_ms_; double last_ms_; double aggregate_value_; double last_value_; Histogram* backing_histogram_; }; template void AggregatedMemoryHistogram::AddSample(double current_ms, double current_value) { if (!is_initialized_) { aggregate_value_ = current_value; start_ms_ = current_ms; last_value_ = current_value; last_ms_ = current_ms; is_initialized_ = true; } else { const double kEpsilon = 1e-6; const int kMaxSamples = 1000; if (current_ms < last_ms_ + kEpsilon) { // Two samples have the same time, remember the last one. last_value_ = current_value; } else { double sample_interval_ms = FLAG_histogram_interval; double end_ms = start_ms_ + sample_interval_ms; if (end_ms <= current_ms + kEpsilon) { // Linearly interpolate between the last_ms_ and the current_ms. double slope = (current_value - last_value_) / (current_ms - last_ms_); int i; // Send aggregated samples to the backing histogram from the start_ms // to the current_ms. for (i = 0; i < kMaxSamples && end_ms <= current_ms + kEpsilon; i++) { double end_value = last_value_ + (end_ms - last_ms_) * slope; double sample_value; if (i == 0) { // Take aggregate_value_ into account. sample_value = Aggregate(end_ms, end_value); } else { // There is no aggregate_value_ for i > 0. sample_value = (last_value_ + end_value) / 2; } backing_histogram_->AddSample(static_cast(sample_value + 0.5)); last_value_ = end_value; last_ms_ = end_ms; end_ms += sample_interval_ms; } if (i == kMaxSamples) { // We hit the sample limit, ignore the remaining samples. aggregate_value_ = current_value; start_ms_ = current_ms; } else { aggregate_value_ = last_value_; start_ms_ = last_ms_; } } aggregate_value_ = current_ms > start_ms_ + kEpsilon ? Aggregate(current_ms, current_value) : aggregate_value_; last_value_ = current_value; last_ms_ = current_ms; } } } template double AggregatedMemoryHistogram::Aggregate(double current_ms, double current_value) { double interval_ms = current_ms - start_ms_; double value = (current_value + last_value_) / 2; // The aggregate_value_ is the average for [start_ms_; last_ms_]. // The value is the average for [last_ms_; current_ms]. // Return the weighted average of the aggregate_value_ and the value. return aggregate_value_ * ((last_ms_ - start_ms_) / interval_ms) + value * ((current_ms - last_ms_) / interval_ms); } #define HISTOGRAM_RANGE_LIST(HR) \ /* Generic range histograms */ \ HR(detached_context_age_in_gc, V8.DetachedContextAgeInGC, 0, 20, 21) \ HR(gc_idle_time_allotted_in_ms, V8.GCIdleTimeAllottedInMS, 0, 10000, 101) \ HR(gc_idle_time_limit_overshot, V8.GCIdleTimeLimit.Overshot, 0, 10000, 101) \ HR(gc_idle_time_limit_undershot, V8.GCIdleTimeLimit.Undershot, 0, 10000, \ 101) \ HR(code_cache_reject_reason, V8.CodeCacheRejectReason, 1, 6, 6) \ HR(errors_thrown_per_context, V8.ErrorsThrownPerContext, 0, 200, 20) \ HR(debug_feature_usage, V8.DebugFeatureUsage, 1, 7, 7) #define HISTOGRAM_TIMER_LIST(HT) \ /* Garbage collection timers. */ \ HT(gc_compactor, V8.GCCompactor, 10000, MILLISECOND) \ HT(gc_finalize, V8.GCFinalizeMC, 10000, MILLISECOND) \ HT(gc_finalize_reduce_memory, V8.GCFinalizeMCReduceMemory, 10000, \ MILLISECOND) \ HT(gc_scavenger, V8.GCScavenger, 10000, MILLISECOND) \ HT(gc_context, V8.GCContext, 10000, \ MILLISECOND) /* GC context cleanup time */ \ HT(gc_idle_notification, V8.GCIdleNotification, 10000, MILLISECOND) \ HT(gc_incremental_marking, V8.GCIncrementalMarking, 10000, MILLISECOND) \ HT(gc_incremental_marking_start, V8.GCIncrementalMarkingStart, 10000, \ MILLISECOND) \ HT(gc_incremental_marking_finalize, V8.GCIncrementalMarkingFinalize, 10000, \ MILLISECOND) \ HT(gc_low_memory_notification, V8.GCLowMemoryNotification, 10000, \ MILLISECOND) \ /* Parsing timers. */ \ HT(parse, V8.ParseMicroSeconds, 1000000, MICROSECOND) \ HT(parse_lazy, V8.ParseLazyMicroSeconds, 1000000, MICROSECOND) \ HT(pre_parse, V8.PreParseMicroSeconds, 1000000, MICROSECOND) \ /* Compilation times. */ \ HT(compile, V8.CompileMicroSeconds, 1000000, MICROSECOND) \ HT(compile_eval, V8.CompileEvalMicroSeconds, 1000000, MICROSECOND) \ /* Serialization as part of compilation (code caching) */ \ HT(compile_serialize, V8.CompileSerializeMicroSeconds, 100000, MICROSECOND) \ HT(compile_deserialize, V8.CompileDeserializeMicroSeconds, 1000000, \ MICROSECOND) \ /* Total compilation time incl. caching/parsing */ \ HT(compile_script, V8.CompileScriptMicroSeconds, 1000000, MICROSECOND) #define AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) \ AHT(compile_lazy, V8.CompileLazyMicroSeconds) #define HISTOGRAM_PERCENTAGE_LIST(HP) \ /* Heap fragmentation. */ \ HP(external_fragmentation_total, V8.MemoryExternalFragmentationTotal) \ HP(external_fragmentation_old_space, V8.MemoryExternalFragmentationOldSpace) \ HP(external_fragmentation_code_space, \ V8.MemoryExternalFragmentationCodeSpace) \ HP(external_fragmentation_map_space, V8.MemoryExternalFragmentationMapSpace) \ HP(external_fragmentation_lo_space, V8.MemoryExternalFragmentationLoSpace) \ /* Percentages of heap committed to each space. */ \ HP(heap_fraction_new_space, V8.MemoryHeapFractionNewSpace) \ HP(heap_fraction_old_space, V8.MemoryHeapFractionOldSpace) \ HP(heap_fraction_code_space, V8.MemoryHeapFractionCodeSpace) \ HP(heap_fraction_map_space, V8.MemoryHeapFractionMapSpace) \ HP(heap_fraction_lo_space, V8.MemoryHeapFractionLoSpace) \ /* Percentage of crankshafted codegen. */ \ HP(codegen_fraction_crankshaft, V8.CodegenFractionCrankshaft) #define HISTOGRAM_LEGACY_MEMORY_LIST(HM) \ HM(heap_sample_total_committed, V8.MemoryHeapSampleTotalCommitted) \ HM(heap_sample_total_used, V8.MemoryHeapSampleTotalUsed) \ HM(heap_sample_map_space_committed, V8.MemoryHeapSampleMapSpaceCommitted) \ HM(heap_sample_code_space_committed, V8.MemoryHeapSampleCodeSpaceCommitted) \ HM(heap_sample_maximum_committed, V8.MemoryHeapSampleMaximumCommitted) #define HISTOGRAM_MEMORY_LIST(HM) \ HM(memory_heap_committed, V8.MemoryHeapCommitted) \ HM(memory_heap_used, V8.MemoryHeapUsed) // WARNING: STATS_COUNTER_LIST_* is a very large macro that is causing MSVC // Intellisense to crash. It was broken into two macros (each of length 40 // lines) rather than one macro (of length about 80 lines) to work around // this problem. Please avoid using recursive macros of this length when // possible. #define STATS_COUNTER_LIST_1(SC) \ /* Global Handle Count*/ \ SC(global_handles, V8.GlobalHandles) \ /* OS Memory allocated */ \ SC(memory_allocated, V8.OsMemoryAllocated) \ SC(maps_normalized, V8.MapsNormalized) \ SC(maps_created, V8.MapsCreated) \ SC(elements_transitions, V8.ObjectElementsTransitions) \ SC(props_to_dictionary, V8.ObjectPropertiesToDictionary) \ SC(elements_to_dictionary, V8.ObjectElementsToDictionary) \ SC(alive_after_last_gc, V8.AliveAfterLastGC) \ SC(objs_since_last_young, V8.ObjsSinceLastYoung) \ SC(objs_since_last_full, V8.ObjsSinceLastFull) \ SC(string_table_capacity, V8.StringTableCapacity) \ SC(number_of_symbols, V8.NumberOfSymbols) \ SC(script_wrappers, V8.ScriptWrappers) \ SC(inlined_copied_elements, V8.InlinedCopiedElements) \ SC(arguments_adaptors, V8.ArgumentsAdaptors) \ SC(compilation_cache_hits, V8.CompilationCacheHits) \ SC(compilation_cache_misses, V8.CompilationCacheMisses) \ /* Amount of evaled source code. */ \ SC(total_eval_size, V8.TotalEvalSize) \ /* Amount of loaded source code. */ \ SC(total_load_size, V8.TotalLoadSize) \ /* Amount of parsed source code. */ \ SC(total_parse_size, V8.TotalParseSize) \ /* Amount of source code skipped over using preparsing. */ \ SC(total_preparse_skipped, V8.TotalPreparseSkipped) \ /* Amount of compiled source code. */ \ SC(total_compile_size, V8.TotalCompileSize) \ /* Amount of source code compiled with the full codegen. */ \ SC(total_full_codegen_source_size, V8.TotalFullCodegenSourceSize) \ /* Number of contexts created from scratch. */ \ SC(contexts_created_from_scratch, V8.ContextsCreatedFromScratch) \ /* Number of contexts created by partial snapshot. */ \ SC(contexts_created_by_snapshot, V8.ContextsCreatedBySnapshot) \ /* Number of code objects found from pc. */ \ SC(pc_to_code, V8.PcToCode) \ SC(pc_to_code_cached, V8.PcToCodeCached) \ /* The store-buffer implementation of the write barrier. */ \ SC(store_buffer_overflows, V8.StoreBufferOverflows) #define STATS_COUNTER_LIST_2(SC) \ /* Number of code stubs. */ \ SC(code_stubs, V8.CodeStubs) \ /* Amount of stub code. */ \ SC(total_stubs_code_size, V8.TotalStubsCodeSize) \ /* Amount of (JS) compiled code. */ \ SC(total_compiled_code_size, V8.TotalCompiledCodeSize) \ SC(gc_compactor_caused_by_request, V8.GCCompactorCausedByRequest) \ SC(gc_compactor_caused_by_promoted_data, V8.GCCompactorCausedByPromotedData) \ SC(gc_compactor_caused_by_oldspace_exhaustion, \ V8.GCCompactorCausedByOldspaceExhaustion) \ SC(gc_last_resort_from_js, V8.GCLastResortFromJS) \ SC(gc_last_resort_from_handles, V8.GCLastResortFromHandles) \ SC(ic_keyed_load_generic_smi, V8.ICKeyedLoadGenericSmi) \ SC(ic_keyed_load_generic_symbol, V8.ICKeyedLoadGenericSymbol) \ SC(ic_keyed_load_generic_slow, V8.ICKeyedLoadGenericSlow) \ SC(ic_named_load_global_stub, V8.ICNamedLoadGlobalStub) \ SC(ic_store_normal_miss, V8.ICStoreNormalMiss) \ SC(ic_store_normal_hit, V8.ICStoreNormalHit) \ SC(ic_binary_op_miss, V8.ICBinaryOpMiss) \ SC(ic_compare_miss, V8.ICCompareMiss) \ SC(ic_call_miss, V8.ICCallMiss) \ SC(ic_keyed_call_miss, V8.ICKeyedCallMiss) \ SC(ic_load_miss, V8.ICLoadMiss) \ SC(ic_keyed_load_miss, V8.ICKeyedLoadMiss) \ SC(ic_store_miss, V8.ICStoreMiss) \ SC(ic_keyed_store_miss, V8.ICKeyedStoreMiss) \ SC(cow_arrays_created_runtime, V8.COWArraysCreatedRuntime) \ SC(cow_arrays_converted, V8.COWArraysConverted) \ SC(constructed_objects, V8.ConstructedObjects) \ SC(constructed_objects_runtime, V8.ConstructedObjectsRuntime) \ SC(negative_lookups, V8.NegativeLookups) \ SC(negative_lookups_miss, V8.NegativeLookupsMiss) \ SC(megamorphic_stub_cache_probes, V8.MegamorphicStubCacheProbes) \ SC(megamorphic_stub_cache_misses, V8.MegamorphicStubCacheMisses) \ SC(megamorphic_stub_cache_updates, V8.MegamorphicStubCacheUpdates) \ SC(enum_cache_hits, V8.EnumCacheHits) \ SC(enum_cache_misses, V8.EnumCacheMisses) \ SC(fast_new_closure_total, V8.FastNewClosureTotal) \ SC(fast_new_closure_try_optimized, V8.FastNewClosureTryOptimized) \ SC(fast_new_closure_install_optimized, V8.FastNewClosureInstallOptimized) \ SC(string_add_runtime, V8.StringAddRuntime) \ SC(string_add_native, V8.StringAddNative) \ SC(string_add_runtime_ext_to_one_byte, V8.StringAddRuntimeExtToOneByte) \ SC(sub_string_runtime, V8.SubStringRuntime) \ SC(sub_string_native, V8.SubStringNative) \ SC(string_compare_native, V8.StringCompareNative) \ SC(string_compare_runtime, V8.StringCompareRuntime) \ SC(regexp_entry_runtime, V8.RegExpEntryRuntime) \ SC(regexp_entry_native, V8.RegExpEntryNative) \ SC(number_to_string_native, V8.NumberToStringNative) \ SC(number_to_string_runtime, V8.NumberToStringRuntime) \ SC(math_acos_runtime, V8.MathAcosRuntime) \ SC(math_asin_runtime, V8.MathAsinRuntime) \ SC(math_atan_runtime, V8.MathAtanRuntime) \ SC(math_atan2_runtime, V8.MathAtan2Runtime) \ SC(math_clz32_runtime, V8.MathClz32Runtime) \ SC(math_exp_runtime, V8.MathExpRuntime) \ SC(math_floor_runtime, V8.MathFloorRuntime) \ SC(math_log_runtime, V8.MathLogRuntime) \ SC(math_pow_runtime, V8.MathPowRuntime) \ SC(math_round_runtime, V8.MathRoundRuntime) \ SC(math_sqrt_runtime, V8.MathSqrtRuntime) \ SC(stack_interrupts, V8.StackInterrupts) \ SC(runtime_profiler_ticks, V8.RuntimeProfilerTicks) \ SC(runtime_calls, V8.RuntimeCalls) \ SC(bounds_checks_eliminated, V8.BoundsChecksEliminated) \ SC(bounds_checks_hoisted, V8.BoundsChecksHoisted) \ SC(soft_deopts_requested, V8.SoftDeoptsRequested) \ SC(soft_deopts_inserted, V8.SoftDeoptsInserted) \ SC(soft_deopts_executed, V8.SoftDeoptsExecuted) \ /* Number of write barriers in generated code. */ \ SC(write_barriers_dynamic, V8.WriteBarriersDynamic) \ SC(write_barriers_static, V8.WriteBarriersStatic) \ SC(new_space_bytes_available, V8.MemoryNewSpaceBytesAvailable) \ SC(new_space_bytes_committed, V8.MemoryNewSpaceBytesCommitted) \ SC(new_space_bytes_used, V8.MemoryNewSpaceBytesUsed) \ SC(old_space_bytes_available, V8.MemoryOldSpaceBytesAvailable) \ SC(old_space_bytes_committed, V8.MemoryOldSpaceBytesCommitted) \ SC(old_space_bytes_used, V8.MemoryOldSpaceBytesUsed) \ SC(code_space_bytes_available, V8.MemoryCodeSpaceBytesAvailable) \ SC(code_space_bytes_committed, V8.MemoryCodeSpaceBytesCommitted) \ SC(code_space_bytes_used, V8.MemoryCodeSpaceBytesUsed) \ SC(map_space_bytes_available, V8.MemoryMapSpaceBytesAvailable) \ SC(map_space_bytes_committed, V8.MemoryMapSpaceBytesCommitted) \ SC(map_space_bytes_used, V8.MemoryMapSpaceBytesUsed) \ SC(lo_space_bytes_available, V8.MemoryLoSpaceBytesAvailable) \ SC(lo_space_bytes_committed, V8.MemoryLoSpaceBytesCommitted) \ SC(lo_space_bytes_used, V8.MemoryLoSpaceBytesUsed) \ SC(turbo_escape_allocs_replaced, V8.TurboEscapeAllocsReplaced) \ SC(crankshaft_escape_allocs_replaced, V8.CrankshaftEscapeAllocsReplaced) \ SC(turbo_escape_loads_replaced, V8.TurboEscapeLoadsReplaced) \ SC(crankshaft_escape_loads_replaced, V8.CrankshaftEscapeLoadsReplaced) \ /* Total code size (including metadata) of baseline code or bytecode. */ \ SC(total_baseline_code_size, V8.TotalBaselineCodeSize) \ /* Total count of functions compiled using the baseline compiler. */ \ SC(total_baseline_compile_count, V8.TotalBaselineCompileCount) typedef struct RuntimeCallCounter { int64_t count = 0; base::TimeDelta time; RuntimeCallCounter* parent_counter; void Reset(); } RuntimeCallCounter; struct RuntimeCallStats { #define CALL_RUNTIME_COUNTER(name, nargs, ressize) \ RuntimeCallCounter Runtime_##name; FOR_EACH_INTRINSIC(CALL_RUNTIME_COUNTER) #undef CALL_RUNTIME_COUNTER #define CALL_BUILTIN_COUNTER(name, type) RuntimeCallCounter Builtin_##name; BUILTIN_LIST_C(CALL_BUILTIN_COUNTER) #undef CALL_BUILTIN_COUNTER // Dummy counter for the unexpected stub miss. RuntimeCallCounter UnexpectedStubMiss; // Counter to track recursive time events. RuntimeCallCounter* current_counter; // Starting measuring the time for a function. This will establish the // connection to the parent counter for properly calculating the own times. void Enter(RuntimeCallCounter* counter); // Leave a scope for a measured runtime function. This will properly add // the time delta to the current_counter and subtract the delta from its // parent. void Leave(base::TimeDelta time); void Reset(); void Print(std::ostream& os); RuntimeCallStats() { Reset(); } }; // This file contains all the v8 counters that are in use. class Counters { public: #define HR(name, caption, min, max, num_buckets) \ Histogram* name() { return &name##_; } HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) \ HistogramTimer* name() { return &name##_; } HISTOGRAM_TIMER_LIST(HT) #undef HT #define AHT(name, caption) \ AggregatableHistogramTimer* name() { return &name##_; } AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) \ Histogram* name() { return &name##_; } HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) \ Histogram* name() { return &name##_; } HISTOGRAM_LEGACY_MEMORY_LIST(HM) HISTOGRAM_MEMORY_LIST(HM) #undef HM #define HM(name, caption) \ AggregatedMemoryHistogram* aggregated_##name() { \ return &aggregated_##name##_; \ } HISTOGRAM_MEMORY_LIST(HM) #undef HM #define SC(name, caption) \ StatsCounter* name() { return &name##_; } STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) #undef SC #define SC(name) \ StatsCounter* count_of_##name() { return &count_of_##name##_; } \ StatsCounter* size_of_##name() { return &size_of_##name##_; } INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ StatsCounter* count_of_CODE_TYPE_##name() \ { return &count_of_CODE_TYPE_##name##_; } \ StatsCounter* size_of_CODE_TYPE_##name() \ { return &size_of_CODE_TYPE_##name##_; } CODE_KIND_LIST(SC) #undef SC #define SC(name) \ StatsCounter* count_of_FIXED_ARRAY_##name() \ { return &count_of_FIXED_ARRAY_##name##_; } \ StatsCounter* size_of_FIXED_ARRAY_##name() \ { return &size_of_FIXED_ARRAY_##name##_; } FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ StatsCounter* count_of_CODE_AGE_##name() \ { return &count_of_CODE_AGE_##name##_; } \ StatsCounter* size_of_CODE_AGE_##name() \ { return &size_of_CODE_AGE_##name##_; } CODE_AGE_LIST_COMPLETE(SC) #undef SC enum Id { #define RATE_ID(name, caption, max, res) k_##name, HISTOGRAM_TIMER_LIST(RATE_ID) #undef RATE_ID #define AGGREGATABLE_ID(name, caption) k_##name, AGGREGATABLE_HISTOGRAM_TIMER_LIST(AGGREGATABLE_ID) #undef AGGREGATABLE_ID #define PERCENTAGE_ID(name, caption) k_##name, HISTOGRAM_PERCENTAGE_LIST(PERCENTAGE_ID) #undef PERCENTAGE_ID #define MEMORY_ID(name, caption) k_##name, HISTOGRAM_LEGACY_MEMORY_LIST(MEMORY_ID) HISTOGRAM_MEMORY_LIST(MEMORY_ID) #undef MEMORY_ID #define COUNTER_ID(name, caption) k_##name, STATS_COUNTER_LIST_1(COUNTER_ID) STATS_COUNTER_LIST_2(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOf##name, kSizeOf##name, INSTANCE_TYPE_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOfCODE_TYPE_##name, \ kSizeOfCODE_TYPE_##name, CODE_KIND_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOfFIXED_ARRAY__##name, \ kSizeOfFIXED_ARRAY__##name, FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOfCODE_AGE__##name, \ kSizeOfCODE_AGE__##name, CODE_AGE_LIST_COMPLETE(COUNTER_ID) #undef COUNTER_ID stats_counter_count }; void ResetCounters(); void ResetHistograms(); RuntimeCallStats* runtime_call_stats() { return &runtime_call_stats_; } private: #define HR(name, caption, min, max, num_buckets) Histogram name##_; HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) HistogramTimer name##_; HISTOGRAM_TIMER_LIST(HT) #undef HT #define AHT(name, caption) \ AggregatableHistogramTimer name##_; AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) \ Histogram name##_; HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) \ Histogram name##_; HISTOGRAM_LEGACY_MEMORY_LIST(HM) HISTOGRAM_MEMORY_LIST(HM) #undef HM #define HM(name, caption) \ AggregatedMemoryHistogram aggregated_##name##_; HISTOGRAM_MEMORY_LIST(HM) #undef HM #define SC(name, caption) \ StatsCounter name##_; STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) #undef SC #define SC(name) \ StatsCounter size_of_##name##_; \ StatsCounter count_of_##name##_; INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_CODE_TYPE_##name##_; \ StatsCounter count_of_CODE_TYPE_##name##_; CODE_KIND_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_FIXED_ARRAY_##name##_; \ StatsCounter count_of_FIXED_ARRAY_##name##_; FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_CODE_AGE_##name##_; \ StatsCounter count_of_CODE_AGE_##name##_; CODE_AGE_LIST_COMPLETE(SC) #undef SC RuntimeCallStats runtime_call_stats_; friend class Isolate; explicit Counters(Isolate* isolate); DISALLOW_IMPLICIT_CONSTRUCTORS(Counters); }; } // namespace internal } // namespace v8 #endif // V8_COUNTERS_H_