// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include // NOLINT(readability/streams) #include "src/v8.h" #include "src/base/utils/random-number-generator.h" #include "src/disassembler.h" #include "src/factory.h" #include "src/macro-assembler.h" #include "src/mips/macro-assembler-mips.h" #include "src/mips/simulator-mips.h" #include "test/cctest/cctest.h" using namespace v8::internal; // Define these function prototypes to match JSEntryFunction in execution.cc. typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4); typedef Object* (*F2)(int x, int y, int p2, int p3, int p4); typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4); // clang-format off #define __ assm. TEST(MIPS0) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // Addition. __ addu(v0, a0, a1); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0)); CHECK_EQ(static_cast(0xabc), res); } TEST(MIPS1) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; __ mov(a1, a0); __ li(v0, 0); __ b(&C); __ nop(); __ bind(&L); __ addu(v0, v0, a1); __ addiu(a1, a1, -1); __ bind(&C); __ xori(v1, a1, 0); __ Branch(&L, ne, v1, Operand(0)); __ nop(); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F1 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 50, 0, 0, 0, 0)); CHECK_EQ(1275, res); } TEST(MIPS2) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label exit, error; // ----- Test all instructions. // Test lui, ori, and addiu, used in the li pseudo-instruction. // This way we can then safely load registers with chosen values. __ ori(t0, zero_reg, 0); __ lui(t0, 0x1234); __ ori(t0, t0, 0); __ ori(t0, t0, 0x0f0f); __ ori(t0, t0, 0xf0f0); __ addiu(t1, t0, 1); __ addiu(t2, t1, -0x10); // Load values in temporary registers. __ li(t0, 0x00000004); __ li(t1, 0x00001234); __ li(t2, 0x12345678); __ li(t3, 0x7fffffff); __ li(t4, 0xfffffffc); __ li(t5, 0xffffedcc); __ li(t6, 0xedcba988); __ li(t7, 0x80000000); // SPECIAL class. __ srl(v0, t2, 8); // 0x00123456 __ sll(v0, v0, 11); // 0x91a2b000 __ sra(v0, v0, 3); // 0xf2345600 __ srav(v0, v0, t0); // 0xff234560 __ sllv(v0, v0, t0); // 0xf2345600 __ srlv(v0, v0, t0); // 0x0f234560 __ Branch(&error, ne, v0, Operand(0x0f234560)); __ nop(); __ addu(v0, t0, t1); // 0x00001238 __ subu(v0, v0, t0); // 0x00001234 __ Branch(&error, ne, v0, Operand(0x00001234)); __ nop(); __ addu(v1, t3, t0); __ Branch(&error, ne, v1, Operand(0x80000003)); __ nop(); __ subu(v1, t7, t0); // 0x7ffffffc __ Branch(&error, ne, v1, Operand(0x7ffffffc)); __ nop(); __ and_(v0, t1, t2); // 0x00001230 __ or_(v0, v0, t1); // 0x00001234 __ xor_(v0, v0, t2); // 0x1234444c __ nor(v0, v0, t2); // 0xedcba987 __ Branch(&error, ne, v0, Operand(0xedcba983)); __ nop(); __ slt(v0, t7, t3); __ Branch(&error, ne, v0, Operand(0x1)); __ nop(); __ sltu(v0, t7, t3); __ Branch(&error, ne, v0, Operand(zero_reg)); __ nop(); // End of SPECIAL class. __ addiu(v0, zero_reg, 0x7421); // 0x00007421 __ addiu(v0, v0, -0x1); // 0x00007420 __ addiu(v0, v0, -0x20); // 0x00007400 __ Branch(&error, ne, v0, Operand(0x00007400)); __ nop(); __ addiu(v1, t3, 0x1); // 0x80000000 __ Branch(&error, ne, v1, Operand(0x80000000)); __ nop(); __ slti(v0, t1, 0x00002000); // 0x1 __ slti(v0, v0, 0xffff8000); // 0x0 __ Branch(&error, ne, v0, Operand(zero_reg)); __ nop(); __ sltiu(v0, t1, 0x00002000); // 0x1 __ sltiu(v0, v0, 0x00008000); // 0x1 __ Branch(&error, ne, v0, Operand(0x1)); __ nop(); __ andi(v0, t1, 0xf0f0); // 0x00001030 __ ori(v0, v0, 0x8a00); // 0x00009a30 __ xori(v0, v0, 0x83cc); // 0x000019fc __ Branch(&error, ne, v0, Operand(0x000019fc)); __ nop(); __ lui(v1, 0x8123); // 0x81230000 __ Branch(&error, ne, v1, Operand(0x81230000)); __ nop(); // Bit twiddling instructions & conditional moves. // Uses t0-t7 as set above. __ Clz(v0, t0); // 29 __ Clz(v1, t1); // 19 __ addu(v0, v0, v1); // 48 __ Clz(v1, t2); // 3 __ addu(v0, v0, v1); // 51 __ Clz(v1, t7); // 0 __ addu(v0, v0, v1); // 51 __ Branch(&error, ne, v0, Operand(51)); __ Movn(a0, t3, t0); // Move a0<-t3 (t0 is NOT 0). __ Ins(a0, t1, 12, 8); // 0x7ff34fff __ Branch(&error, ne, a0, Operand(0x7ff34fff)); __ Movz(a0, t6, t7); // a0 not updated (t7 is NOT 0). __ Ext(a1, a0, 8, 12); // 0x34f __ Branch(&error, ne, a1, Operand(0x34f)); __ Movz(a0, t6, v1); // a0<-t6, v0 is 0, from 8 instr back. __ Branch(&error, ne, a0, Operand(t6)); // Everything was correctly executed. Load the expected result. __ li(v0, 0x31415926); __ b(&exit); __ nop(); __ bind(&error); // Got an error. Return a wrong result. __ li(v0, 666); __ bind(&exit); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0xab0, 0xc, 0, 0, 0)); CHECK_EQ(static_cast(0x31415926), res); } TEST(MIPS3) { // Test floating point instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; double g; double h; double i; float fa; float fb; float fc; float fd; float fe; float ff; float fg; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label L, C; // Double precision floating point instructions. __ ldc1(f4, MemOperand(a0, offsetof(T, a)) ); __ ldc1(f6, MemOperand(a0, offsetof(T, b)) ); __ add_d(f8, f4, f6); __ sdc1(f8, MemOperand(a0, offsetof(T, c)) ); // c = a + b. __ mov_d(f10, f8); // c __ neg_d(f12, f6); // -b __ sub_d(f10, f10, f12); __ sdc1(f10, MemOperand(a0, offsetof(T, d)) ); // d = c - (-b). __ sdc1(f4, MemOperand(a0, offsetof(T, b)) ); // b = a. __ li(t0, 120); __ mtc1(t0, f14); __ cvt_d_w(f14, f14); // f14 = 120.0. __ mul_d(f10, f10, f14); __ sdc1(f10, MemOperand(a0, offsetof(T, e)) ); // e = d * 120 = 1.8066e16. __ div_d(f12, f10, f4); __ sdc1(f12, MemOperand(a0, offsetof(T, f)) ); // f = e / a = 120.44. __ sqrt_d(f14, f12); __ sdc1(f14, MemOperand(a0, offsetof(T, g)) ); // g = sqrt(f) = 10.97451593465515908537 if (IsMipsArchVariant(kMips32r2)) { __ ldc1(f4, MemOperand(a0, offsetof(T, h)) ); __ ldc1(f6, MemOperand(a0, offsetof(T, i)) ); __ madd_d(f14, f6, f4, f6); __ sdc1(f14, MemOperand(a0, offsetof(T, h)) ); } // Single precision floating point instructions. __ lwc1(f4, MemOperand(a0, offsetof(T, fa)) ); __ lwc1(f6, MemOperand(a0, offsetof(T, fb)) ); __ add_s(f8, f4, f6); __ swc1(f8, MemOperand(a0, offsetof(T, fc)) ); // fc = fa + fb. __ neg_s(f10, f6); // -fb __ sub_s(f10, f8, f10); __ swc1(f10, MemOperand(a0, offsetof(T, fd)) ); // fd = fc - (-fb). __ swc1(f4, MemOperand(a0, offsetof(T, fb)) ); // fb = fa. __ li(t0, 120); __ mtc1(t0, f14); __ cvt_s_w(f14, f14); // f14 = 120.0. __ mul_s(f10, f10, f14); __ swc1(f10, MemOperand(a0, offsetof(T, fe)) ); // fe = fd * 120 __ div_s(f12, f10, f4); __ swc1(f12, MemOperand(a0, offsetof(T, ff)) ); // ff = fe / fa __ sqrt_s(f14, f12); __ swc1(f14, MemOperand(a0, offsetof(T, fg)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); // Double test values. t.a = 1.5e14; t.b = 2.75e11; t.c = 0.0; t.d = 0.0; t.e = 0.0; t.f = 0.0; t.h = 1.5; t.i = 2.75; // Single test values. t.fa = 1.5e6; t.fb = 2.75e4; t.fc = 0.0; t.fd = 0.0; t.fe = 0.0; t.ff = 0.0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); // Expected double results. CHECK_EQ(1.5e14, t.a); CHECK_EQ(1.5e14, t.b); CHECK_EQ(1.50275e14, t.c); CHECK_EQ(1.50550e14, t.d); CHECK_EQ(1.8066e16, t.e); CHECK_EQ(120.44, t.f); CHECK_EQ(10.97451593465515908537, t.g); if (IsMipsArchVariant(kMips32r2)) { CHECK_EQ(6.875, t.h); } // Expected single results. CHECK_EQ(1.5e6, t.fa); CHECK_EQ(1.5e6, t.fb); CHECK_EQ(1.5275e06, t.fc); CHECK_EQ(1.5550e06, t.fd); CHECK_EQ(1.866e08, t.fe); CHECK_EQ(124.40000152587890625, t.ff); CHECK_EQ(11.1534748077392578125, t.fg); } TEST(MIPS4) { // Test moves between floating point and integer registers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; } T; T t; Assembler assm(isolate, NULL, 0); Label L, C; __ ldc1(f4, MemOperand(a0, offsetof(T, a)) ); __ ldc1(f6, MemOperand(a0, offsetof(T, b)) ); // Swap f4 and f6, by using four integer registers, t0-t3. if (!IsFp64Mode()) { __ mfc1(t0, f4); __ mfc1(t1, f5); __ mfc1(t2, f6); __ mfc1(t3, f7); __ mtc1(t0, f6); __ mtc1(t1, f7); __ mtc1(t2, f4); __ mtc1(t3, f5); } else { CHECK(!IsMipsArchVariant(kMips32r1) && !IsMipsArchVariant(kLoongson)); __ mfc1(t0, f4); __ mfhc1(t1, f4); __ mfc1(t2, f6); __ mfhc1(t3, f6); __ mtc1(t0, f6); __ mthc1(t1, f6); __ mtc1(t2, f4); __ mthc1(t3, f4); } // Store the swapped f4 and f5 back to memory. __ sdc1(f4, MemOperand(a0, offsetof(T, a)) ); __ sdc1(f6, MemOperand(a0, offsetof(T, c)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5e22; t.b = 2.75e11; t.c = 17.17; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(2.75e11, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1.5e22, t.c); } TEST(MIPS5) { // Test conversions between doubles and integers. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; int i; int j; } T; T t; Assembler assm(isolate, NULL, 0); Label L, C; // Load all structure elements to registers. __ ldc1(f4, MemOperand(a0, offsetof(T, a)) ); __ ldc1(f6, MemOperand(a0, offsetof(T, b)) ); __ lw(t0, MemOperand(a0, offsetof(T, i)) ); __ lw(t1, MemOperand(a0, offsetof(T, j)) ); // Convert double in f4 to int in element i. __ cvt_w_d(f8, f4); __ mfc1(t2, f8); __ sw(t2, MemOperand(a0, offsetof(T, i)) ); // Convert double in f6 to int in element j. __ cvt_w_d(f10, f6); __ mfc1(t3, f10); __ sw(t3, MemOperand(a0, offsetof(T, j)) ); // Convert int in original i (t0) to double in a. __ mtc1(t0, f12); __ cvt_d_w(f0, f12); __ sdc1(f0, MemOperand(a0, offsetof(T, a)) ); // Convert int in original j (t1) to double in b. __ mtc1(t1, f14); __ cvt_d_w(f2, f14); __ sdc1(f2, MemOperand(a0, offsetof(T, b)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5e4; t.b = 2.75e8; t.i = 12345678; t.j = -100000; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(12345678.0, t.a); CHECK_EQ(-100000.0, t.b); CHECK_EQ(15000, t.i); CHECK_EQ(275000000, t.j); } TEST(MIPS6) { // Test simple memory loads and stores. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { uint32_t ui; int32_t si; int32_t r1; int32_t r2; int32_t r3; int32_t r4; int32_t r5; int32_t r6; } T; T t; Assembler assm(isolate, NULL, 0); Label L, C; // Basic word load/store. __ lw(t0, MemOperand(a0, offsetof(T, ui)) ); __ sw(t0, MemOperand(a0, offsetof(T, r1)) ); // lh with positive data. __ lh(t1, MemOperand(a0, offsetof(T, ui)) ); __ sw(t1, MemOperand(a0, offsetof(T, r2)) ); // lh with negative data. __ lh(t2, MemOperand(a0, offsetof(T, si)) ); __ sw(t2, MemOperand(a0, offsetof(T, r3)) ); // lhu with negative data. __ lhu(t3, MemOperand(a0, offsetof(T, si)) ); __ sw(t3, MemOperand(a0, offsetof(T, r4)) ); // lb with negative data. __ lb(t4, MemOperand(a0, offsetof(T, si)) ); __ sw(t4, MemOperand(a0, offsetof(T, r5)) ); // sh writes only 1/2 of word. __ lui(t5, 0x3333); __ ori(t5, t5, 0x3333); __ sw(t5, MemOperand(a0, offsetof(T, r6)) ); __ lhu(t5, MemOperand(a0, offsetof(T, si)) ); __ sh(t5, MemOperand(a0, offsetof(T, r6)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.ui = 0x11223344; t.si = 0x99aabbcc; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x11223344), t.r1); #if __BYTE_ORDER == __LITTLE_ENDIAN CHECK_EQ(static_cast(0x3344), t.r2); CHECK_EQ(static_cast(0xffffbbcc), t.r3); CHECK_EQ(static_cast(0x0000bbcc), t.r4); CHECK_EQ(static_cast(0xffffffcc), t.r5); CHECK_EQ(static_cast(0x3333bbcc), t.r6); #elif __BYTE_ORDER == __BIG_ENDIAN CHECK_EQ(static_cast(0x1122), t.r2); CHECK_EQ(static_cast(0xffff99aa), t.r3); CHECK_EQ(static_cast(0x000099aa), t.r4); CHECK_EQ(static_cast(0xffffff99), t.r5); CHECK_EQ(static_cast(0x99aa3333), t.r6); #else #error Unknown endianness #endif } TEST(MIPS7) { // Test floating point compare and branch instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; double c; double d; double e; double f; int32_t result; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label neither_is_nan, less_than, outa_here; __ ldc1(f4, MemOperand(a0, offsetof(T, a)) ); __ ldc1(f6, MemOperand(a0, offsetof(T, b)) ); if (!IsMipsArchVariant(kMips32r6)) { __ c(UN, D, f4, f6); __ bc1f(&neither_is_nan); } else { __ cmp(UN, L, f2, f4, f6); __ bc1eqz(&neither_is_nan, f2); } __ nop(); __ sw(zero_reg, MemOperand(a0, offsetof(T, result)) ); __ Branch(&outa_here); __ bind(&neither_is_nan); if (IsMipsArchVariant(kLoongson)) { __ c(OLT, D, f6, f4); __ bc1t(&less_than); } else if (IsMipsArchVariant(kMips32r6)) { __ cmp(OLT, L, f2, f6, f4); __ bc1nez(&less_than, f2); } else { __ c(OLT, D, f6, f4, 2); __ bc1t(&less_than, 2); } __ nop(); __ sw(zero_reg, MemOperand(a0, offsetof(T, result)) ); __ Branch(&outa_here); __ bind(&less_than); __ Addu(t0, zero_reg, Operand(1)); __ sw(t0, MemOperand(a0, offsetof(T, result)) ); // Set true. // This test-case should have additional tests. __ bind(&outa_here); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 1.5e14; t.b = 2.75e11; t.c = 2.0; t.d = -4.0; t.e = 0.0; t.f = 0.0; t.result = 0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(1.5e14, t.a); CHECK_EQ(2.75e11, t.b); CHECK_EQ(1, t.result); } TEST(MIPS8) { // Test ROTR and ROTRV instructions. if (IsMipsArchVariant(kMips32r2)) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t input; int32_t result_rotr_4; int32_t result_rotr_8; int32_t result_rotr_12; int32_t result_rotr_16; int32_t result_rotr_20; int32_t result_rotr_24; int32_t result_rotr_28; int32_t result_rotrv_4; int32_t result_rotrv_8; int32_t result_rotrv_12; int32_t result_rotrv_16; int32_t result_rotrv_20; int32_t result_rotrv_24; int32_t result_rotrv_28; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // Basic word load. __ lw(t0, MemOperand(a0, offsetof(T, input)) ); // ROTR instruction (called through the Ror macro). __ Ror(t1, t0, 0x0004); __ Ror(t2, t0, 0x0008); __ Ror(t3, t0, 0x000c); __ Ror(t4, t0, 0x0010); __ Ror(t5, t0, 0x0014); __ Ror(t6, t0, 0x0018); __ Ror(t7, t0, 0x001c); // Basic word store. __ sw(t1, MemOperand(a0, offsetof(T, result_rotr_4)) ); __ sw(t2, MemOperand(a0, offsetof(T, result_rotr_8)) ); __ sw(t3, MemOperand(a0, offsetof(T, result_rotr_12)) ); __ sw(t4, MemOperand(a0, offsetof(T, result_rotr_16)) ); __ sw(t5, MemOperand(a0, offsetof(T, result_rotr_20)) ); __ sw(t6, MemOperand(a0, offsetof(T, result_rotr_24)) ); __ sw(t7, MemOperand(a0, offsetof(T, result_rotr_28)) ); // ROTRV instruction (called through the Ror macro). __ li(t7, 0x0004); __ Ror(t1, t0, t7); __ li(t7, 0x0008); __ Ror(t2, t0, t7); __ li(t7, 0x000C); __ Ror(t3, t0, t7); __ li(t7, 0x0010); __ Ror(t4, t0, t7); __ li(t7, 0x0014); __ Ror(t5, t0, t7); __ li(t7, 0x0018); __ Ror(t6, t0, t7); __ li(t7, 0x001C); __ Ror(t7, t0, t7); // Basic word store. __ sw(t1, MemOperand(a0, offsetof(T, result_rotrv_4)) ); __ sw(t2, MemOperand(a0, offsetof(T, result_rotrv_8)) ); __ sw(t3, MemOperand(a0, offsetof(T, result_rotrv_12)) ); __ sw(t4, MemOperand(a0, offsetof(T, result_rotrv_16)) ); __ sw(t5, MemOperand(a0, offsetof(T, result_rotrv_20)) ); __ sw(t6, MemOperand(a0, offsetof(T, result_rotrv_24)) ); __ sw(t7, MemOperand(a0, offsetof(T, result_rotrv_28)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.input = 0x12345678; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0x0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x81234567), t.result_rotr_4); CHECK_EQ(static_cast(0x78123456), t.result_rotr_8); CHECK_EQ(static_cast(0x67812345), t.result_rotr_12); CHECK_EQ(static_cast(0x56781234), t.result_rotr_16); CHECK_EQ(static_cast(0x45678123), t.result_rotr_20); CHECK_EQ(static_cast(0x34567812), t.result_rotr_24); CHECK_EQ(static_cast(0x23456781), t.result_rotr_28); CHECK_EQ(static_cast(0x81234567), t.result_rotrv_4); CHECK_EQ(static_cast(0x78123456), t.result_rotrv_8); CHECK_EQ(static_cast(0x67812345), t.result_rotrv_12); CHECK_EQ(static_cast(0x56781234), t.result_rotrv_16); CHECK_EQ(static_cast(0x45678123), t.result_rotrv_20); CHECK_EQ(static_cast(0x34567812), t.result_rotrv_24); CHECK_EQ(static_cast(0x23456781), t.result_rotrv_28); } } TEST(MIPS9) { // Test BRANCH improvements. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label exit, exit2, exit3; __ Branch(&exit, ge, a0, Operand(zero_reg)); __ Branch(&exit2, ge, a0, Operand(0x00001FFF)); __ Branch(&exit3, ge, a0, Operand(0x0001FFFF)); __ bind(&exit); __ bind(&exit2); __ bind(&exit3); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); } TEST(MIPS10) { // Test conversions between doubles and words. // Test maps double to FP reg pairs in fp32 mode // and into FP reg in fp64 mode. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double a; double b; int32_t dbl_mant; int32_t dbl_exp; int32_t word; int32_t b_word; } T; T t; Assembler assm(isolate, NULL, 0); Label L, C; if (!IsMipsArchVariant(kMips32r2)) return; // Load all structure elements to registers. // (f0, f1) = a (fp32), f0 = a (fp64) __ ldc1(f0, MemOperand(a0, offsetof(T, a))); if (IsFp64Mode()) { __ mfc1(t0, f0); // t0 = f0(31..0) __ mfhc1(t1, f0); // t1 = sign_extend(f0(63..32)) __ sw(t0, MemOperand(a0, offsetof(T, dbl_mant))); // dbl_mant = t0 __ sw(t1, MemOperand(a0, offsetof(T, dbl_exp))); // dbl_exp = t1 } else { // Save the raw bits of the double. __ mfc1(t0, f0); // t0 = a1 __ mfc1(t1, f1); // t1 = a2 __ sw(t0, MemOperand(a0, offsetof(T, dbl_mant))); // dbl_mant = t0 __ sw(t1, MemOperand(a0, offsetof(T, dbl_exp))); // dbl_exp = t1 } // Convert double in f0 to word, save hi/lo parts. __ cvt_w_d(f0, f0); // a_word = (word)a __ mfc1(t0, f0); // f0 has a 32-bits word. t0 = a_word __ sw(t0, MemOperand(a0, offsetof(T, word))); // word = a_word // Convert the b word to double b. __ lw(t0, MemOperand(a0, offsetof(T, b_word))); __ mtc1(t0, f8); // f8 has a 32-bits word. __ cvt_d_w(f10, f8); __ sdc1(f10, MemOperand(a0, offsetof(T, b))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.a = 2.147483646e+09; // 0x7FFFFFFE -> 0xFF80000041DFFFFF as double. t.b_word = 0x0ff00ff0; // 0x0FF00FF0 -> 0x as double. Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x41DFFFFF), t.dbl_exp); CHECK_EQ(static_cast(0xFF800000), t.dbl_mant); CHECK_EQ(static_cast(0x7FFFFFFE), t.word); // 0x0FF00FF0 -> 2.6739096+e08 CHECK_EQ(2.6739096e08, t.b); } TEST(MIPS11) { // Do not run test on MIPS32r6, as these instructions are removed. if (IsMipsArchVariant(kMips32r6)) return; // Test LWL, LWR, SWL and SWR instructions. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t reg_init; int32_t mem_init; int32_t lwl_0; int32_t lwl_1; int32_t lwl_2; int32_t lwl_3; int32_t lwr_0; int32_t lwr_1; int32_t lwr_2; int32_t lwr_3; int32_t swl_0; int32_t swl_1; int32_t swl_2; int32_t swl_3; int32_t swr_0; int32_t swr_1; int32_t swr_2; int32_t swr_3; } T; T t; Assembler assm(isolate, NULL, 0); // Test all combinations of LWL and vAddr. __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) ); __ lwl(t0, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t0, MemOperand(a0, offsetof(T, lwl_0)) ); __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) ); __ lwl(t1, MemOperand(a0, offsetof(T, mem_init) + 1) ); __ sw(t1, MemOperand(a0, offsetof(T, lwl_1)) ); __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) ); __ lwl(t2, MemOperand(a0, offsetof(T, mem_init) + 2) ); __ sw(t2, MemOperand(a0, offsetof(T, lwl_2)) ); __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) ); __ lwl(t3, MemOperand(a0, offsetof(T, mem_init) + 3) ); __ sw(t3, MemOperand(a0, offsetof(T, lwl_3)) ); // Test all combinations of LWR and vAddr. __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) ); __ lwr(t0, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t0, MemOperand(a0, offsetof(T, lwr_0)) ); __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) ); __ lwr(t1, MemOperand(a0, offsetof(T, mem_init) + 1) ); __ sw(t1, MemOperand(a0, offsetof(T, lwr_1)) ); __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) ); __ lwr(t2, MemOperand(a0, offsetof(T, mem_init) + 2) ); __ sw(t2, MemOperand(a0, offsetof(T, lwr_2)) ); __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) ); __ lwr(t3, MemOperand(a0, offsetof(T, mem_init) + 3) ); __ sw(t3, MemOperand(a0, offsetof(T, lwr_3)) ); // Test all combinations of SWL and vAddr. __ lw(t0, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t0, MemOperand(a0, offsetof(T, swl_0)) ); __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) ); __ swl(t0, MemOperand(a0, offsetof(T, swl_0)) ); __ lw(t1, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t1, MemOperand(a0, offsetof(T, swl_1)) ); __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) ); __ swl(t1, MemOperand(a0, offsetof(T, swl_1) + 1) ); __ lw(t2, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t2, MemOperand(a0, offsetof(T, swl_2)) ); __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) ); __ swl(t2, MemOperand(a0, offsetof(T, swl_2) + 2) ); __ lw(t3, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t3, MemOperand(a0, offsetof(T, swl_3)) ); __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) ); __ swl(t3, MemOperand(a0, offsetof(T, swl_3) + 3) ); // Test all combinations of SWR and vAddr. __ lw(t0, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t0, MemOperand(a0, offsetof(T, swr_0)) ); __ lw(t0, MemOperand(a0, offsetof(T, reg_init)) ); __ swr(t0, MemOperand(a0, offsetof(T, swr_0)) ); __ lw(t1, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t1, MemOperand(a0, offsetof(T, swr_1)) ); __ lw(t1, MemOperand(a0, offsetof(T, reg_init)) ); __ swr(t1, MemOperand(a0, offsetof(T, swr_1) + 1) ); __ lw(t2, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t2, MemOperand(a0, offsetof(T, swr_2)) ); __ lw(t2, MemOperand(a0, offsetof(T, reg_init)) ); __ swr(t2, MemOperand(a0, offsetof(T, swr_2) + 2) ); __ lw(t3, MemOperand(a0, offsetof(T, mem_init)) ); __ sw(t3, MemOperand(a0, offsetof(T, swr_3)) ); __ lw(t3, MemOperand(a0, offsetof(T, reg_init)) ); __ swr(t3, MemOperand(a0, offsetof(T, swr_3) + 3) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.reg_init = 0xaabbccdd; t.mem_init = 0x11223344; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); #if __BYTE_ORDER == __LITTLE_ENDIAN CHECK_EQ(static_cast(0x44bbccdd), t.lwl_0); CHECK_EQ(static_cast(0x3344ccdd), t.lwl_1); CHECK_EQ(static_cast(0x223344dd), t.lwl_2); CHECK_EQ(static_cast(0x11223344), t.lwl_3); CHECK_EQ(static_cast(0x11223344), t.lwr_0); CHECK_EQ(static_cast(0xaa112233), t.lwr_1); CHECK_EQ(static_cast(0xaabb1122), t.lwr_2); CHECK_EQ(static_cast(0xaabbcc11), t.lwr_3); CHECK_EQ(static_cast(0x112233aa), t.swl_0); CHECK_EQ(static_cast(0x1122aabb), t.swl_1); CHECK_EQ(static_cast(0x11aabbcc), t.swl_2); CHECK_EQ(static_cast(0xaabbccdd), t.swl_3); CHECK_EQ(static_cast(0xaabbccdd), t.swr_0); CHECK_EQ(static_cast(0xbbccdd44), t.swr_1); CHECK_EQ(static_cast(0xccdd3344), t.swr_2); CHECK_EQ(static_cast(0xdd223344), t.swr_3); #elif __BYTE_ORDER == __BIG_ENDIAN CHECK_EQ(static_cast(0x11223344), t.lwl_0); CHECK_EQ(static_cast(0x223344dd), t.lwl_1); CHECK_EQ(static_cast(0x3344ccdd), t.lwl_2); CHECK_EQ(static_cast(0x44bbccdd), t.lwl_3); CHECK_EQ(static_cast(0xaabbcc11), t.lwr_0); CHECK_EQ(static_cast(0xaabb1122), t.lwr_1); CHECK_EQ(static_cast(0xaa112233), t.lwr_2); CHECK_EQ(static_cast(0x11223344), t.lwr_3); CHECK_EQ(static_cast(0xaabbccdd), t.swl_0); CHECK_EQ(static_cast(0x11aabbcc), t.swl_1); CHECK_EQ(static_cast(0x1122aabb), t.swl_2); CHECK_EQ(static_cast(0x112233aa), t.swl_3); CHECK_EQ(static_cast(0xdd223344), t.swr_0); CHECK_EQ(static_cast(0xccdd3344), t.swr_1); CHECK_EQ(static_cast(0xbbccdd44), t.swr_2); CHECK_EQ(static_cast(0xaabbccdd), t.swr_3); #else #error Unknown endianness #endif } TEST(MIPS12) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t x; int32_t y; int32_t y1; int32_t y2; int32_t y3; int32_t y4; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ mov(t6, fp); // Save frame pointer. __ mov(fp, a0); // Access struct T by fp. __ lw(t0, MemOperand(a0, offsetof(T, y)) ); __ lw(t3, MemOperand(a0, offsetof(T, y4)) ); __ addu(t1, t0, t3); __ subu(t4, t0, t3); __ nop(); __ push(t0); // These instructions disappear after opt. __ Pop(); __ addu(t0, t0, t0); __ nop(); __ Pop(); // These instructions disappear after opt. __ push(t3); __ nop(); __ push(t3); // These instructions disappear after opt. __ pop(t3); __ nop(); __ push(t3); __ pop(t4); __ nop(); __ sw(t0, MemOperand(fp, offsetof(T, y)) ); __ lw(t0, MemOperand(fp, offsetof(T, y)) ); __ nop(); __ sw(t0, MemOperand(fp, offsetof(T, y)) ); __ lw(t1, MemOperand(fp, offsetof(T, y)) ); __ nop(); __ push(t1); __ lw(t1, MemOperand(fp, offsetof(T, y)) ); __ pop(t1); __ nop(); __ push(t1); __ lw(t2, MemOperand(fp, offsetof(T, y)) ); __ pop(t1); __ nop(); __ push(t1); __ lw(t2, MemOperand(fp, offsetof(T, y)) ); __ pop(t2); __ nop(); __ push(t2); __ lw(t2, MemOperand(fp, offsetof(T, y)) ); __ pop(t1); __ nop(); __ push(t1); __ lw(t2, MemOperand(fp, offsetof(T, y)) ); __ pop(t3); __ nop(); __ mov(fp, t6); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.x = 1; t.y = 2; t.y1 = 3; t.y2 = 4; t.y3 = 0XBABA; t.y4 = 0xDEDA; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(3, t.y1); } TEST(MIPS13) { // Test Cvt_d_uw and Trunc_uw_d macros. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double cvt_big_out; double cvt_small_out; uint32_t trunc_big_out; uint32_t trunc_small_out; uint32_t cvt_big_in; uint32_t cvt_small_in; } T; T t; MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ sw(t0, MemOperand(a0, offsetof(T, cvt_small_in))); __ Cvt_d_uw(f10, t0, f4); __ sdc1(f10, MemOperand(a0, offsetof(T, cvt_small_out))); __ Trunc_uw_d(f10, f10, f4); __ swc1(f10, MemOperand(a0, offsetof(T, trunc_small_out))); __ sw(t0, MemOperand(a0, offsetof(T, cvt_big_in))); __ Cvt_d_uw(f8, t0, f4); __ sdc1(f8, MemOperand(a0, offsetof(T, cvt_big_out))); __ Trunc_uw_d(f8, f8, f4); __ swc1(f8, MemOperand(a0, offsetof(T, trunc_big_out))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.cvt_big_in = 0xFFFFFFFF; t.cvt_small_in = 333; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(t.cvt_big_out, static_cast(t.cvt_big_in)); CHECK_EQ(t.cvt_small_out, static_cast(t.cvt_small_in)); CHECK_EQ(static_cast(t.trunc_big_out), static_cast(t.cvt_big_in)); CHECK_EQ(static_cast(t.trunc_small_out), static_cast(t.cvt_small_in)); } TEST(MIPS14) { // Test round, floor, ceil, trunc, cvt. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); #define ROUND_STRUCT_ELEMENT(x) \ uint32_t x##_isNaN2008; \ int32_t x##_up_out; \ int32_t x##_down_out; \ int32_t neg_##x##_up_out; \ int32_t neg_##x##_down_out; \ uint32_t x##_err1_out; \ uint32_t x##_err2_out; \ uint32_t x##_err3_out; \ uint32_t x##_err4_out; \ int32_t x##_invalid_result; typedef struct { double round_up_in; double round_down_in; double neg_round_up_in; double neg_round_down_in; double err1_in; double err2_in; double err3_in; double err4_in; ROUND_STRUCT_ELEMENT(round) ROUND_STRUCT_ELEMENT(floor) ROUND_STRUCT_ELEMENT(ceil) ROUND_STRUCT_ELEMENT(trunc) ROUND_STRUCT_ELEMENT(cvt) } T; T t; #undef ROUND_STRUCT_ELEMENT MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); #define RUN_ROUND_TEST(x) \ __ cfc1(t0, FCSR);\ __ sw(t0, MemOperand(a0, offsetof(T, x##_isNaN2008))); \ __ ldc1(f0, MemOperand(a0, offsetof(T, round_up_in))); \ __ x##_w_d(f0, f0); \ __ swc1(f0, MemOperand(a0, offsetof(T, x##_up_out))); \ \ __ ldc1(f0, MemOperand(a0, offsetof(T, round_down_in))); \ __ x##_w_d(f0, f0); \ __ swc1(f0, MemOperand(a0, offsetof(T, x##_down_out))); \ \ __ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_up_in))); \ __ x##_w_d(f0, f0); \ __ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_up_out))); \ \ __ ldc1(f0, MemOperand(a0, offsetof(T, neg_round_down_in))); \ __ x##_w_d(f0, f0); \ __ swc1(f0, MemOperand(a0, offsetof(T, neg_##x##_down_out))); \ \ __ ldc1(f0, MemOperand(a0, offsetof(T, err1_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ sw(a2, MemOperand(a0, offsetof(T, x##_err1_out))); \ \ __ ldc1(f0, MemOperand(a0, offsetof(T, err2_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ sw(a2, MemOperand(a0, offsetof(T, x##_err2_out))); \ \ __ ldc1(f0, MemOperand(a0, offsetof(T, err3_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ sw(a2, MemOperand(a0, offsetof(T, x##_err3_out))); \ \ __ ldc1(f0, MemOperand(a0, offsetof(T, err4_in))); \ __ ctc1(zero_reg, FCSR); \ __ x##_w_d(f0, f0); \ __ cfc1(a2, FCSR); \ __ sw(a2, MemOperand(a0, offsetof(T, x##_err4_out))); \ __ swc1(f0, MemOperand(a0, offsetof(T, x##_invalid_result))); RUN_ROUND_TEST(round) RUN_ROUND_TEST(floor) RUN_ROUND_TEST(ceil) RUN_ROUND_TEST(trunc) RUN_ROUND_TEST(cvt) // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.round_up_in = 123.51; t.round_down_in = 123.49; t.neg_round_up_in = -123.5; t.neg_round_down_in = -123.49; t.err1_in = 123.51; t.err2_in = 1; t.err3_in = static_cast(1) + 0xFFFFFFFF; t.err4_in = NAN; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); #define GET_FPU_ERR(x) (static_cast(x & kFCSRFlagMask)) #define CHECK_NAN2008(x) (x & kFCSRNaN2008FlagMask) #define CHECK_ROUND_RESULT(type) \ CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \ CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \ CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \ CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \ if (CHECK_NAN2008(t.type##_isNaN2008) && kArchVariant == kMips32r6) {\ CHECK_EQ(static_cast(0), t.type##_invalid_result);\ } else {\ CHECK_EQ(static_cast(kFPUInvalidResult), t.type##_invalid_result);\ } CHECK_ROUND_RESULT(round); CHECK_ROUND_RESULT(floor); CHECK_ROUND_RESULT(ceil); CHECK_ROUND_RESULT(cvt); } TEST(MIPS15) { // Test chaining of label usages within instructions (issue 1644). CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, NULL, 0); Label target; __ beq(v0, v1, &target); __ nop(); __ bne(v0, v1, &target); __ nop(); __ bind(&target); __ nop(); } // ----------------------mips32r6 specific tests---------------------- TEST(seleqz_selnez) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { int a; int b; int c; int d; double e; double f; double g; double h; float i; float j; float k; float l; } Test; Test test; // Integer part of test. __ addiu(t1, zero_reg, 1); // t1 = 1 __ seleqz(t3, t1, zero_reg); // t3 = 1 __ sw(t3, MemOperand(a0, offsetof(Test, a))); // a = 1 __ seleqz(t2, t1, t1); // t2 = 0 __ sw(t2, MemOperand(a0, offsetof(Test, b))); // b = 0 __ selnez(t3, t1, zero_reg); // t3 = 1; __ sw(t3, MemOperand(a0, offsetof(Test, c))); // c = 0 __ selnez(t3, t1, t1); // t3 = 1 __ sw(t3, MemOperand(a0, offsetof(Test, d))); // d = 1 // Floating point part of test. __ ldc1(f0, MemOperand(a0, offsetof(Test, e)) ); // src __ ldc1(f2, MemOperand(a0, offsetof(Test, f)) ); // test __ lwc1(f8, MemOperand(a0, offsetof(Test, i)) ); // src __ lwc1(f10, MemOperand(a0, offsetof(Test, j)) ); // test __ seleqz_d(f4, f0, f2); __ selnez_d(f6, f0, f2); __ seleqz_s(f12, f8, f10); __ selnez_s(f14, f8, f10); __ sdc1(f4, MemOperand(a0, offsetof(Test, g)) ); // src __ sdc1(f6, MemOperand(a0, offsetof(Test, h)) ); // src __ swc1(f12, MemOperand(a0, offsetof(Test, k)) ); // src __ swc1(f14, MemOperand(a0, offsetof(Test, l)) ); // src __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, 1); CHECK_EQ(test.b, 0); CHECK_EQ(test.c, 0); CHECK_EQ(test.d, 1); const int test_size = 3; const int input_size = 5; double inputs_D[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double outputs_D[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9, 18446744073709551616.0, 18446744073709555712.0}; float inputs_S[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float outputs_S[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8, 18446744073709551616.0, 18446746272732807168.0}; for (int j=0; j < test_size; j+=2) { for (int i=0; i < input_size; i++) { test.e = inputs_D[i]; test.f = tests_D[j]; test.i = inputs_S[i]; test.j = tests_S[j]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.g, outputs_D[i]); CHECK_EQ(test.h, 0); CHECK_EQ(test.k, outputs_S[i]); CHECK_EQ(test.l, 0); test.f = tests_D[j+1]; test.j = tests_S[j+1]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.g, 0); CHECK_EQ(test.h, outputs_D[i]); CHECK_EQ(test.k, 0); CHECK_EQ(test.l, outputs_S[i]); } } } } TEST(min_max) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; double c; double d; float e; float f; float g; float h; } TestFloat; TestFloat test; const double double_nan = std::numeric_limits::quiet_NaN(); const float float_nan = std::numeric_limits::quiet_NaN(); const int kTableLength = 5; double inputsa[kTableLength] = {2.0, 3.0, double_nan, 3.0, double_nan}; double inputsb[kTableLength] = {3.0, 2.0, 3.0, double_nan, double_nan}; double outputsdmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, double_nan}; double outputsdmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, double_nan}; float inputse[kTableLength] = {2.0, 3.0, float_nan, 3.0, float_nan}; float inputsf[kTableLength] = {3.0, 2.0, 3.0, float_nan, float_nan}; float outputsfmin[kTableLength] = {2.0, 2.0, 3.0, 3.0, float_nan}; float outputsfmax[kTableLength] = {3.0, 3.0, 3.0, 3.0, float_nan}; __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, e))); __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, f))); __ min_d(f10, f4, f8); __ max_d(f12, f4, f8); __ min_s(f14, f2, f6); __ max_s(f16, f2, f6); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, d))); __ swc1(f14, MemOperand(a0, offsetof(TestFloat, g))); __ swc1(f16, MemOperand(a0, offsetof(TestFloat, h))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.e = inputse[i]; test.f = inputsf[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if (i < kTableLength - 1) { CHECK_EQ(test.c, outputsdmin[i]); CHECK_EQ(test.d, outputsdmax[i]); CHECK_EQ(test.g, outputsfmin[i]); CHECK_EQ(test.h, outputsfmax[i]); } else { CHECK(std::isnan(test.c)); CHECK(std::isnan(test.d)); CHECK(std::isnan(test.g)); CHECK(std::isnan(test.h)); } } } } TEST(rint_d) { if (IsMipsArchVariant(kMips32r6)) { const int kTableLength = 30; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; int fcsr; }TestFloat; TestFloat test; double inputs[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E+308, 6.27463370218383111104242366943E-307, 309485009821345068724781056.89, 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RN[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RZ[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RP[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 1, 309485009821345068724781057.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; double outputs_RM[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147, 1.7976931348623157E308, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) ); __ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) ); __ cfc1(t1, FCSR); __ ctc1(t0, FCSR); __ rint_d(f8, f4); __ sdc1(f8, MemOperand(a0, offsetof(TestFloat, b)) ); __ ctc1(t1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs[j][i]); } } } } TEST(sel) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { double dd; double ds; double dt; float fd; float fs; float ft; } Test; Test test; __ ldc1(f0, MemOperand(a0, offsetof(Test, dd)) ); // test __ ldc1(f2, MemOperand(a0, offsetof(Test, ds)) ); // src1 __ ldc1(f4, MemOperand(a0, offsetof(Test, dt)) ); // src2 __ lwc1(f6, MemOperand(a0, offsetof(Test, fd)) ); // test __ lwc1(f8, MemOperand(a0, offsetof(Test, fs)) ); // src1 __ lwc1(f10, MemOperand(a0, offsetof(Test, ft)) ); // src2 __ sel_d(f0, f2, f4); __ sel_s(f6, f8, f10); __ sdc1(f0, MemOperand(a0, offsetof(Test, dd)) ); __ swc1(f6, MemOperand(a0, offsetof(Test, fd)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); const int test_size = 3; const int input_size = 5; double inputs_dt[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; double inputs_ds[input_size] = {0.1, 69.88, -91.325, 18446744073709551625.0, -18446744073709551625.0}; float inputs_ft[input_size] = {0.0, 65.2, -70.32, 18446744073709551621.0, -18446744073709551621.0}; float inputs_fs[input_size] = {0.1, 69.88, -91.325, 18446744073709551625.0, -18446744073709551625.0}; double tests_D[test_size*2] = {2.8, 2.9, -2.8, -2.9, 18446744073709551616.0, 18446744073709555712.0}; float tests_S[test_size*2] = {2.9, 2.8, -2.9, -2.8, 18446744073709551616.0, 18446746272732807168.0}; for (int j=0; j < test_size; j+=2) { for (int i=0; i < input_size; i++) { test.dt = inputs_dt[i]; test.dd = tests_D[j]; test.ds = inputs_ds[i]; test.ft = inputs_ft[i]; test.fd = tests_S[j]; test.fs = inputs_fs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dd, inputs_ds[i]); CHECK_EQ(test.fd, inputs_fs[i]); test.dd = tests_D[j+1]; test.fd = tests_S[j+1]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dd, inputs_dt[i]); CHECK_EQ(test.fd, inputs_ft[i]); } } } } TEST(rint_s) { if (IsMipsArchVariant(kMips32r6)) { const int kTableLength = 30; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; int fcsr; }TestFloat; TestFloat test; float inputs[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E+38, 6.27463370218383111104242366943E-37, 309485009821345068724781056.89, 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RN[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RZ[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RP[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 1, 309485009821345068724781057.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; float outputs_RM[kTableLength] = {18446744073709551617.0, 4503599627370496.0, -4503599627370496.0, 1.26782468584154733584017312973E30, 1.44860108245951772690707170478E37, 1.7976931348623157E38, 0, 309485009821345068724781057.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 37778931862957161709568.0, 37778931862957161709569.0, 37778931862957161709580.0, 37778931862957161709581.0, 37778931862957161709582.0, 37778931862957161709583.0, 37778931862957161709584.0, 37778931862957161709585.0, 37778931862957161709586.0, 37778931862957161709587.0}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; float* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, a)) ); __ lw(t0, MemOperand(a0, offsetof(TestFloat, fcsr)) ); __ cfc1(t1, FCSR); __ ctc1(t0, FCSR); __ rint_s(f8, f4); __ swc1(f8, MemOperand(a0, offsetof(TestFloat, b)) ); __ ctc1(t1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs[j][i]); } } } } TEST(Cvt_d_uw) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_struct { unsigned input; uint64_t output; } TestStruct; unsigned inputs[] = { 0x0, 0xffffffff, 0x80000000, 0x7fffffff }; uint64_t outputs[] = { 0x0, 0x41efffffffe00000, 0x41e0000000000000, 0x41dfffffffc00000 }; int kTableLength = sizeof(inputs)/sizeof(inputs[0]); TestStruct test; __ lw(t1, MemOperand(a0, offsetof(TestStruct, input))); __ Cvt_d_uw(f4, t1, f6); __ sdc1(f4, MemOperand(a0, offsetof(TestStruct, output))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.input = inputs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); // Check outputs CHECK_EQ(test.output, outputs[i]); } } TEST(mina_maxa) { if (IsMipsArchVariant(kMips32r6)) { const int kTableLength = 15; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double double_nan = std::numeric_limits::quiet_NaN(); const float float_nan = std::numeric_limits::quiet_NaN(); typedef struct test_float { double a; double b; double resd; double resd1; float c; float d; float resf; float resf1; }TestFloat; TestFloat test; double inputsa[kTableLength] = { 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, double_nan, 3.0, double_nan }; double inputsb[kTableLength] = { 4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, 3.0, double_nan, double_nan }; double resd[kTableLength] = { 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, double_nan }; double resd1[kTableLength] = { 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, 3.0, 3.0, double_nan }; float inputsc[kTableLength] = { 5.3, 4.8, 6.1, 9.8, 9.8, 9.8, -10.0, -8.9, -9.8, -10.0, -8.9, -9.8, float_nan, 3.0, float_nan }; float inputsd[kTableLength] = { 4.8, 5.3, 6.1, -10.0, -8.9, -9.8, 9.8, 9.8, 9.8, -9.8, -11.2, -9.8, 3.0, float_nan, float_nan }; float resf[kTableLength] = { 4.8, 4.8, 6.1, 9.8, -8.9, -9.8, 9.8, -8.9, -9.8, -9.8, -8.9, -9.8, 3.0, 3.0, float_nan }; float resf1[kTableLength] = { 5.3, 5.3, 6.1, -10.0, 9.8, 9.8, -10.0, 9.8, 9.8, -10.0, -11.2, -9.8, 3.0, 3.0, float_nan }; __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) ); __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, b)) ); __ lwc1(f8, MemOperand(a0, offsetof(TestFloat, c)) ); __ lwc1(f10, MemOperand(a0, offsetof(TestFloat, d)) ); __ mina_d(f6, f2, f4); __ mina_s(f12, f8, f10); __ maxa_d(f14, f2, f4); __ maxa_s(f16, f8, f10); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, resf)) ); __ sdc1(f6, MemOperand(a0, offsetof(TestFloat, resd)) ); __ swc1(f16, MemOperand(a0, offsetof(TestFloat, resf1)) ); __ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resd1)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputsa[i]; test.b = inputsb[i]; test.c = inputsc[i]; test.d = inputsd[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if (i < kTableLength - 1) { CHECK_EQ(test.resd, resd[i]); CHECK_EQ(test.resf, resf[i]); CHECK_EQ(test.resd1, resd1[i]); CHECK_EQ(test.resf1, resf1[i]); } else { CHECK(std::isnan(test.resd)); CHECK(std::isnan(test.resf)); CHECK(std::isnan(test.resd1)); CHECK(std::isnan(test.resf1)); } } } } // ----------------------mips32r2 specific tests---------------------- TEST(trunc_l) { if (IsMipsArchVariant(kMips32r2) && IsFp64Mode()) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; // a trunc result int64_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ trunc_l_d(f8, f4); __ trunc_l_s(f10, f6); __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } } TEST(movz_movn) { if (IsMipsArchVariant(kMips32r2)) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { int64_t rt; double a; double b; double bold; double b1; double bold1; float c; float d; float dold; float d1; float dold1; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) ); __ lw(t0, MemOperand(a0, offsetof(TestFloat, rt)) ); __ Move(f12, 0.0); __ Move(f10, 0.0); __ Move(f16, 0.0); __ Move(f14, 0.0); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, bold)) ); __ swc1(f10, MemOperand(a0, offsetof(TestFloat, dold)) ); __ sdc1(f16, MemOperand(a0, offsetof(TestFloat, bold1)) ); __ swc1(f14, MemOperand(a0, offsetof(TestFloat, dold1)) ); __ movz_s(f10, f6, t0); __ movz_d(f12, f2, t0); __ movn_s(f14, f6, t0); __ movn_d(f16, f2, t0); __ swc1(f10, MemOperand(a0, offsetof(TestFloat, d)) ); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, b)) ); __ swc1(f14, MemOperand(a0, offsetof(TestFloat, d1)) ); __ sdc1(f16, MemOperand(a0, offsetof(TestFloat, b1)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.c = inputs_S[i]; test.rt = 1; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, test.bold); CHECK_EQ(test.d, test.dold); CHECK_EQ(test.b1, outputs_D[i]); CHECK_EQ(test.d1, outputs_S[i]); test.rt = 0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs_D[i]); CHECK_EQ(test.d, outputs_S[i]); CHECK_EQ(test.b1, test.bold1); CHECK_EQ(test.d1, test.dold1); } } } TEST(movt_movd) { if (IsMipsArchVariant(kMips32r2)) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); typedef struct test_float { double srcd; double dstd; double dstdold; double dstd1; double dstdold1; float srcf; float dstf; float dstfold; float dstf1; float dstfold1; int32_t cc; int32_t fcsr; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 20.8, -2.9 }; double inputs_S[kTableLength] = { 4.88, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.88, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 20.8, -2.9 }; int condition_flags[8] = {0, 1, 2, 3, 4, 5, 6, 7}; for (int i = 0; i < kTableLength; i++) { test.srcd = inputs_D[i]; test.srcf = inputs_S[i]; for (int j = 0; j< 8; j++) { test.cc = condition_flags[j]; if (test.cc == 0) { test.fcsr = 1 << 23; } else { test.fcsr = 1 << (24+condition_flags[j]); } HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ ldc1(f2, MemOperand(a0, offsetof(TestFloat, srcd)) ); __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, srcf)) ); __ lw(t1, MemOperand(a0, offsetof(TestFloat, fcsr)) ); __ cfc1(t0, FCSR); __ ctc1(t1, FCSR); __ li(t2, 0x0); __ mtc1(t2, f12); __ mtc1(t2, f10); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold)) ); __ movt_s(f12, f4, test.cc); __ movt_d(f10, f2, test.cc); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf)) ); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd)) ); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstdold1)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstfold1)) ); __ movf_s(f12, f4, test.cc); __ movf_d(f10, f2, test.cc); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, dstf1)) ); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, dstd1)) ); __ ctc1(t0, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dstf, outputs_S[i]); CHECK_EQ(test.dstd, outputs_D[i]); CHECK_EQ(test.dstf1, test.dstfold1); CHECK_EQ(test.dstd1, test.dstdold1); test.fcsr = 0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dstf, test.dstfold); CHECK_EQ(test.dstd, test.dstdold); CHECK_EQ(test.dstf1, outputs_S[i]); CHECK_EQ(test.dstd1, outputs_D[i]); } } } } // ----------------------tests for all archs-------------------------- TEST(cvt_w_d) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; int32_t b; int32_t fcsr; }Test; const int kTableLength = 24; double inputs[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, 2147483653.0 }; double outputs_RN[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RZ[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RP[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; double outputs_RM[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483637.0, 2147483638.0, 2147483639.0, 2147483640.0, 2147483641.0, 2147483642.0, 2147483643.0, 2147483644.0, 2147483645.0, 2147483646.0, 2147483647.0, kFPUInvalidResult}; int fcsr_inputs[4] = {kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf}; double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM}; __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lw(t0, MemOperand(a0, offsetof(Test, fcsr)) ); __ cfc1(t1, FCSR); __ ctc1(t0, FCSR); __ cvt_w_d(f8, f4); __ swc1(f8, MemOperand(a0, offsetof(Test, b)) ); __ ctc1(t1, FCSR); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int j = 0; j < 4; j++) { test.fcsr = fcsr_inputs[j]; for (int i = 0; i < kTableLength; i++) { test.a = inputs[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs[j][i]); } } } TEST(trunc_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a trunc result int32_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ trunc_w_d(f8, f4); __ trunc_w_s(f10, f6); __ swc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ swc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(round_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a trunc result int32_t d; // b trunc result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ round_w_d(f8, f4); __ round_w_s(f10, f6); __ swc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ swc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(round_l) { if (IsFp64Mode()) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 3.0, 2.0, 3.0, 4.0, 4.0, -2.0, -3.0, -2.0, -3.0, -4.0, -4.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ round_l_d(f8, f4); __ round_l_s(f10, f6); __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } } TEST(sub) { const int kTableLength = 12; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; float resultS; double c; double d; double resultD; }TestFloat; TestFloat test; double inputfs_D[kTableLength] = { 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 }; double inputft_D[kTableLength] = { 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 }; double outputs_D[kTableLength] = { 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 }; float inputfs_S[kTableLength] = { 5.3, 4.8, 2.9, -5.3, -4.8, -2.9, 5.3, 4.8, 2.9, -5.3, -4.8, -2.9 }; float inputft_S[kTableLength] = { 4.8, 5.3, 2.9, 4.8, 5.3, 2.9, -4.8, -5.3, -2.9, -4.8, -5.3, -2.9 }; float outputs_S[kTableLength] = { 0.5, -0.5, 0.0, -10.1, -10.1, -5.8, 10.1, 10.1, 5.8, -0.5, 0.5, 0.0 }; __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) ); __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) ); __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) ); __ ldc1(f10, MemOperand(a0, offsetof(TestFloat, d)) ); __ sub_s(f6, f2, f4); __ sub_d(f12, f8, f10); __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) ); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputfs_S[i]; test.b = inputft_S[i]; test.c = inputfs_D[i]; test.d = inputft_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); } } TEST(sqrt_rsqrt_recip) { const int kTableLength = 4; const double deltaDouble = 2E-15; const float deltaFloat = 2E-7; const