// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_STUB_CACHE_H_ #define V8_STUB_CACHE_H_ #include "src/macro-assembler.h" namespace v8 { namespace internal { class SmallMapList; // The stub cache is used for megamorphic property accesses. // It maps (map, name, type) to property access handlers. The cache does not // need explicit invalidation when a prototype chain is modified, since the // handlers verify the chain. class SCTableReference { public: Address address() const { return address_; } private: explicit SCTableReference(Address address) : address_(address) {} Address address_; friend class StubCache; }; class StubCache { public: struct Entry { Name* key; Object* value; Map* map; }; void Initialize(); // Access cache for entry hash(name, map). Object* Set(Name* name, Map* map, Object* handler); Object* Get(Name* name, Map* map); // Clear the lookup table (@ mark compact collection). void Clear(); // Collect all maps that match the name. void CollectMatchingMaps(SmallMapList* types, Handle name, Handle native_context, Zone* zone); // Generate code for probing the stub cache table. // Arguments extra, extra2 and extra3 may be used to pass additional scratch // registers. Set to no_reg if not needed. // If leave_frame is true, then exit a frame before the tail call. void GenerateProbe(MacroAssembler* masm, Register receiver, Register name, Register scratch, Register extra, Register extra2 = no_reg, Register extra3 = no_reg); enum Table { kPrimary, kSecondary }; SCTableReference key_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast
(&first_entry(table)->key)); } SCTableReference map_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast
(&first_entry(table)->map)); } SCTableReference value_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast
(&first_entry(table)->value)); } StubCache::Entry* first_entry(StubCache::Table table) { switch (table) { case StubCache::kPrimary: return StubCache::primary_; case StubCache::kSecondary: return StubCache::secondary_; } UNREACHABLE(); return NULL; } Isolate* isolate() { return isolate_; } Code::Kind ic_kind() const { return ic_kind_; } // Setting the entry size such that the index is shifted by Name::kHashShift // is convenient; shifting down the length field (to extract the hash code) // automatically discards the hash bit field. static const int kCacheIndexShift = Name::kHashShift; static const int kPrimaryTableBits = 11; static const int kPrimaryTableSize = (1 << kPrimaryTableBits); static const int kSecondaryTableBits = 9; static const int kSecondaryTableSize = (1 << kSecondaryTableBits); // Some magic number used in primary and secondary hash computations. static const int kPrimaryMagic = 0x3d532433; static const int kSecondaryMagic = 0xb16b00b5; static int PrimaryOffsetForTesting(Name* name, Map* map) { return PrimaryOffset(name, map); } static int SecondaryOffsetForTesting(Name* name, int seed) { return SecondaryOffset(name, seed); } // The constructor is made public only for the purposes of testing. StubCache(Isolate* isolate, Code::Kind ic_kind); private: // The stub cache has a primary and secondary level. The two levels have // different hashing algorithms in order to avoid simultaneous collisions // in both caches. Unlike a probing strategy (quadratic or otherwise) the // update strategy on updates is fairly clear and simple: Any existing entry // in the primary cache is moved to the secondary cache, and secondary cache // entries are overwritten. // Hash algorithm for the primary table. This algorithm is replicated in // assembler for every architecture. Returns an index into the table that // is scaled by 1 << kCacheIndexShift. static int PrimaryOffset(Name* name, Map* map) { STATIC_ASSERT(kCacheIndexShift == Name::kHashShift); // Compute the hash of the name (use entire hash field). DCHECK(name->HasHashCode()); uint32_t field = name->hash_field(); // Using only the low bits in 64-bit mode is unlikely to increase the // risk of collision even if the heap is spread over an area larger than // 4Gb (and not at all if it isn't). uint32_t map_low32bits = static_cast(reinterpret_cast(map)); // Base the offset on a simple combination of name and map. uint32_t key = (map_low32bits + field) ^ kPrimaryMagic; return key & ((kPrimaryTableSize - 1) << kCacheIndexShift); } // Hash algorithm for the secondary table. This algorithm is replicated in // assembler for every architecture. Returns an index into the table that // is scaled by 1 << kCacheIndexShift. static int SecondaryOffset(Name* name, int seed) { // Use the seed from the primary cache in the secondary cache. uint32_t name_low32bits = static_cast(reinterpret_cast(name)); uint32_t key = (seed - name_low32bits) + kSecondaryMagic; return key & ((kSecondaryTableSize - 1) << kCacheIndexShift); } // Compute the entry for a given offset in exactly the same way as // we do in generated code. We generate an hash code that already // ends in Name::kHashShift 0s. Then we multiply it so it is a multiple // of sizeof(Entry). This makes it easier to avoid making mistakes // in the hashed offset computations. static Entry* entry(Entry* table, int offset) { const int multiplier = sizeof(*table) >> Name::kHashShift; return reinterpret_cast(reinterpret_cast
(table) + offset * multiplier); } private: Entry primary_[kPrimaryTableSize]; Entry secondary_[kSecondaryTableSize]; Isolate* isolate_; Code::Kind ic_kind_; friend class Isolate; friend class SCTableReference; DISALLOW_COPY_AND_ASSIGN(StubCache); }; } // namespace internal } // namespace v8 #endif // V8_STUB_CACHE_H_