// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Check that we can traverse very deep stacks of ConsStrings using // StringCharacterStram. Check that Get(int) works on very deep stacks // of ConsStrings. These operations may not be very fast, but they // should be possible without getting errors due to too deep recursion. #include #include "src/api/api-inl.h" #include "src/base/platform/elapsed-timer.h" #include "src/base/strings.h" #include "src/execution/messages.h" #include "src/heap/factory.h" #include "src/heap/heap-inl.h" #include "src/init/v8.h" #include "src/objects/objects-inl.h" #include "src/strings/unicode-decoder.h" #include "test/cctest/cctest.h" #include "test/cctest/heap/heap-utils.h" // Adapted from http://en.wikipedia.org/wiki/Multiply-with-carry class MyRandomNumberGenerator { public: MyRandomNumberGenerator() { init(); } void init(uint32_t seed = 0x5688C73E) { static const uint32_t phi = 0x9E3779B9; c = 362436; i = kQSize - 1; Q[0] = seed; Q[1] = seed + phi; Q[2] = seed + phi + phi; for (unsigned j = 3; j < kQSize; j++) { Q[j] = Q[j - 3] ^ Q[j - 2] ^ phi ^ j; } } uint32_t next() { uint64_t a = 18782; uint32_t r = 0xFFFFFFFE; i = (i + 1) & (kQSize - 1); uint64_t t = a * Q[i] + c; c = (t >> 32); uint32_t x = static_cast(t + c); if (x < c) { x++; c++; } return (Q[i] = r - x); } uint32_t next(int max) { return next() % max; } bool next(double threshold) { CHECK(threshold >= 0.0 && threshold <= 1.0); if (threshold == 1.0) return true; if (threshold == 0.0) return false; uint32_t value = next() % 100000; return threshold > static_cast(value) / 100000.0; } private: static const uint32_t kQSize = 4096; uint32_t Q[kQSize]; uint32_t c; uint32_t i; }; namespace v8 { namespace internal { namespace test_strings { static const int DEEP_DEPTH = 8 * 1024; static const int SUPER_DEEP_DEPTH = 80 * 1024; class Resource : public v8::String::ExternalStringResource { public: Resource(const base::uc16* data, size_t length) : data_(data), length_(length) {} ~Resource() override { i::DeleteArray(data_); } const uint16_t* data() const override { return data_; } size_t length() const override { return length_; } private: const base::uc16* data_; size_t length_; }; class OneByteResource : public v8::String::ExternalOneByteStringResource { public: OneByteResource(const char* data, size_t length) : data_(data), length_(length) {} ~OneByteResource() override { i::DeleteArray(data_); } const char* data() const override { return data_; } size_t length() const override { return length_; } private: const char* data_; size_t length_; }; static void InitializeBuildingBlocks(Handle* building_blocks, int bb_length, bool long_blocks, MyRandomNumberGenerator* rng) { // A list of pointers that we don't have any interest in cleaning up. // If they are reachable from a root then leak detection won't complain. Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); for (int i = 0; i < bb_length; i++) { int len = rng->next(16); int slice_head_chars = 0; int slice_tail_chars = 0; int slice_depth = 0; for (int j = 0; j < 3; j++) { if (rng->next(0.35)) slice_depth++; } // Must truncate something for a slice string. Loop until // at least one end will be sliced. while (slice_head_chars == 0 && slice_tail_chars == 0) { slice_head_chars = rng->next(15); slice_tail_chars = rng->next(12); } if (long_blocks) { // Generate building blocks which will never be merged len += ConsString::kMinLength + 1; } else if (len > 14) { len += 1234; } // Don't slice 0 length strings. if (len == 0) slice_depth = 0; int slice_length = slice_depth * (slice_head_chars + slice_tail_chars); len += slice_length; switch (rng->next(4)) { case 0: { base::uc16 buf[2000]; for (int j = 0; j < len; j++) { buf[j] = rng->next(0x10000); } building_blocks[i] = factory ->NewStringFromTwoByte( v8::base::Vector(buf, len)) .ToHandleChecked(); for (int j = 0; j < len; j++) { CHECK_EQ(buf[j], building_blocks[i]->Get(j)); } break; } case 1: { char buf[2000]; for (int j = 0; j < len; j++) { buf[j] = rng->next(0x80); } building_blocks[i] = factory->NewStringFromOneByte(v8::base::OneByteVector(buf, len)) .ToHandleChecked(); for (int j = 0; j < len; j++) { CHECK_EQ(buf[j], building_blocks[i]->Get(j)); } break; } case 2: { base::uc16* buf = NewArray(len); for (int j = 0; j < len; j++) { buf[j] = rng->next(0x10000); } Resource* resource = new Resource(buf, len); building_blocks[i] = v8::Utils::OpenHandle( *v8::String::NewExternalTwoByte(CcTest::isolate(), resource) .ToLocalChecked()); for (int j = 0; j < len; j++) { CHECK_EQ(buf[j], building_blocks[i]->Get(j)); } break; } case 3: { char* buf = NewArray(len); for (int j = 0; j < len; j++) { buf[j] = rng->next(0x80); } OneByteResource* resource = new OneByteResource(buf, len); building_blocks[i] = v8::Utils::OpenHandle( *v8::String::NewExternalOneByte(CcTest::isolate(), resource) .ToLocalChecked()); for (int j = 0; j < len; j++) { CHECK_EQ(buf[j], building_blocks[i]->Get(j)); } break; } } for (int j = slice_depth; j > 0; j--) { building_blocks[i] = factory->NewSubString( building_blocks[i], slice_head_chars, building_blocks[i]->length() - slice_tail_chars); } CHECK(len == building_blocks[i]->length() + slice_length); } } class ConsStringStats { public: ConsStringStats() { Reset(); } ConsStringStats(const ConsStringStats&) = delete; ConsStringStats& operator=(const ConsStringStats&) = delete; void Reset(); void VerifyEqual(const ConsStringStats& that) const; int leaves_; int empty_leaves_; int chars_; int left_traversals_; int right_traversals_; private: }; void ConsStringStats::Reset() { leaves_ = 0; empty_leaves_ = 0; chars_ = 0; left_traversals_ = 0; right_traversals_ = 0; } void ConsStringStats::VerifyEqual(const ConsStringStats& that) const { CHECK_EQ(this->leaves_, that.leaves_); CHECK_EQ(this->empty_leaves_, that.empty_leaves_); CHECK_EQ(this->chars_, that.chars_); CHECK_EQ(this->left_traversals_, that.left_traversals_); CHECK_EQ(this->right_traversals_, that.right_traversals_); } class ConsStringGenerationData { public: static const int kNumberOfBuildingBlocks = 256; explicit ConsStringGenerationData(bool long_blocks); ConsStringGenerationData(const ConsStringGenerationData&) = delete; ConsStringGenerationData& operator=(const ConsStringGenerationData&) = delete; void Reset(); inline Handle block(int offset); inline Handle block(uint32_t offset); // Input variables. double early_termination_threshold_; double leftness_; double rightness_; double empty_leaf_threshold_; int max_leaves_; // Cached data. Handle building_blocks_[kNumberOfBuildingBlocks]; String empty_string_; MyRandomNumberGenerator rng_; // Stats. ConsStringStats stats_; int early_terminations_; }; ConsStringGenerationData::ConsStringGenerationData(bool long_blocks) { rng_.init(); InitializeBuildingBlocks(building_blocks_, kNumberOfBuildingBlocks, long_blocks, &rng_); empty_string_ = ReadOnlyRoots(CcTest::heap()).empty_string(); Reset(); } Handle ConsStringGenerationData::block(uint32_t offset) { return building_blocks_[offset % kNumberOfBuildingBlocks]; } Handle ConsStringGenerationData::block(int offset) { CHECK_GE(offset, 0); return building_blocks_[offset % kNumberOfBuildingBlocks]; } void ConsStringGenerationData::Reset() { early_termination_threshold_ = 0.01; leftness_ = 0.75; rightness_ = 0.75; empty_leaf_threshold_ = 0.02; max_leaves_ = 1000; stats_.Reset(); early_terminations_ = 0; rng_.init(); } void AccumulateStats(ConsString cons_string, ConsStringStats* stats) { int left_length = cons_string.first().length(); int right_length = cons_string.second().length(); CHECK(cons_string.length() == left_length + right_length); // Check left side. bool left_is_cons = cons_string.first().IsConsString(); if (left_is_cons) { stats->left_traversals_++; AccumulateStats(ConsString::cast(cons_string.first()), stats); } else { CHECK_NE(left_length, 0); stats->leaves_++; stats->chars_ += left_length; } // Check right side. if (cons_string.second().IsConsString()) { stats->right_traversals_++; AccumulateStats(ConsString::cast(cons_string.second()), stats); } else { if (right_length == 0) { stats->empty_leaves_++; CHECK(!left_is_cons); } stats->leaves_++; stats->chars_ += right_length; } } void AccumulateStats(Handle cons_string, ConsStringStats* stats) { DisallowGarbageCollection no_gc; if (cons_string->IsConsString()) { return AccumulateStats(ConsString::cast(*cons_string), stats); } // This string got flattened by gc. stats->chars_ += cons_string->length(); } void AccumulateStatsWithOperator(ConsString cons_string, ConsStringStats* stats) { ConsStringIterator iter(cons_string); int offset; for (String string = iter.Next(&offset); !string.is_null(); string = iter.Next(&offset)) { // Accumulate stats. CHECK_EQ(0, offset); stats->leaves_++; stats->chars_ += string.length(); } } void VerifyConsString(Handle root, ConsStringGenerationData* data) { // Verify basic data. CHECK(root->IsConsString()); CHECK_EQ(root->length(), data->stats_.chars_); // Recursive verify. ConsStringStats stats; AccumulateStats(ConsString::cast(*root), &stats); stats.VerifyEqual(data->stats_); // Iteratively verify. stats.Reset(); AccumulateStatsWithOperator(ConsString::cast(*root), &stats); // Don't see these. Must copy over. stats.empty_leaves_ = data->stats_.empty_leaves_; stats.left_traversals_ = data->stats_.left_traversals_; stats.right_traversals_ = data->stats_.right_traversals_; // Adjust total leaves to compensate. stats.leaves_ += stats.empty_leaves_; stats.VerifyEqual(data->stats_); } static Handle ConstructRandomString(ConsStringGenerationData* data, unsigned max_recursion) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); // Compute termination characteristics. bool terminate = false; bool flat = data->rng_.next(data->empty_leaf_threshold_); bool terminate_early = data->rng_.next(data->early_termination_threshold_); if (terminate_early) data->early_terminations_++; // The obvious condition. terminate |= max_recursion == 0; // Flat cons string terminate by definition. terminate |= flat; // Cap for max leaves. terminate |= data->stats_.leaves_ >= data->max_leaves_; // Roll the dice. terminate |= terminate_early; // Compute termination characteristics for each side. bool terminate_left = terminate || !data->rng_.next(data->leftness_); bool terminate_right = terminate || !data->rng_.next(data->rightness_); // Generate left string. Handle left; if (terminate_left) { left = data->block(data->rng_.next()); data->stats_.leaves_++; data->stats_.chars_ += left->length(); } else { data->stats_.left_traversals_++; } // Generate right string. Handle right; if (terminate_right) { right = data->block(data->rng_.next()); data->stats_.leaves_++; data->stats_.chars_ += right->length(); } else { data->stats_.right_traversals_++; } // Generate the necessary sub-nodes recursively. if (!terminate_right) { // Need to balance generation fairly. if (!terminate_left && data->rng_.next(0.5)) { left = ConstructRandomString(data, max_recursion - 1); } right = ConstructRandomString(data, max_recursion - 1); } if (!terminate_left && left.is_null()) { left = ConstructRandomString(data, max_recursion - 1); } // Build the cons string. Handle root = factory->NewConsString(left, right).ToHandleChecked(); CHECK(root->IsConsString() && !root->IsFlat()); // Special work needed for flat string. if (flat) { data->stats_.empty_leaves_++; String::Flatten(isolate, root); CHECK(root->IsConsString() && root->IsFlat()); } return root; } static Handle ConstructLeft(ConsStringGenerationData* data, int depth) { Factory* factory = CcTest::i_isolate()->factory(); Handle answer = factory->NewStringFromStaticChars(""); data->stats_.leaves_++; for (int i = 0; i < depth; i++) { Handle block = data->block(i); Handle next = factory->NewConsString(answer, block).ToHandleChecked(); if (next->IsConsString()) data->stats_.leaves_++; data->stats_.chars_ += block->length(); answer = next; } data->stats_.left_traversals_ = data->stats_.leaves_ - 2; return answer; } static Handle ConstructRight(ConsStringGenerationData* data, int depth) { Factory* factory = CcTest::i_isolate()->factory(); Handle answer = factory->NewStringFromStaticChars(""); data->stats_.leaves_++; for (int i = depth - 1; i >= 0; i--) { Handle block = data->block(i); Handle next = factory->NewConsString(block, answer).ToHandleChecked(); if (next->IsConsString()) data->stats_.leaves_++; data->stats_.chars_ += block->length(); answer = next; } data->stats_.right_traversals_ = data->stats_.leaves_ - 2; return answer; } static Handle ConstructBalancedHelper(ConsStringGenerationData* data, int from, int to) { Factory* factory = CcTest::i_isolate()->factory(); CHECK(to > from); if (to - from == 1) { data->stats_.chars_ += data->block(from)->length(); return data->block(from); } if (to - from == 2) { data->stats_.chars_ += data->block(from)->length(); data->stats_.chars_ += data->block(from + 1)->length(); return factory->NewConsString(data->block(from), data->block(from + 1)) .ToHandleChecked(); } Handle part1 = ConstructBalancedHelper(data, from, from + ((to - from) / 2)); Handle part2 = ConstructBalancedHelper(data, from + ((to - from) / 2), to); if (part1->IsConsString()) data->stats_.left_traversals_++; if (part2->IsConsString()) data->stats_.right_traversals_++; return factory->NewConsString(part1, part2).ToHandleChecked(); } static Handle ConstructBalanced(ConsStringGenerationData* data, int depth = DEEP_DEPTH) { Handle string = ConstructBalancedHelper(data, 0, depth); data->stats_.leaves_ = data->stats_.left_traversals_ + data->stats_.right_traversals_ + 2; return string; } static void Traverse(Handle s1, Handle s2) { int i = 0; StringCharacterStream character_stream_1(*s1); StringCharacterStream character_stream_2(*s2); while (character_stream_1.HasMore()) { CHECK(character_stream_2.HasMore()); uint16_t c = character_stream_1.GetNext(); CHECK_EQ(c, character_stream_2.GetNext()); i++; } CHECK(!character_stream_1.HasMore()); CHECK(!character_stream_2.HasMore()); CHECK_EQ(s1->length(), i); CHECK_EQ(s2->length(), i); } static void TraverseFirst(Handle s1, Handle s2, int chars) { int i = 0; StringCharacterStream character_stream_1(*s1); StringCharacterStream character_stream_2(*s2); while (character_stream_1.HasMore() && i < chars) { CHECK(character_stream_2.HasMore()); uint16_t c = character_stream_1.GetNext(); CHECK_EQ(c, character_stream_2.GetNext()); i++; } s1->Get(s1->length() - 1); s2->Get(s2->length() - 1); } TEST(Traverse) { printf("TestTraverse\n"); CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); v8::HandleScope scope(CcTest::isolate()); ConsStringGenerationData data(false); Handle flat = ConstructBalanced(&data); String::Flatten(isolate, flat); Handle left_asymmetric = ConstructLeft(&data, DEEP_DEPTH); Handle right_asymmetric = ConstructRight(&data, DEEP_DEPTH); Handle symmetric = ConstructBalanced(&data); printf("1\n"); Traverse(flat, symmetric); printf("2\n"); Traverse(flat, left_asymmetric); printf("3\n"); Traverse(flat, right_asymmetric); printf("4\n"); Handle left_deep_asymmetric = ConstructLeft(&data, SUPER_DEEP_DEPTH); Handle right_deep_asymmetric = ConstructRight(&data, SUPER_DEEP_DEPTH); printf("5\n"); TraverseFirst(left_asymmetric, left_deep_asymmetric, 1050); printf("6\n"); TraverseFirst(left_asymmetric, right_deep_asymmetric, 65536); printf("7\n"); String::Flatten(isolate, left_asymmetric); printf("10\n"); Traverse(flat, left_asymmetric); printf("11\n"); String::Flatten(isolate, right_asymmetric); printf("12\n"); Traverse(flat, right_asymmetric); printf("14\n"); String::Flatten(isolate, symmetric); printf("15\n"); Traverse(flat, symmetric); printf("16\n"); String::Flatten(isolate, left_deep_asymmetric); printf("18\n"); } TEST(ConsStringWithEmptyFirstFlatten) { printf("ConsStringWithEmptyFirstFlatten\n"); CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); Isolate* isolate = CcTest::i_isolate(); i::Handle initial_fst = isolate->factory()->NewStringFromAsciiChecked("fst012345"); i::Handle initial_snd = isolate->factory()->NewStringFromAsciiChecked("snd012345"); i::Handle str = isolate->factory() ->NewConsString(initial_fst, initial_snd) .ToHandleChecked(); CHECK(str->IsConsString()); auto cons = i::Handle::cast(str); const int initial_length = cons->length(); // set_first / set_second does not update the length (which the heap verifier // checks), so we need to ensure the length stays the same. i::Handle new_fst = isolate->factory()->empty_string(); i::Handle new_snd = isolate->factory()->NewStringFromAsciiChecked("snd012345012345678"); cons->set_first(*new_fst); cons->set_second(*new_snd); CHECK(!cons->IsFlat()); CHECK_EQ(initial_length, new_fst->length() + new_snd->length()); CHECK_EQ(initial_length, cons->length()); // Make sure Flatten doesn't alloc a new string. DisallowGarbageCollection no_alloc; i::Handle flat = i::String::Flatten(isolate, cons); CHECK(flat->IsFlat()); CHECK_EQ(initial_length, flat->length()); } static void VerifyCharacterStream(String flat_string, String cons_string) { // Do not want to test ConString traversal on flat string. CHECK(flat_string.IsFlat() && !flat_string.IsConsString()); CHECK(cons_string.IsConsString()); // TODO(dcarney) Test stream reset as well. int length = flat_string.length(); // Iterate start search in multiple places in the string. int outer_iterations = length > 20 ? 20 : length; for (int j = 0; j <= outer_iterations; j++) { int offset = length * j / outer_iterations; if (offset < 0) offset = 0; // Want to test the offset == length case. if (offset > length) offset = length; StringCharacterStream flat_stream(flat_string, offset); StringCharacterStream cons_stream(cons_string, offset); for (int i = offset; i < length; i++) { uint16_t c = flat_string.Get(i); CHECK(flat_stream.HasMore()); CHECK(cons_stream.HasMore()); CHECK_EQ(c, flat_stream.GetNext()); CHECK_EQ(c, cons_stream.GetNext()); } CHECK(!flat_stream.HasMore()); CHECK(!cons_stream.HasMore()); } } static inline void PrintStats(const ConsStringGenerationData& data) { #ifdef DEBUG printf("%s: [%u], %s: [%u], %s: [%u], %s: [%u], %s: [%u], %s: [%u]\n", "leaves", data.stats_.leaves_, "empty", data.stats_.empty_leaves_, "chars", data.stats_.chars_, "lefts", data.stats_.left_traversals_, "rights", data.stats_.right_traversals_, "early_terminations", data.early_terminations_); #endif } template void TestStringCharacterStream(BuildString build, int test_cases) { FLAG_gc_global = true; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope outer_scope(isolate); ConsStringGenerationData data(true); for (int i = 0; i < test_cases; i++) { printf("%d\n", i); HandleScope inner_scope(isolate); AlwaysAllocateScopeForTesting always_allocate(isolate->heap()); // Build flat version of cons string. Handle flat_string = build(i, &data); ConsStringStats flat_string_stats; AccumulateStats(flat_string, &flat_string_stats); // Flatten string. String::Flatten(isolate, flat_string); // Build unflattened version of cons string to test. Handle cons_string = build(i, &data); ConsStringStats cons_string_stats; AccumulateStats(cons_string, &cons_string_stats); DisallowGarbageCollection no_gc; PrintStats(data); // Full verify of cons string. cons_string_stats.VerifyEqual(flat_string_stats); cons_string_stats.VerifyEqual(data.stats_); VerifyConsString(cons_string, &data); String flat_string_ptr = flat_string->IsConsString() ? ConsString::cast(*flat_string).first() : *flat_string; VerifyCharacterStream(flat_string_ptr, *cons_string); } } static const int kCharacterStreamNonRandomCases = 8; static Handle BuildEdgeCaseConsString(int test_case, ConsStringGenerationData* data) { Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); data->Reset(); switch (test_case) { case 0: return ConstructBalanced(data, 71); case 1: return ConstructLeft(data, 71); case 2: return ConstructRight(data, 71); case 3: return ConstructLeft(data, 10); case 4: return ConstructRight(data, 10); case 5: // 2 element balanced tree. data->stats_.chars_ += data->block(0)->length(); data->stats_.chars_ += data->block(1)->length(); data->stats_.leaves_ += 2; return factory->NewConsString(data->block(0), data->block(1)) .ToHandleChecked(); case 6: // Simple flattened tree. data->stats_.chars_ += data->block(0)->length(); data->stats_.chars_ += data->block(1)->length(); data->stats_.leaves_ += 2; data->stats_.empty_leaves_ += 1; { Handle string = factory->NewConsString(data->block(0), data->block(1)) .ToHandleChecked(); String::Flatten(isolate, string); return string; } case 7: // Left node flattened. data->stats_.chars_ += data->block(0)->length(); data->stats_.chars_ += data->block(1)->length(); data->stats_.chars_ += data->block(2)->length(); data->stats_.leaves_ += 3; data->stats_.empty_leaves_ += 1; data->stats_.left_traversals_ += 1; { Handle left = factory->NewConsString(data->block(0), data->block(1)) .ToHandleChecked(); String::Flatten(isolate, left); return factory->NewConsString(left, data->block(2)).ToHandleChecked(); } case 8: // Left node and right node flattened. data->stats_.chars_ += data->block(0)->length(); data->stats_.chars_ += data->block(1)->length(); data->stats_.chars_ += data->block(2)->length(); data->stats_.chars_ += data->block(3)->length(); data->stats_.leaves_ += 4; data->stats_.empty_leaves_ += 2; data->stats_.left_traversals_ += 1; data->stats_.right_traversals_ += 1; { Handle left = factory->NewConsString(data->block(0), data->block(1)) .ToHandleChecked(); String::Flatten(isolate, left); Handle right = factory->NewConsString(data->block(2), data->block(2)) .ToHandleChecked(); String::Flatten(isolate, right); return factory->NewConsString(left, right).ToHandleChecked(); } } UNREACHABLE(); } TEST(StringCharacterStreamEdgeCases) { printf("TestStringCharacterStreamEdgeCases\n"); TestStringCharacterStream(BuildEdgeCaseConsString, kCharacterStreamNonRandomCases); } static const int kBalances = 3; static const int kTreeLengths = 4; static const int kEmptyLeaves = 4; static const int kUniqueRandomParameters = kBalances * kTreeLengths * kEmptyLeaves; static void InitializeGenerationData(int test_case, ConsStringGenerationData* data) { // Clear the settings and reinit the rng. data->Reset(); // Spin up the rng to a known location that is unique per test. static const int kPerTestJump = 501; for (int j = 0; j < test_case * kPerTestJump; j++) { data->rng_.next(); } // Choose balanced, left or right heavy trees. switch (test_case % kBalances) { case 0: // Nothing to do. Already balanced. break; case 1: // Left balanced. data->leftness_ = 0.90; data->rightness_ = 0.15; break; case 2: // Right balanced. data->leftness_ = 0.15; data->rightness_ = 0.90; break; default: UNREACHABLE(); } // Must remove the influence of the above decision. test_case /= kBalances; // Choose tree length. switch (test_case % kTreeLengths) { case 0: data->max_leaves_ = 16; data->early_termination_threshold_ = 0.2; break; case 1: data->max_leaves_ = 50; data->early_termination_threshold_ = 0.05; break; case 2: data->max_leaves_ = 500; data->early_termination_threshold_ = 0.03; break; case 3: data->max_leaves_ = 5000; data->early_termination_threshold_ = 0.001; break; default: UNREACHABLE(); } // Must remove the influence of the above decision. test_case /= kTreeLengths; // Choose how much we allow empty nodes, including not at all. data->empty_leaf_threshold_ = 0.03 * static_cast(test_case % kEmptyLeaves); } static Handle BuildRandomConsString(int test_case, ConsStringGenerationData* data) { InitializeGenerationData(test_case, data); return ConstructRandomString(data, 200); } TEST(StringCharacterStreamRandom) { printf("StringCharacterStreamRandom\n"); TestStringCharacterStream(BuildRandomConsString, kUniqueRandomParameters * 7); } static const int kDeepOneByteDepth = 100000; TEST(DeepOneByte) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); v8::HandleScope scope(CcTest::isolate()); char* foo = NewArray(kDeepOneByteDepth); for (int i = 0; i < kDeepOneByteDepth; i++) { foo[i] = "foo "[i % 4]; } Handle string = factory ->NewStringFromOneByte(v8::base::OneByteVector( foo, kDeepOneByteDepth)) .ToHandleChecked(); Handle foo_string = factory->NewStringFromStaticChars("foo"); for (int i = 0; i < kDeepOneByteDepth; i += 10) { string = factory->NewConsString(string, foo_string).ToHandleChecked(); } Handle flat_string = factory->NewConsString(string, foo_string).ToHandleChecked(); String::Flatten(isolate, flat_string); for (int i = 0; i < 500; i++) { TraverseFirst(flat_string, string, kDeepOneByteDepth); } DeleteArray(foo); } TEST(Utf8Conversion) { // Smoke test for converting strings to utf-8. CcTest::InitializeVM(); v8::HandleScope handle_scope(CcTest::isolate()); // A simple one-byte string const char* one_byte_string = "abcdef12345"; int len = v8::String::NewFromUtf8(CcTest::isolate(), one_byte_string, v8::NewStringType::kNormal, static_cast(strlen(one_byte_string))) .ToLocalChecked() ->Utf8Length(CcTest::isolate()); CHECK_EQ(strlen(one_byte_string), len); // A mixed one-byte and two-byte string // U+02E4 -> CB A4 // U+0064 -> 64 // U+12E4 -> E1 8B A4 // U+0030 -> 30 // U+3045 -> E3 81 85 const uint16_t mixed_string[] = {0x02E4, 0x0064, 0x12E4, 0x0030, 0x3045}; // The characters we expect to be output const unsigned char as_utf8[11] = {0xCB, 0xA4, 0x64, 0xE1, 0x8B, 0xA4, 0x30, 0xE3, 0x81, 0x85, 0x00}; // The number of bytes expected to be written for each length const int lengths[12] = {0, 0, 2, 3, 3, 3, 6, 7, 7, 7, 10, 11}; const int char_lengths[12] = {0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 5}; v8::Local mixed = v8::String::NewFromTwoByte(CcTest::isolate(), mixed_string, v8::NewStringType::kNormal, 5) .ToLocalChecked(); CHECK_EQ(10, mixed->Utf8Length(CcTest::isolate())); // Try encoding the string with all capacities char buffer[11]; const char kNoChar = static_cast(-1); for (int i = 0; i <= 11; i++) { // Clear the buffer before reusing it for (int j = 0; j < 11; j++) buffer[j] = kNoChar; int chars_written; int written = mixed->WriteUtf8(CcTest::isolate(), buffer, i, &chars_written); CHECK_EQ(lengths[i], written); CHECK_EQ(char_lengths[i], chars_written); // Check that the contents are correct for (int j = 0; j < lengths[i]; j++) CHECK_EQ(as_utf8[j], static_cast(buffer[j])); // Check that the rest of the buffer hasn't been touched for (int j = lengths[i]; j < 11; j++) CHECK_EQ(kNoChar, buffer[j]); } } TEST(Utf8ConversionPerf) { // Smoke test for converting strings to utf-8. LocalContext context; v8::HandleScope handle_scope(CcTest::isolate()); v8::Local ascii_string = CompileRun("'abc'.repeat(1E6)").As(); v8::Local one_byte_string = CompileRun("'\\u0255\\u0254\\u0253'.repeat(1E6)").As(); v8::Local two_byte_string = CompileRun("'\\u2255\\u2254\\u2253'.repeat(1E6)").As(); v8::Local surrogate_string = CompileRun("'\\u{12345}\\u2244'.repeat(1E6)").As(); int size = 1E7; char* buffer = new char[4 * size]; { v8::base::ElapsedTimer timer; timer.Start(); ascii_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("ascii string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); ascii_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("ascii string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); ascii_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr); printf("ascii string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); one_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("one byte string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); one_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("one byte string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); one_byte_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr); printf("one byte string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); two_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("two byte string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); two_byte_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("two byte string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); two_byte_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr); printf("two byte string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); surrogate_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("surrogate string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); surrogate_string->WriteUtf8(CcTest::isolate(), buffer, size, nullptr); printf("surrogate string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } { v8::base::ElapsedTimer timer; timer.Start(); surrogate_string->WriteUtf8(CcTest::isolate(), buffer, 4 * size, nullptr); printf("surrogate string %0.3f\n", timer.Elapsed().InMillisecondsF()); timer.Stop(); } delete[] buffer; } TEST(ExternalShortStringAdd) { LocalContext context; v8::HandleScope handle_scope(CcTest::isolate()); // Make sure we cover all always-flat lengths and at least one above. static const int kMaxLength = 20; CHECK_GT(kMaxLength, i::ConsString::kMinLength); // Allocate two JavaScript arrays for holding short strings. v8::Local one_byte_external_strings = v8::Array::New(CcTest::isolate(), kMaxLength + 1); v8::Local non_one_byte_external_strings = v8::Array::New(CcTest::isolate(), kMaxLength + 1); // Generate short one-byte and two-byte external strings. for (int i = 0; i <= kMaxLength; i++) { char* one_byte = NewArray(i + 1); for (int j = 0; j < i; j++) { one_byte[j] = 'a'; } // Terminating '\0' is left out on purpose. It is not required for external // string data. OneByteResource* one_byte_resource = new OneByteResource(one_byte, i); v8::Local one_byte_external_string = v8::String::NewExternalOneByte(CcTest::isolate(), one_byte_resource) .ToLocalChecked(); one_byte_external_strings ->Set(context.local(), v8::Integer::New(CcTest::isolate(), i), one_byte_external_string) .FromJust(); base::uc16* non_one_byte = NewArray(i + 1); for (int j = 0; j < i; j++) { non_one_byte[j] = 0x1234; } // Terminating '\0' is left out on purpose. It is not required for external // string data. Resource* resource = new Resource(non_one_byte, i); v8::Local non_one_byte_external_string = v8::String::NewExternalTwoByte(CcTest::isolate(), resource) .ToLocalChecked(); non_one_byte_external_strings ->Set(context.local(), v8::Integer::New(CcTest::isolate(), i), non_one_byte_external_string) .FromJust(); } // Add the arrays with the short external strings in the global object. v8::Local global = context->Global(); global ->Set(context.local(), v8_str("external_one_byte"), one_byte_external_strings) .FromJust(); global ->Set(context.local(), v8_str("external_non_one_byte"), non_one_byte_external_strings) .FromJust(); global ->Set(context.local(), v8_str("max_length"), v8::Integer::New(CcTest::isolate(), kMaxLength)) .FromJust(); // Add short external one-byte and two-byte strings checking the result. static const char* source = "function test() {" " var one_byte_chars = 'aaaaaaaaaaaaaaaaaaaa';" " var non_one_byte_chars = " "'\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1" "234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\u1234\\" "u1234';" " if (one_byte_chars.length != max_length) return 1;" " if (non_one_byte_chars.length != max_length) return 2;" " var one_byte = Array(max_length + 1);" " var non_one_byte = Array(max_length + 1);" " for (var i = 0; i <= max_length; i++) {" " one_byte[i] = one_byte_chars.substring(0, i);" " non_one_byte[i] = non_one_byte_chars.substring(0, i);" " };" " for (var i = 0; i <= max_length; i++) {" " if (one_byte[i] != external_one_byte[i]) return 3;" " if (non_one_byte[i] != external_non_one_byte[i]) return 4;" " for (var j = 0; j < i; j++) {" " if (external_one_byte[i] !=" " (external_one_byte[j] + external_one_byte[i - j])) return " "5;" " if (external_non_one_byte[i] !=" " (external_non_one_byte[j] + external_non_one_byte[i - " "j])) return 6;" " if (non_one_byte[i] != (non_one_byte[j] + non_one_byte[i - " "j])) return 7;" " if (one_byte[i] != (one_byte[j] + one_byte[i - j])) return 8;" " if (one_byte[i] != (external_one_byte[j] + one_byte[i - j])) " "return 9;" " if (one_byte[i] != (one_byte[j] + external_one_byte[i - j])) " "return 10;" " if (non_one_byte[i] !=" " (external_non_one_byte[j] + non_one_byte[i - j])) return " "11;" " if (non_one_byte[i] !