// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "src/builtins/builtins-constructor.h" #include "src/debug/debug.h" #include "src/execution/execution.h" #include "src/handles/global-handles.h" #include "src/heap/factory.h" #include "src/heap/spaces.h" #include "src/init/v8.h" #include "src/objects/hash-table-inl.h" #include "src/objects/objects-inl.h" #include "src/roots/roots.h" #include "test/unittests/heap/heap-utils.h" namespace v8 { namespace internal { class DictionaryTest : public TestWithHeapInternalsAndContext { public: template void TestHashMap(Handle table) { Factory* factory = isolate()->factory(); Handle a = factory->NewJSArray(7); Handle b = factory->NewJSArray(11); table = HashMap::Put(table, a, b); CHECK_EQ(1, table->NumberOfElements()); CHECK_EQ(table->Lookup(a), *b); // When the key does not exist in the map, Lookup returns the hole. ReadOnlyRoots roots(heap()); CHECK_EQ(table->Lookup(b), roots.the_hole_value()); // Keys still have to be valid after objects were moved. CollectGarbage(NEW_SPACE); CHECK_EQ(1, table->NumberOfElements()); CHECK_EQ(table->Lookup(a), *b); CHECK_EQ(table->Lookup(b), roots.the_hole_value()); // Keys that are overwritten should not change number of elements. table = HashMap::Put(table, a, factory->NewJSArray(13)); CHECK_EQ(1, table->NumberOfElements()); CHECK_NE(table->Lookup(a), *b); // Keys that have been removed are mapped to the hole. bool was_present = false; table = HashMap::Remove(isolate(), table, a, &was_present); CHECK(was_present); CHECK_EQ(0, table->NumberOfElements()); CHECK_EQ(table->Lookup(a), roots.the_hole_value()); // Keys should map back to their respective values and also should get // an identity hash code generated. for (int i = 0; i < 100; i++) { Handle key = factory->NewJSArray(7); Handle value = factory->NewJSArray(11); table = HashMap::Put(table, key, value); CHECK_EQ(table->NumberOfElements(), i + 1); CHECK(table->FindEntry(isolate(), key).is_found()); CHECK_EQ(table->Lookup(key), *value); CHECK(key->GetIdentityHash().IsSmi()); } // Keys never added to the map which already have an identity hash // code should not be found. for (int i = 0; i < 100; i++) { Handle key = factory->NewJSArray(7); CHECK(key->GetOrCreateIdentityHash(isolate()).IsSmi()); CHECK(table->FindEntry(isolate(), key).is_not_found()); CHECK_EQ(table->Lookup(key), roots.the_hole_value()); CHECK(key->GetIdentityHash().IsSmi()); } // Keys that don't have an identity hash should not be found and also // should not get an identity hash code generated. for (int i = 0; i < 100; i++) { Handle key = factory->NewJSArray(7); CHECK_EQ(table->Lookup(key), roots.the_hole_value()); Object identity_hash = key->GetIdentityHash(); CHECK_EQ(roots.undefined_value(), identity_hash); } } template void TestHashSet(Handle table) { Factory* factory = isolate()->factory(); Handle a = factory->NewJSArray(7); Handle b = factory->NewJSArray(11); table = HashSet::Add(isolate(), table, a); CHECK_EQ(1, table->NumberOfElements()); CHECK(table->Has(isolate(), a)); CHECK(!table->Has(isolate(), b)); // Keys still have to be valid after objects were moved. CollectGarbage(NEW_SPACE); CHECK_EQ(1, table->NumberOfElements()); CHECK(table->Has(isolate(), a)); CHECK(!table->Has(isolate(), b)); // Keys that are overwritten should not change number of elements. table = HashSet::Add(isolate(), table, a); CHECK_EQ(1, table->NumberOfElements()); CHECK(table->Has(isolate(), a)); CHECK(!table->Has(isolate(), b)); // Keys that have been removed are mapped to the hole. // TODO(cbruni): not implemented yet. // bool was_present = false; // table = HashSet::Remove(table, a, &was_present); // CHECK(was_present); // CHECK_EQ(0, table->NumberOfElements()); // CHECK(!table->Has(a)); // CHECK(!table->Has(b)); // Keys should map back to their respective values and also should get // an identity hash code generated. for (int i = 0; i < 100; i++) { Handle key = factory->NewJSArray(7); table = HashSet::Add(isolate(), table, key); CHECK_EQ(table->NumberOfElements(), i + 2); CHECK(table->Has(isolate(), key)); CHECK(key->GetIdentityHash().IsSmi()); } // Keys never added to the map which already have an identity hash // code