=" " (non_one_byte[j] + external_non_one_byte[i - j])) return " "12;" " }" " }" " return 0;" "};" "test()"; CHECK_EQ(0, CompileRun(source)->Int32Value(context.local()).FromJust()); } TEST(ReplaceInvalidUtf8) { LocalContext context; v8::HandleScope handle_scope(CcTest::isolate()); v8::Local string = CompileRun("'ab\\ud800cd'").As(); char buffer[7]; memset(buffer, 0, 7); int chars_written = 0; int size = string->WriteUtf8(CcTest::isolate(), buffer, 7, &chars_written, v8::String::REPLACE_INVALID_UTF8); CHECK_EQ(7, size); CHECK_EQ(5, chars_written); CHECK_EQ(0, memcmp("\x61\x62\xef\xbf\xbd\x63\x64", buffer, 7)); memset(buffer, 0, 7); chars_written = 0; size = string->WriteUtf8(CcTest::isolate(), buffer, 6, &chars_written, v8::String::REPLACE_INVALID_UTF8); CHECK_EQ(6, size); CHECK_EQ(4, chars_written); CHECK_EQ(0, memcmp("\x61\x62\xef\xbf\xbd\x63", buffer, 6)); } TEST(JSONStringifySliceMadeExternal) { if (!FLAG_string_slices) return; CcTest::InitializeVM(); // Create a sliced string from a one-byte string. The latter is turned // into a two-byte external string. Check that JSON.stringify works. v8::HandleScope handle_scope(CcTest::isolate()); v8::Local underlying = CompileRun( "var underlying = 'abcdefghijklmnopqrstuvwxyz';" "underlying") ->ToString(CcTest::isolate()->GetCurrentContext()) .ToLocalChecked(); v8::Local slice = CompileRun( "var slice = '';" "slice = underlying.slice(1);" "slice") ->ToString(CcTest::isolate()->GetCurrentContext()) .ToLocalChecked(); CHECK(v8::Utils::OpenHandle(*slice)->IsSlicedString()); CHECK(v8::Utils::OpenHandle(*underlying)->IsSeqOneByteString()); int length = underlying->Length(); base::uc16* two_byte = NewArray(length + 1); underlying->Write(CcTest::isolate(), two_byte); Resource* resource = new Resource(two_byte, length); CHECK(underlying->MakeExternal(resource)); CHECK(v8::Utils::OpenHandle(*slice)->IsSlicedString()); CHECK(v8::Utils::OpenHandle(*underlying)->IsExternalTwoByteString()); CHECK_EQ(0, strcmp("\"bcdefghijklmnopqrstuvwxyz\"", *v8::String::Utf8Value(CcTest::isolate(), CompileRun("JSON.stringify(slice)")))); } TEST(JSONStringifyWellFormed) { CcTest::InitializeVM(); v8::HandleScope handle_scope(CcTest::isolate()); v8::Local context = CcTest::isolate()->GetCurrentContext(); // Test some leading surrogates (U+D800 to U+DBFF). { // U+D800 CHECK_EQ( 0, strcmp("\"\\ud800\"", *v8::String::Utf8Value( CcTest::isolate(), CompileRun("JSON.stringify('\\uD800')")))); v8::Local json = v8_str("\"\\ud800\""); v8::Local parsed = v8::JSON::Parse(context, json).ToLocalChecked(); CHECK(v8::JSON::Stringify(context, parsed) .ToLocalChecked() ->Equals(context, json) .FromJust()); } { // U+DAAA CHECK_EQ( 0, strcmp("\"\\udaaa\"", *v8::String::Utf8Value( CcTest::isolate(), CompileRun("JSON.stringify('\\uDAAA')")))); v8::Local json = v8_str("\"\\udaaa\""); v8::Local parsed = v8::JSON::Parse(context, json).ToLocalChecked(); CHECK(v8::JSON::Stringify(context, parsed) .ToLocalChecked() ->Equals(context, json) .FromJust()); } { // U+DBFF CHECK_EQ( 0, strcmp("\"\\udbff\"", *v8::String::Utf8Value( CcTest::isolate(), CompileRun("JSON.stringify('\\uDBFF')")))); v8::Local json = v8_str("\"\\udbff\""); v8::Local parsed = v8::JSON::Parse(context, json).ToLocalChecked(); CHECK(v8::JSON::Stringify(context, parsed) .ToLocalChecked() ->Equals(context, json) .FromJust()); } // Test some trailing surrogates (U+DC00 to U+DFFF). { // U+DC00 CHECK_EQ( 0, strcmp("\"\\udc00\"", *v8::String::Utf8Value( CcTest::isolate(), CompileRun("JSON.stringify('\\uDC00')")))); v8::Local json = v8_str("\"\\udc00\""); v8::Local parsed = v8::JSON::Parse(context, json).ToLocalChecked(); CHECK(v8::JSON::Stringify(context, parsed) .ToLocalChecked() ->Equals(context, json) .FromJust()); } { // U+DDDD CHECK_EQ( 0, strcmp("\"\\udddd\"", *v8::String::Utf8Value( CcTest::isolate(), CompileRun("JSON.stringify('\\uDDDD')")))); v8::Local json = v8_str("\"\\udddd\""); v8::Local parsed = v8::JSON::Parse(context, json).ToLocalChecked(); CHECK(v8::JSON::Stringify(context, parsed) .ToLocalChecked() ->Equals(context, json) .FromJust()); } { // U+DFFF CHECK_EQ( 0, strcmp("\"\\udfff\"", *v8::String::Utf8Value( CcTest::isolate(), CompileRun("JSON.stringify('\\uDFFF')")))); v8::Local json = v8_str("\"\\udfff\""); v8::Local parsed = v8::JSON::Parse(context, json).ToLocalChecked(); CHECK(v8::JSON::Stringify(context, parsed) .ToLocalChecked() ->Equals(context, json) .FromJust()); } } TEST(CachedHashOverflow) { CcTest::InitializeVM(); // We incorrectly allowed strings to be tagged as array indices even if their // values didn't fit in the hash field. // See http://code.google.com/p/v8/issues/detail?id=728 Isolate* isolate = CcTest::i_isolate(); v8::HandleScope handle_scope(CcTest::isolate()); // Lines must be executed sequentially. Combining them into one script // makes the bug go away. const char* lines[] = {"var x = [];", "x[4] = 42;", "var s = \"1073741828\";", "x[s];", "x[s] = 37;", "x[4];", "x[s];"}; Handle fortytwo(Smi::FromInt(42), isolate); Handle thirtyseven(Smi::FromInt(37), isolate); Handle results[] = { isolate->factory()->undefined_value(), fortytwo, isolate->factory()->undefined_value(), isolate->factory()->undefined_value(), thirtyseven, fortytwo, thirtyseven // Bug yielded 42 here. }; v8::Local context = CcTest::isolate()->GetCurrentContext(); for (size_t i = 0; i < arraysize(lines); i++) { const char* line = lines[i]; printf("%s\n", line); v8::Local result = v8::Script::Compile( context, v8::String::NewFromUtf8(CcTest::isolate(), line).ToLocalChecked()) .ToLocalChecked() ->Run(context) .ToLocalChecked(); CHECK_EQ(results[i]->IsUndefined(CcTest::i_isolate()), result->IsUndefined()); CHECK_EQ(results[i]->IsNumber(), result->IsNumber()); if (result->IsNumber()) { int32_t value = 0; CHECK(results[i]->ToInt32(&value)); CHECK_EQ(value, result->ToInt32(context).ToLocalChecked()->Value()); } } } TEST(SliceFromCons) { if (!FLAG_string_slices) return; CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); Handle string = factory->NewStringFromStaticChars("parentparentparent"); Handle parent = factory->NewConsString(string, string).ToHandleChecked(); CHECK(parent->IsConsString()); CHECK(!parent->IsFlat()); Handle slice = factory->NewSubString(parent, 1, 25); // After slicing, the original string becomes a flat cons. CHECK(parent->IsFlat()); CHECK(slice->IsSlicedString()); CHECK_EQ( SlicedString::cast(*slice).parent(), // Parent could have been short-circuited. parent->IsConsString() ? ConsString::cast(*parent).first() : *parent); CHECK(SlicedString::cast(*slice).parent().IsSeqString()); CHECK(slice->IsFlat()); } class OneByteVectorResource : public v8::String::ExternalOneByteStringResource { public: explicit OneByteVectorResource(v8::base::Vector vector) : data_(vector) {} ~OneByteVectorResource() override = default; size_t length() const override { return data_.length(); } const char* data() const override { return data_.begin(); } private: v8::base::Vector data_; }; TEST(InternalizeExternal) { #ifdef ENABLE_MINOR_MC // TODO(mlippautz): Remove once we add support for forwarding ThinStrings in // minor MC if (FLAG_minor_mc) return; #endif // ENABLE_MINOR_MC FLAG_stress_incremental_marking = false; CcTest::InitializeVM(); i::Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); // This won't leak; the external string mechanism will call Dispose() on it. OneByteVectorResource* resource = new OneByteVectorResource(v8::base::Vector("prop-1234", 9)); { v8::HandleScope scope(CcTest::isolate()); v8::Local ext_string = v8::String::NewExternalOneByte(CcTest::isolate(), resource) .ToLocalChecked(); Handle string = v8::Utils::OpenHandle(*ext_string); CHECK(string->IsExternalString()); CHECK(!string->IsInternalizedString()); CHECK(!i::Heap::InYoungGeneration(*string)); CHECK_EQ(isolate->string_table()->TryStringToIndexOrLookupExisting( isolate, string->ptr()), Smi::FromInt(ResultSentinel::kNotFound).ptr()); factory->InternalizeName(string); CHECK(string->IsExternalString()); CHECK(string->IsInternalizedString()); CHECK(!i::Heap::InYoungGeneration(*string)); } CcTest::CollectGarbage(i::OLD_SPACE); CcTest::CollectGarbage(i::OLD_SPACE); } TEST(SliceFromExternal) { if (!FLAG_string_slices) return; CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); OneByteVectorResource resource( v8::base::Vector("abcdefghijklmnopqrstuvwxyz", 26)); Handle string = factory->NewExternalStringFromOneByte(&resource).ToHandleChecked(); CHECK(string->IsExternalString()); Handle slice = factory->NewSubString(string, 1, 25); CHECK(slice->IsSlicedString()); CHECK(string->IsExternalString()); CHECK_EQ(SlicedString::cast(*slice).parent(), *string); CHECK(SlicedString::cast(*slice).parent().IsExternalString()); CHECK(slice->IsFlat()); // This avoids the GC from trying to free stack allocated resources. i::Handle::cast(string)->SetResource( CcTest::i_isolate(), nullptr); } TEST(TrivialSlice) { // This tests whether a slice that contains the entire parent string // actually creates a new string (it should not). if (!FLAG_string_slices) return; CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); v8::Local result; Handle string; const char* init = "var str = 'abcdefghijklmnopqrstuvwxyz';"; const char* check = "str.slice(0,26)"; const char* crosscheck = "str.slice(1,25)"; CompileRun(init); result = CompileRun(check); CHECK(result->IsString()); string = v8::Utils::OpenHandle(v8::String::Cast(*result)); CHECK(!string->IsSlicedString()); string = factory->NewSubString(string, 0, 26); CHECK(!string->IsSlicedString()); result = CompileRun(crosscheck); CHECK(result->IsString()); string = v8::Utils::OpenHandle(v8::String::Cast(*result)); CHECK(string->IsSlicedString()); CHECK_EQ(0, strcmp("bcdefghijklmnopqrstuvwxy", string->ToCString().get())); } TEST(SliceFromSlice) { // This tests whether a slice that contains the entire parent string // actually creates a new string (it should not). if (!FLAG_string_slices) return; CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); v8::Local result; Handle string; const char* init = "var str = 'abcdefghijklmnopqrstuvwxyz';"; const char* slice = "var slice = ''; slice = str.slice(1,-1); slice"; const char* slice_from_slice = "slice.slice(1,-1);"; CompileRun(init); result = CompileRun(slice); CHECK(result->IsString()); string = v8::Utils::OpenHandle(v8::String::Cast(*result)); CHECK(string->IsSlicedString()); CHECK(SlicedString::cast(*string).parent().IsSeqString()); CHECK_EQ(0, strcmp("bcdefghijklmnopqrstuvwxy", string->ToCString().get())); result = CompileRun(slice_from_slice); CHECK(result->IsString()); string = v8::Utils::OpenHandle(v8::String::Cast(*result)); CHECK(string->IsSlicedString()); CHECK(SlicedString::cast(*string).parent().IsSeqString()); CHECK_EQ(0, strcmp("cdefghijklmnopqrstuvwx", string->ToCString().get())); } UNINITIALIZED_TEST(OneByteArrayJoin) { v8::Isolate::CreateParams create_params; // Set heap limits. create_params.constraints.set_max_young_generation_size_in_bytes(3 * MB); #ifdef DEBUG create_params.constraints.set_max_old_generation_size_in_bytes(20 * MB); #else create_params.constraints.set_max_old_generation_size_in_bytes(7 * MB); #endif create_params.array_buffer_allocator = CcTest::array_buffer_allocator(); v8::Isolate* isolate = v8::Isolate::New(create_params); isolate->Enter(); { // String s is made of 2^17 = 131072 'c' characters and a is an array // starting with 'bad', followed by 2^14 times the string s. That means the // total length of the concatenated strings is 2^31 + 3. So on 32bit systems // summing the lengths of the strings (as Smis) overflows and wraps. LocalContext context(isolate); v8::HandleScope scope(isolate); v8::TryCatch try_catch(isolate); CHECK(CompileRun("var two_14 = Math.pow(2, 14);" "var two_17 = Math.pow(2, 17);" "var s = Array(two_17 + 1).join('c');" "var a = ['bad'];" "for (var i = 1; i <= two_14; i++) a.push(s);" "a.join(" ");") .IsEmpty()); CHECK(try_catch.HasCaught()); } isolate->Exit(); isolate->Dispose(); } // namespace namespace { int* global_use_counts = nullptr; void MockUseCounterCallback(v8::Isolate* isolate, v8::Isolate::UseCounterFeature feature) { ++global_use_counts[feature]; } } // namespace TEST(CountBreakIterator) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); LocalContext context; int use_counts[v8::Isolate::kUseCounterFeatureCount] = {}; global_use_counts = use_counts; CcTest::isolate()->SetUseCounterCallback(MockUseCounterCallback); CHECK_EQ(0, use_counts[v8::Isolate::kBreakIterator]); v8::Local result = CompileRun( "(function() {" " if (!this.Intl) return 0;" " var iterator = Intl.v8BreakIterator(['en']);" " iterator.adoptText('Now is the time');" " iterator.next();" " return iterator.next();" "})();"); CHECK(result->IsNumber()); int uses = result->ToInt32(context.local()).ToLocalChecked()->Value() == 0 ? 0 : 1; CHECK_EQ(uses, use_counts[v8::Isolate::kBreakIterator]); // Make sure GC cleans up the break iterator, so we don't get a memory leak // reported by ASAN. CcTest::isolate()->LowMemoryNotification(); } TEST(StringReplaceAtomTwoByteResult) { CcTest::InitializeVM(); v8::HandleScope scope(CcTest::isolate()); LocalContext context; v8::Local result = CompileRun( "var subject = 'one_byte~only~string~'; " "var replace = '\x80'; " "subject.replace(/~/g, replace); "); CHECK(result->IsString()); Handle string = v8::Utils::OpenHandle(v8::String::Cast(*result)); CHECK(string->IsTwoByteRepresentation()); v8::Local expected = v8_str("one_byte\x80only\x80string\x80"); CHECK(expected->Equals(context.local(), result).FromJust()); } TEST(IsAscii) { CHECK(String::IsAscii(static_cast(nullptr), 0)); CHECK(String::IsOneByte(static_cast(nullptr), 0)); } template static uint16_t ConvertLatin1(uint16_t c) { uint32_t result[Op::kMaxWidth]; int chars; chars = Op::Convert(c, 0, result, nullptr); if (chars == 0) return 0; CHECK_LE(chars, static_cast(sizeof(result))); if (!return_first && chars > 1) { return 0; } return result[0]; } #ifndef V8_INTL_SUPPORT static void CheckCanonicalEquivalence(uint16_t c, uint16_t test) { uint16_t expect = ConvertLatin1(c); if (expect > unibrow::Latin1::kMaxChar || expect == 0) expect = c; CHECK_EQ(expect, test); } TEST(Latin1IgnoreCase) { for (uint16_t c = unibrow::Latin1::kMaxChar + 1; c != 0; c++) { uint16_t lower = ConvertLatin1(c); uint16_t upper = ConvertLatin1(c); uint16_t test = unibrow::Latin1::TryConvertToLatin1(c); // Filter out all character whose upper is not their lower or vice versa. if (lower == 0 && upper == 0) { CheckCanonicalEquivalence(c, test); continue; } if (lower > unibrow::Latin1::kMaxChar && upper > unibrow::Latin1::kMaxChar) { CheckCanonicalEquivalence(c, test); continue; } if (lower == 0 && upper != 0) { lower = ConvertLatin1(upper); } if (upper == 0 && lower != c) { upper = ConvertLatin1(lower); } if (lower > unibrow::Latin1::kMaxChar && upper > unibrow::Latin1::kMaxChar) { CheckCanonicalEquivalence(c, test); continue; } if (upper != c && lower != c) { CheckCanonicalEquivalence(c, test); continue; } CHECK_EQ(std::min(upper, lower), test); } } #endif class DummyResource : public v8::String::ExternalStringResource { public: const uint16_t* data() const override { return nullptr; } size_t length() const override { return 1 << 30; } }; class DummyOneByteResource : public v8::String::ExternalOneByteStringResource { public: const char* data() const override { return nullptr; } size_t length() const override { return 1 << 30; } }; TEST(InvalidExternalString) { CcTest::InitializeVM(); LocalContext context; Isolate* isolate = CcTest::i_isolate(); { HandleScope scope(isolate); DummyOneByteResource r; CHECK(isolate->factory()->NewExternalStringFromOneByte(&r).is_null()); CHECK(isolate->has_pending_exception()); isolate->clear_pending_exception(); } { HandleScope scope(isolate); DummyResource r; CHECK(isolate->factory()->NewExternalStringFromTwoByte(&r).is_null()); CHECK(isolate->has_pending_exception()); isolate->clear_pending_exception(); } } #define INVALID_STRING_TEST(FUN, TYPE) \ TEST(StringOOM##FUN) { \ CcTest::InitializeVM(); \ LocalContext context; \ Isolate* isolate = CcTest::i_isolate(); \ STATIC_ASSERT(String::kMaxLength < kMaxInt); \ static const int invalid = String::kMaxLength + 1; \ HandleScope scope(isolate); \ v8::base::Vector dummy = v8::base::Vector::New(invalid); \ memset(dummy.begin(), 0x0, dummy.length() * sizeof(TYPE)); \ CHECK(isolate->factory() \ ->FUN(v8::base::Vector::cast(dummy)) \ .is_null()); \ memset(dummy.begin(), 0x20, dummy.length() * sizeof(TYPE)); \ CHECK(isolate->has_pending_exception()); \ isolate->clear_pending_exception(); \ dummy.Dispose(); \ } INVALID_STRING_TEST(NewStringFromUtf8, char) INVALID_STRING_TEST(NewStringFromOneByte, uint8_t) #undef INVALID_STRING_TEST TEST(FormatMessage) { CcTest::InitializeVM(); LocalContext context; Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Handle arg0 = isolate->factory()->NewStringFromAsciiChecked("arg0"); Handle arg1 = isolate->factory()->NewStringFromAsciiChecked("arg1"); Handle arg2 = isolate->factory()->NewStringFromAsciiChecked("arg2"); Handle result = MessageFormatter::Format(isolate, MessageTemplate::kPropertyNotFunction, arg0, arg1, arg2) .ToHandleChecked(); Handle expected = isolate->factory()->NewStringFromAsciiChecked( "'arg0' returned for property 'arg1' of object 'arg2' is not a function"); CHECK(String::Equals(isolate, result, expected)); } TEST(Regress609831) { CcTest::InitializeVM(); LocalContext context; Isolate* isolate = CcTest::i_isolate(); { HandleScope scope(isolate); v8::Local result = CompileRun( "String.fromCharCode(32, 32, 32, 32, 32, " "32, 32, 32, 32, 32, 32, 32, 32, 32, 32, " "32, 32, 32, 32, 32, 32, 32, 32, 32, 32)"); CHECK(v8::Utils::OpenHandle(*result)->IsSeqOneByteString()); } { HandleScope scope(isolate); v8::Local result = CompileRun( "String.fromCharCode(432, 432, 432, 432, 432, " "432, 432, 432, 432, 432, 432, 432, 432, 432, " "432, 432, 432, 432, 432, 432, 432, 432, 432)"); CHECK(v8::Utils::OpenHandle(*result)->IsSeqTwoByteString()); } } TEST(ExternalStringIndexOf) { CcTest::InitializeVM(); LocalContext context; v8::HandleScope scope(CcTest::isolate()); const char* raw_string = "abcdefghijklmnopqrstuvwxyz"; v8::Local string = v8::String::NewExternalOneByte(CcTest::isolate(), new StaticOneByteResource(raw_string)) .ToLocalChecked(); v8::Local global = context->Global(); global->Set(context.local(), v8_str("external"), string).FromJust(); char source[] = "external.indexOf('%')"; for (size_t i = 0; i < strlen(raw_string); i++) { source[18] = raw_string[i]; int result_position = static_cast(i); CHECK_EQ(result_position, CompileRun(source)->Int32Value(context.local()).FromJust()); } CHECK_EQ(-1, CompileRun("external.indexOf('abcdefghijklmnopqrstuvwxyz%%%%%%')") ->Int32Value(context.local()) .FromJust()); CHECK_EQ(1, CompileRun("external.indexOf('', 1)") ->Int32Value(context.local()) .FromJust()); CHECK_EQ(-1, CompileRun("external.indexOf('a', 1)") ->Int32Value(context.local()) .FromJust()); CHECK_EQ(-1, CompileRun("external.indexOf('$')") ->Int32Value(context.local()) .FromJust()); } #define GC_INSIDE_NEW_STRING_FROM_UTF8_SUB_STRING(NAME, STRING) \ TEST(GCInsideNewStringFromUtf8SubStringWith##NAME) { \ FLAG_stress_concurrent_allocation = false; /* For SimulateFullSpace. */ \ CcTest::InitializeVM(); \ LocalContext context; \ v8::HandleScope scope(CcTest::isolate()); \ Factory* factory = CcTest::i_isolate()->factory(); \ /* Length must be bigger than the buffer size of the Utf8Decoder. */ \ const char* buf = STRING; \ size_t len = strlen(buf); \ Handle main_string = \ factory \ ->NewStringFromOneByte(v8::base::Vector( \ reinterpret_cast(buf), len)) \ .ToHandleChecked(); \ if (FLAG_single_generation) { \ CHECK(!Heap::InYoungGeneration(*main_string)); \ heap::SimulateFullSpace(CcTest::i_isolate()->heap()->old_space()); \ } else { \ CHECK(Heap::InYoungGeneration(*main_string)); \ heap::SimulateFullSpace(CcTest::i_isolate()->heap()->new_space()); \ } \ /* Offset by two to check substring-ing. */ \ Handle s = factory \ ->NewStringFromUtf8SubString( \ Handle::cast(main_string), 2, \ static_cast(len - 2)) \ .ToHandleChecked(); \ Handle expected_string = \ factory \ ->NewStringFromUtf8( \ v8::base::Vector(buf + 2, len - 2)) \ .ToHandleChecked(); \ CHECK(s->Equals(*expected_string)); \ } GC_INSIDE_NEW_STRING_FROM_UTF8_SUB_STRING( OneByte, "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ") GC_INSIDE_NEW_STRING_FROM_UTF8_SUB_STRING( TwoByte, "QQ\xF0\x9F\x98\x8D\xF0\x9F\x98\x8D" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ" "QQ\xF0\x9F\x98\x8D\xF0\x9F\x98\x8D") #undef GC_INSIDE_NEW_STRING_FROM_UTF8_SUB_STRING namespace { struct IndexData { const char* string; bool is_array_index; uint32_t array_index; bool is_integer_index; size_t integer_index; }; void TestString(i::Isolate* isolate, const IndexData& data) { Handle s = isolate->factory()->NewStringFromAsciiChecked(data.string); if (data.is_array_index) { uint32_t index; CHECK(s->AsArrayIndex(&index)); CHECK_EQ(data.array_index, index); } if (data.is_integer_index) { size_t index; CHECK(s->AsIntegerIndex(&index)); CHECK_EQ(data.integer_index, index); s->EnsureHash(); CHECK_EQ(0, s->raw_hash_field() & String::kIsNotIntegerIndexMask); CHECK(s->HasHashCode()); } if (!s->HasHashCode()) s->EnsureHash(); CHECK(s->HasHashCode()); if (!data.is_integer_index) { CHECK_NE(0, s->raw_hash_field() & String::kIsNotIntegerIndexMask); } } } // namespace TEST(HashArrayIndexStrings) { CcTest::InitializeVM(); LocalContext context; v8::HandleScope scope(CcTest::isolate()); i::Isolate* isolate = CcTest::i_isolate(); CHECK_EQ(StringHasher::MakeArrayIndexHash(0 /* value */, 1 /* length */) >> Name::kHashShift, isolate->factory()->zero_string()->hash()); CHECK_EQ(StringHasher::MakeArrayIndexHash(1 /* value */, 1 /* length */) >> Name::kHashShift, isolate->factory()->one_string()->hash()); IndexData tests[] = { {"", false, 0, false, 0}, {"123no", false, 0, false, 0}, {"12345", true, 12345, true, 12345}, {"12345678", true, 12345678, true, 12345678}, {"4294967294", true, 4294967294u, true, 4294967294u}, #if V8_TARGET_ARCH_32_BIT {"4294967295", false, 0, false, 0}, // Valid length but not index. {"4294967296", false, 0, false, 0}, {"9007199254740991", false, 0, false, 0}, #else {"4294967295", false, 0, true, 4294967295u}, {"4294967296", false, 0, true, 4294967296ull}, {"9007199254740991", false, 0, true, 9007199254740991ull}, #endif {"9007199254740992", false, 0, false, 0}, {"18446744073709551615", false, 0, false, 0}, {"18446744073709551616", false, 0, false, 0} }; for (int i = 0, n = arraysize(tests); i < n; i++) { TestString(isolate, tests[i]); } } TEST(StringEquals) { v8::V8::Initialize(); v8::Isolate* isolate = CcTest::isolate(); v8::HandleScope scope(isolate); auto foo_str = v8::String::NewFromUtf8Literal(isolate, "foo"); auto bar_str = v8::String::NewFromUtf8Literal(isolate, "bar"); auto foo_str2 = v8::String::NewFromUtf8Literal(isolate, "foo"); uint16_t* two_byte_source = AsciiToTwoByteString("foo"); auto foo_two_byte_str = v8::String::NewFromTwoByte(isolate, two_byte_source).ToLocalChecked(); i::DeleteArray(two_byte_source); CHECK(foo_str->StringEquals(foo_str)); CHECK(!foo_str->StringEquals(bar_str)); CHECK(foo_str->StringEquals(foo_str2)); CHECK(foo_str->StringEquals(foo_two_byte_str)); CHECK(!bar_str->StringEquals(foo_str2)); } class OneByteStringResource : public v8::String::ExternalOneByteStringResource { public: // Takes ownership of |data|. OneByteStringResource(char* data, size_t length) : data_(data), length_(length) {} ~OneByteStringResource() override { delete[] data_; } const char* data() const override { return data_; } size_t length() const override { return length_; } private: char* data_; size_t length_; }; TEST(Regress876759) { // Thin strings are used in conjunction with young gen if (FLAG_single_generation) return; v8::V8::Initialize(); Isolate* isolate = CcTest::i_isolate(); Factory* factory = isolate->factory(); HandleScope handle_scope(isolate); const int kLength = 30; base::uc16 two_byte_buf[kLength]; char* external_one_byte_buf = new char[kLength]; for (int j = 0; j < kLength; j++) { char c = '0' + (j % 