should not be found. for (int i = 0; i < 100; i++) { Handle key = factory->NewJSArray(7); CHECK(key->GetOrCreateIdentityHash(isolate()).IsSmi()); CHECK(!table->Has(isolate(), key)); CHECK(key->GetIdentityHash().IsSmi()); } // Keys that don't have an identity hash should not be found and also // should not get an identity hash code generated. for (int i = 0; i < 100; i++) { Handle key = factory->NewJSArray(7); CHECK(!table->Has(isolate(), key)); Object identity_hash = key->GetIdentityHash(); CHECK_EQ(ReadOnlyRoots(heap()).undefined_value(), identity_hash); } } #ifdef DEBUG template void TestHashSetCausesGC(Handle table) { Factory* factory = isolate()->factory(); Handle key = factory->NewJSArray(0); // Simulate a full heap so that generating an identity hash code // in subsequent calls will request GC. SimulateFullSpace(heap()->new_space()); SimulateFullSpace(heap()->old_space()); // Calling Contains() should not cause GC ever. int gc_count = heap()->gc_count(); CHECK(!table->Contains(key)); CHECK(gc_count == heap()->gc_count()); // Calling Remove() will not cause GC in this case. bool was_present = false; table = HashSet::Remove(table, key, &was_present); CHECK(!was_present); CHECK(gc_count == heap()->gc_count()); // Calling Add() should cause GC. table = HashSet::Add(table, key); CHECK(gc_count < heap()->gc_count()); } #endif #ifdef DEBUG template void TestHashMapDoesNotCauseGC(Handle table) { Factory* factory = isolate()->factory(); Handle key = factory->NewJSArray(0); // Even though we simulate a full heap, generating an identity hash // code in subsequent calls will not request GC. if (!FLAG_single_generation) { SimulateFullSpace(heap()->new_space()); } SimulateFullSpace(heap()->old_space()); // Calling Lookup() should not cause GC ever. CHECK(table->Lookup(key).IsTheHole(isolate())); // Calling Put() should request GC by returning a failure. int gc_count = heap()->gc_count(); HashMap::Put(table, key, key); CHECK(gc_count == heap()->gc_count()); } #endif }; TEST_F(DictionaryTest, HashMap) { TestHashMap(ObjectHashTable::New(isolate(), 23)); } TEST_F(DictionaryTest, HashSet) { TestHashSet(ObjectHashSet::New(isolate(), 23)); } class ObjectHashTableTest : public ObjectHashTable { public: explicit ObjectHashTableTest(ObjectHashTable o) : ObjectHashTable(o) {} void insert(InternalIndex entry, int key, int value) { set(EntryToIndex(entry), Smi::FromInt(key)); set(EntryToIndex(entry) + 1, Smi::FromInt(value)); } int lookup(int key, Isolate* isolate) { Handle key_obj(Smi::FromInt(key), isolate); return Smi::ToInt(Lookup(key_obj)); } int capacity() { return Capacity(); } }; TEST_F(DictionaryTest, HashTableRehash) { // Test almost filled table. { Handle table = ObjectHashTable::New(isolate(), 100); ObjectHashTableTest t(*table); int capacity = t.capacity(); for (int i = 0; i < capacity - 1; i++) { t.insert(InternalIndex(i), i * i, i); } t.Rehash(isolate()); for (int i = 0; i < capacity - 1; i++) { CHECK_EQ(i, t.lookup(i * i, isolate())); } } // Test half-filled table. { Handle table = ObjectHashTable::New(isolate(), 100); ObjectHashTableTest t(*table); int capacity = t.capacity(); for (int i = 0; i < capacity / 2; i++) { t.insert(InternalIndex(i), i * i, i); } t.Rehash(isolate()); for (int i = 0; i < capacity / 2; i++) { CHECK_EQ(i, t.lookup(i * i, isolate())); } } } #ifdef DEBUG TEST_F(DictionaryTest, ObjectHashTableCausesGC) { i::FLAG_stress_compaction = false; // For SimulateFullSpace in TestHashMapDoesNotCauseGC. i::FLAG_stress_concurrent_allocation = false; TestHashMapDoesNotCauseGC(ObjectHashTable::New(isolate(), 1)); } #endif TEST_F(DictionaryTest, MaximumClonedShallowObjectProperties) { // Assert that a NameDictionary with kMaximumClonedShallowObjectProperties is // not in large-object space. const int max_capacity = NameDictionary::ComputeCapacity( ConstructorBuiltins::kMaximumClonedShallowObjectProperties); const InternalIndex max_literal_entry(max_capacity / NameDictionary::kEntrySize); const int max_literal_index = NameDictionary::EntryToIndex(max_literal_entry); CHECK_LE(NameDictionary::OffsetOfElementAt(max_literal_index), kMaxRegularHeapObjectSize); } } // namespace internal } // namespace v8