10); two_byte_buf[j] = c; external_one_byte_buf[j] = c; } Handle parent; { Handle raw = factory->NewRawTwoByteString(kLength).ToHandleChecked(); DisallowGarbageCollection no_gc; CopyChars(raw->GetChars(no_gc), two_byte_buf, kLength); parent = raw; } CHECK(parent->IsTwoByteRepresentation()); Handle sliced = factory->NewSubString(parent, 1, 20); CHECK(sliced->IsSlicedString()); factory->InternalizeString(parent); CHECK(parent->IsThinString()); Handle grandparent = handle(ThinString::cast(*parent).actual(), isolate); CHECK_EQ(*parent, SlicedString::cast(*sliced).parent()); OneByteStringResource* resource = new OneByteStringResource(external_one_byte_buf, kLength); grandparent->MakeExternal(resource); // The grandparent string becomes one-byte, but the child strings are still // two-byte. CHECK(grandparent->IsOneByteRepresentation()); CHECK(parent->IsTwoByteRepresentation()); CHECK(sliced->IsTwoByteRepresentation()); // The *Underneath version returns the correct representation. CHECK(String::IsOneByteRepresentationUnderneath(*sliced)); } // Show that it is possible to internalize an external string without a copy, as // long as it is not uncached. TEST(InternalizeExternalString) { CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); // Create the string. const char* raw_string = "external"; OneByteResource* resource = new OneByteResource(i::StrDup(raw_string), strlen(raw_string)); Handle string = factory->NewExternalStringFromOneByte(resource).ToHandleChecked(); CHECK(string->IsExternalString()); // Check it is not uncached. Handle external = Handle::cast(string); CHECK(!external->is_uncached()); // Internalize succesfully, without a copy. Handle internal = factory->InternalizeString(external); CHECK(string->IsInternalizedString()); CHECK(string.equals(internal)); } // Show that it is possible to internalize an external string without a copy, as // long as it is not uncached. Two byte version. TEST(InternalizeExternalStringTwoByte) { CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); // Create the string. const char* raw_string = "external"; Resource* resource = new Resource(AsciiToTwoByteString(raw_string), strlen(raw_string)); Handle string = factory->NewExternalStringFromTwoByte(resource).ToHandleChecked(); CHECK(string->IsExternalString()); // Check it is not uncached. Handle external = Handle::cast(string); CHECK(!external->is_uncached()); // Internalize succesfully, without a copy. Handle internal = factory->InternalizeString(external); CHECK(string->IsInternalizedString()); CHECK(string.equals(internal)); } class UncachedExternalOneByteResource : public v8::String::ExternalOneByteStringResource { public: explicit UncachedExternalOneByteResource(const char* data) : data_(data), length_(strlen(data)) {} ~UncachedExternalOneByteResource() override { i::DeleteArray(data_); } const char* data() const override { return data_; } size_t length() const override { return length_; } bool IsCacheable() const override { return false; } private: const char* data_; size_t length_; }; // Show that we can internalize an external uncached string, by creating a copy. TEST(InternalizeExternalStringUncachedWithCopy) { CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); // Create the string. const char* raw_string = "external"; UncachedExternalOneByteResource* resource = new UncachedExternalOneByteResource(i::StrDup(raw_string)); Handle string = factory->NewExternalStringFromOneByte(resource).ToHandleChecked(); CHECK(string->IsExternalString()); // Check it is uncached. Handle external = Handle::cast(string); CHECK(external->is_uncached()); // Internalize succesfully, with a copy. Handle internal = factory->InternalizeString(external); CHECK(!external->IsInternalizedString()); CHECK(internal->IsInternalizedString()); } class UncachedExternalResource : public v8::String::ExternalStringResource { public: explicit UncachedExternalResource(const uint16_t* data) : data_(data), length_(0) { while (data[length_]) ++length_; } ~UncachedExternalResource() override { i::DeleteArray(data_); } const uint16_t* data() const override { return data_; } size_t length() const override { return length_; } bool IsCacheable() const override { return false; } private: const uint16_t* data_; size_t length_; }; // Show that we can internalize an external uncached string, by creating a copy. // Two byte version. TEST(InternalizeExternalStringUncachedWithCopyTwoByte) { CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); // Create the string. const char* raw_string = "external"; UncachedExternalResource* resource = new UncachedExternalResource(AsciiToTwoByteString(raw_string)); Handle string = factory->NewExternalStringFromTwoByte(resource).ToHandleChecked(); CHECK(string->IsExternalString()); // Check it is uncached. Handle external = Handle::cast(string); CHECK(external->is_uncached()); // Internalize succesfully, with a copy. CHECK(!external->IsInternalizedString()); Handle internal = factory->InternalizeString(external); CHECK(!external->IsInternalizedString()); CHECK(internal->IsInternalizedString()); } // Show that we cache the data pointer for internal, external and uncached // strings with cacheable resources through MakeExternal. One byte version. TEST(CheckCachedDataInternalExternalUncachedString) { CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); // Due to different size restrictions the string needs to be small but not too // small. One of these restrictions is whether pointer compression is enabled. #ifdef V8_COMPRESS_POINTERS const char* raw_small = "small string"; #elif V8_TARGET_ARCH_32_BIT const char* raw_small = "smol"; #else const char* raw_small = "smalls"; #endif // V8_COMPRESS_POINTERS Handle string = factory->InternalizeString(factory->NewStringFromAsciiChecked(raw_small)); OneByteResource* resource = new OneByteResource(i::StrDup(raw_small), strlen(raw_small)); // Check it is external, internalized, and uncached with a cacheable resource. string->MakeExternal(resource); CHECK(string->IsOneByteRepresentation()); CHECK(string->IsExternalString()); CHECK(string->IsInternalizedString()); // Check that the external string is uncached, its resource is cacheable, and // that we indeed cached it. Handle external_string = Handle::cast(string); CHECK(external_string->is_uncached()); CHECK(external_string->resource()->IsCacheable()); CHECK_NOT_NULL(external_string->resource()->cached_data()); CHECK_EQ(external_string->resource()->cached_data(), external_string->resource()->data()); } // Show that we cache the data pointer for internal, external and uncached // strings with cacheable resources through MakeExternal. One byte version. TEST(CheckCachedDataInternalExternalUncachedStringTwoByte) { CcTest::InitializeVM(); Factory* factory = CcTest::i_isolate()->factory(); v8::HandleScope scope(CcTest::isolate()); // Due to different size restrictions the string needs to be small but not too // small. One of these restrictions is whether pointer compression is enabled. #ifdef V8_COMPRESS_POINTERS const char* raw_small = "small string"; #elif V8_TARGET_ARCH_32_BIT const char* raw_small = "smol"; #else const char* raw_small = "smalls"; #endif // V8_COMPRESS_POINTERS Handle string = factory->InternalizeString(factory->NewStringFromAsciiChecked(raw_small)); Resource* resource = new Resource(AsciiToTwoByteString(raw_small), strlen(raw_small)); // Check it is external, internalized, and uncached with a cacheable resource. string->MakeExternal(resource); CHECK(string->IsTwoByteRepresentation()); CHECK(string->IsExternalString()); CHECK(string->IsInternalizedString()); // Check that the external string is uncached, its resource is cacheable, and // that we indeed cached it. Handle external_string = Handle::cast(string); CHECK(external_string->is_uncached()); CHECK(external_string->resource()->IsCacheable()); CHECK_NOT_NULL(external_string->resource()->cached_data()); CHECK_EQ(external_string->resource()->cached_data(), external_string->resource()->data()); } } // namespace test_strings } // namespace internal } // namespace v8