float sqrt2_s = sqrt(2); const double sqrt2_d = sqrt(2); CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float resultS; float resultS1; float resultS2; double c; double resultD; double resultD1; double resultD2; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 0.0L, 4.0L, 2.0L, 4e-28L }; double outputs_D[kTableLength] = { 0.0L, 2.0L, sqrt2_d, 2e-14L }; float inputs_S[kTableLength] = { 0.0, 4.0, 2.0, 4e-28 }; float outputs_S[kTableLength] = { 0.0, 2.0, sqrt2_s, 2e-14 }; __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) ); __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) ); __ sqrt_s(f6, f2); __ sqrt_d(f12, f8); if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { __ rsqrt_d(f14, f8); __ rsqrt_s(f16, f2); __ recip_d(f18, f8); __ recip_s(f4, f2); } __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) ); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) ); if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { __ swc1(f16, MemOperand(a0, offsetof(TestFloat, resultS1)) ); __ sdc1(f14, MemOperand(a0, offsetof(TestFloat, resultD1)) ); __ swc1(f4, MemOperand(a0, offsetof(TestFloat, resultS2)) ); __ sdc1(f18, MemOperand(a0, offsetof(TestFloat, resultD2)) ); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { float f1; double d1; test.a = inputs_S[i]; test.c = inputs_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); if (IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) { if (i != 0) { f1 = test.resultS1 - 1.0F/outputs_S[i]; f1 = (f1 < 0) ? f1 : -f1; CHECK(f1 <= deltaFloat); d1 = test.resultD1 - 1.0L/outputs_D[i]; d1 = (d1 < 0) ? d1 : -d1; CHECK(d1 <= deltaDouble); f1 = test.resultS2 - 1.0F/inputs_S[i]; f1 = (f1 < 0) ? f1 : -f1; CHECK(f1 <= deltaFloat); d1 = test.resultD2 - 1.0L/inputs_D[i]; d1 = (d1 < 0) ? d1 : -d1; CHECK(d1 <= deltaDouble); } else { CHECK_EQ(test.resultS1, 1.0F/outputs_S[i]); CHECK_EQ(test.resultD1, 1.0L/outputs_D[i]); CHECK_EQ(test.resultS2, 1.0F/inputs_S[i]); CHECK_EQ(test.resultD2, 1.0L/inputs_D[i]); } } } } TEST(neg) { const int kTableLength = 3; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float resultS; double c; double resultD; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 0.0, 4.0, -2.0 }; double outputs_D[kTableLength] = { 0.0, -4.0, 2.0 }; float inputs_S[kTableLength] = { 0.0, 4.0, -2.0 }; float outputs_S[kTableLength] = { 0.0, -4.0, 2.0 }; __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) ); __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, c)) ); __ neg_s(f6, f2); __ neg_d(f12, f8); __ swc1(f6, MemOperand(a0, offsetof(TestFloat, resultS)) ); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_S[i]; test.c = inputs_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, outputs_S[i]); CHECK_EQ(test.resultD, outputs_D[i]); } } TEST(mul) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float a; float b; float resultS; double c; double d; double resultD; }TestFloat; TestFloat test; double inputfs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputft_D[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float inputfs_S[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; float inputft_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; __ lwc1(f2, MemOperand(a0, offsetof(TestFloat, a)) ); __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b)) ); __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, c)) ); __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, d)) ); __ mul_s(f10, f2, f4); __ mul_d(f12, f6, f8); __ swc1(f10, MemOperand(a0, offsetof(TestFloat, resultS)) ); __ sdc1(f12, MemOperand(a0, offsetof(TestFloat, resultD)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputfs_S[i]; test.b = inputft_S[i]; test.c = inputfs_D[i]; test.d = inputft_D[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.resultS, inputfs_S[i]*inputft_S[i]); CHECK_EQ(test.resultD, inputfs_D[i]*inputft_D[i]); } } TEST(mov) { const int kTableLength = 4; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; float c; float d; }TestFloat; TestFloat test; double inputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; double inputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; float outputs_S[kTableLength] = { 4.8, 4.8, -4.8, -0.29 }; double outputs_D[kTableLength] = { 5.3, -5.3, 5.3, -2.9 }; __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(TestFloat, c)) ); __ mov_s(f8, f6); __ mov_d(f10, f4); __ swc1(f8, MemOperand(a0, offsetof(TestFloat, d)) ); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, b)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.c = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.b, outputs_D[i]); CHECK_EQ(test.d, outputs_S[i]); } } TEST(floor_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a floor result int32_t d; // b floor result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ floor_w_d(f8, f4); __ floor_w_s(f10, f6); __ swc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ swc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(floor_l) { if (IsFp64Mode()) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, -3.0, -3.0, -3.0, -4.0, -4.0, -4.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ floor_l_d(f8, f4); __ floor_l_s(f10, f6); __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } } TEST(ceil_w) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { uint32_t isNaN2008; double a; float b; int32_t c; // a floor result int32_t d; // b floor result }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, kFPUInvalidResult, kFPUInvalidResult}; double outputsNaN2008[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, kFPUInvalidResult, 0, kFPUInvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ ceil_w_d(f8, f4); __ ceil_w_s(f10, f6); __ swc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ swc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } TEST(ceil_l) { if (IsFp64Mode()) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); const double dFPU64InvalidResult = static_cast(kFPU64InvalidResult); typedef struct test_float { uint32_t isNaN2008; double a; float b; int64_t c; int64_t d; }Test; const int kTableLength = 15; double inputs_D[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; float inputs_S[kTableLength] = { 2.1, 2.6, 2.5, 3.1, 3.6, 3.5, -2.1, -2.6, -2.5, -3.1, -3.6, -3.5, 2147483648.0, std::numeric_limits::quiet_NaN(), std::numeric_limits::infinity() }; double outputs[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, dFPU64InvalidResult, dFPU64InvalidResult}; double outputsNaN2008[kTableLength] = { 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, -2.0, -2.0, -2.0, -3.0, -3.0, -3.0, 2147483648.0, 0, dFPU64InvalidResult}; __ cfc1(t1, FCSR); __ sw(t1, MemOperand(a0, offsetof(Test, isNaN2008))); __ ldc1(f4, MemOperand(a0, offsetof(Test, a)) ); __ lwc1(f6, MemOperand(a0, offsetof(Test, b)) ); __ ceil_l_d(f8, f4); __ ceil_l_s(f10, f6); __ sdc1(f8, MemOperand(a0, offsetof(Test, c)) ); __ sdc1(f10, MemOperand(a0, offsetof(Test, d)) ); __ jr(ra); __ nop(); Test test; CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kTableLength; i++) { test.a = inputs_D[i]; test.b = inputs_S[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); if ((test.isNaN2008 & kFCSRNaN2008FlagMask) && kArchVariant == kMips32r6) { CHECK_EQ(test.c, outputsNaN2008[i]); } else { CHECK_EQ(test.c, outputs[i]); } CHECK_EQ(test.d, test.c); } } } TEST(jump_tables1) { // Test jump tables with forward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; __ addiu(sp, sp, -4); __ sw(ra, MemOperand(sp)); Label done; { __ BlockTrampolinePoolFor(kNumCases + 7); PredictableCodeSizeScope predictable( &assm, (kNumCases + 7) * Assembler::kInstrSize); Label here; __ bal(&here); __ nop(); __ bind(&here); __ sll(at, a0, 2); __ addu(at, at, ra); __ lw(at, MemOperand(at, 5 * Assembler::kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(v0, (values[i] >> 16) & 0xffff); __ ori(v0, v0, values[i] & 0xffff); __ b(&done); __ nop(); } __ bind(&done); __ lw(ra, MemOperand(sp)); __ addiu(sp, sp, 4); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables2) { // Test jump tables with backward jumps. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); const int kNumCases = 512; int values[kNumCases]; isolate->random_number_generator()->NextBytes(values, sizeof(values)); Label labels[kNumCases]; __ addiu(sp, sp, -4); __ sw(ra, MemOperand(sp)); Label done, dispatch; __ b(&dispatch); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); __ lui(v0, (values[i] >> 16) & 0xffff); __ ori(v0, v0, values[i] & 0xffff); __ b(&done); __ nop(); } __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases + 7); PredictableCodeSizeScope predictable( &assm, (kNumCases + 7) * Assembler::kInstrSize); Label here; __ bal(&here); __ nop(); __ bind(&here); __ sll(at, a0, 2); __ addu(at, at, ra); __ lw(at, MemOperand(at, 5 * Assembler::kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ lw(ra, MemOperand(sp)); __ addiu(sp, sp, 4); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { int res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0)); ::printf("f(%d) = %d\n", i, res); CHECK_EQ(values[i], res); } } TEST(jump_tables3) { // Test jump tables with backward jumps and embedded heap objects. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); Assembler assm(isolate, nullptr, 0); const int kNumCases = 256; Handle values[kNumCases]; for (int i = 0; i < kNumCases; ++i) { double value = isolate->random_number_generator()->NextDouble(); values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED); } Label labels[kNumCases]; Object* obj; int32_t imm32; __ addiu(sp, sp, -4); __ sw(ra, MemOperand(sp)); Label done, dispatch; __ b(&dispatch); for (int i = 0; i < kNumCases; ++i) { __ bind(&labels[i]); obj = *values[i]; imm32 = reinterpret_cast(obj); __ lui(v0, (imm32 >> 16) & 0xffff); __ ori(v0, v0, imm32 & 0xffff); __ b(&done); __ nop(); } __ bind(&dispatch); { __ BlockTrampolinePoolFor(kNumCases + 7); PredictableCodeSizeScope predictable( &assm, (kNumCases + 7) * Assembler::kInstrSize); Label here; __ bal(&here); __ nop(); __ bind(&here); __ sll(at, a0, 2); __ addu(at, at, ra); __ lw(at, MemOperand(at, 5 * Assembler::kInstrSize)); __ jr(at); __ nop(); for (int i = 0; i < kNumCases; ++i) { __ dd(&labels[i]); } } __ bind(&done); __ lw(ra, MemOperand(sp)); __ addiu(sp, sp, 4); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); #ifdef OBJECT_PRINT code->Print(std::cout); #endif F1 f = FUNCTION_CAST(code->entry()); for (int i = 0; i < kNumCases; ++i) { Handle result( CALL_GENERATED_CODE(isolate, f, i, 0, 0, 0, 0), isolate); #ifdef OBJECT_PRINT ::printf("f(%d) = ", i); result->Print(std::cout); ::printf("\n"); #endif CHECK(values[i].is_identical_to(result)); } } TEST(BITSWAP) { // Test BITSWAP if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { int32_t r1; int32_t r2; int32_t r3; int32_t r4; } T; T t; Assembler assm(isolate, NULL, 0); __ lw(a2, MemOperand(a0, offsetof(T, r1))); __ nop(); __ bitswap(a1, a2); __ sw(a1, MemOperand(a0, offsetof(T, r1))); __ lw(a2, MemOperand(a0, offsetof(T, r2))); __ nop(); __ bitswap(a1, a2); __ sw(a1, MemOperand(a0, offsetof(T, r2))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.r1 = 0x781A15C3; t.r2 = 0x8B71FCDE; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); CHECK_EQ(static_cast(0x1E58A8C3), t.r1); CHECK_EQ(static_cast(0xD18E3F7B), t.r2); } } TEST(class_fmt) { if (IsMipsArchVariant(kMips32r6)) { // Test CLASS.fmt instruction. CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); typedef struct { double dSignalingNan; double dQuietNan; double dNegInf; double dNegNorm; double dNegSubnorm; double dNegZero; double dPosInf; double dPosNorm; double dPosSubnorm; double dPosZero; float fSignalingNan; float fQuietNan; float fNegInf; float fNegNorm; float fNegSubnorm; float fNegZero; float fPosInf; float fPosNorm; float fPosSubnorm; float fPosZero; } T; T t; // Create a function that accepts &t, and loads, manipulates, and stores // the doubles t.a ... t.f. MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ ldc1(f4, MemOperand(a0, offsetof(T, dSignalingNan))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dSignalingNan))); __ ldc1(f4, MemOperand(a0, offsetof(T, dQuietNan))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dQuietNan))); __ ldc1(f4, MemOperand(a0, offsetof(T, dNegInf))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dNegInf))); __ ldc1(f4, MemOperand(a0, offsetof(T, dNegNorm))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dNegNorm))); __ ldc1(f4, MemOperand(a0, offsetof(T, dNegSubnorm))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dNegSubnorm))); __ ldc1(f4, MemOperand(a0, offsetof(T, dNegZero))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dNegZero))); __ ldc1(f4, MemOperand(a0, offsetof(T, dPosInf))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dPosInf))); __ ldc1(f4, MemOperand(a0, offsetof(T, dPosNorm))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dPosNorm))); __ ldc1(f4, MemOperand(a0, offsetof(T, dPosSubnorm))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dPosSubnorm))); __ ldc1(f4, MemOperand(a0, offsetof(T, dPosZero))); __ class_d(f6, f4); __ sdc1(f6, MemOperand(a0, offsetof(T, dPosZero))); // Testing instruction CLASS.S __ lwc1(f4, MemOperand(a0, offsetof(T, fSignalingNan))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fSignalingNan))); __ lwc1(f4, MemOperand(a0, offsetof(T, fQuietNan))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fQuietNan))); __ lwc1(f4, MemOperand(a0, offsetof(T, fNegInf))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fNegInf))); __ lwc1(f4, MemOperand(a0, offsetof(T, fNegNorm))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fNegNorm))); __ lwc1(f4, MemOperand(a0, offsetof(T, fNegSubnorm))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fNegSubnorm))); __ lwc1(f4, MemOperand(a0, offsetof(T, fNegZero))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fNegZero))); __ lwc1(f4, MemOperand(a0, offsetof(T, fPosInf))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fPosInf))); __ lwc1(f4, MemOperand(a0, offsetof(T, fPosNorm))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fPosNorm))); __ lwc1(f4, MemOperand(a0, offsetof(T, fPosSubnorm))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fPosSubnorm))); __ lwc1(f4, MemOperand(a0, offsetof(T, fPosZero))); __ class_s(f6, f4); __ swc1(f6, MemOperand(a0, offsetof(T, fPosZero))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); t.dSignalingNan = std::numeric_limits::signaling_NaN(); t.dQuietNan = std::numeric_limits::quiet_NaN(); t.dNegInf = -1.0 / 0.0; t.dNegNorm = -5.0; t.dNegSubnorm = -DBL_MIN / 2.0; t.dNegZero = -0.0; t.dPosInf = 2.0 / 0.0; t.dPosNorm = 275.35; t.dPosSubnorm = DBL_MIN / 2.0; t.dPosZero = +0.0; // Float test values t.fSignalingNan = std::numeric_limits::signaling_NaN(); t.fQuietNan = std::numeric_limits::quiet_NaN(); t.fNegInf = -0.5/0.0; t.fNegNorm = -FLT_MIN; t.fNegSubnorm = -FLT_MIN / 1.5; t.fNegZero = -0.0; t.fPosInf = 100000.0 / 0.0; t.fPosNorm = FLT_MAX; t.fPosSubnorm = FLT_MIN / 20.0; t.fPosZero = +0.0; Object* dummy = CALL_GENERATED_CODE(isolate, f, &t, 0, 0, 0, 0); USE(dummy); // Expected double results. CHECK_EQ(bit_cast(t.dSignalingNan), 0x001); CHECK_EQ(bit_cast(t.dQuietNan), 0x002); CHECK_EQ(bit_cast(t.dNegInf), 0x004); CHECK_EQ(bit_cast(t.dNegNorm), 0x008); CHECK_EQ(bit_cast(t.dNegSubnorm), 0x010); CHECK_EQ(bit_cast(t.dNegZero), 0x020); CHECK_EQ(bit_cast(t.dPosInf), 0x040); CHECK_EQ(bit_cast(t.dPosNorm), 0x080); CHECK_EQ(bit_cast(t.dPosSubnorm), 0x100); CHECK_EQ(bit_cast(t.dPosZero), 0x200); // Expected float results. CHECK_EQ(bit_cast(t.fSignalingNan), 0x001); CHECK_EQ(bit_cast(t.fQuietNan), 0x002); CHECK_EQ(bit_cast(t.fNegInf), 0x004); CHECK_EQ(bit_cast(t.fNegNorm), 0x008); CHECK_EQ(bit_cast(t.fNegSubnorm), 0x010); CHECK_EQ(bit_cast(t.fNegZero), 0x020); CHECK_EQ(bit_cast(t.fPosInf), 0x040); CHECK_EQ(bit_cast(t.fPosNorm), 0x080); CHECK_EQ(bit_cast(t.fPosSubnorm), 0x100); CHECK_EQ(bit_cast(t.fPosZero), 0x200); } } TEST(ABS) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { int64_t fir; double a; float b; double fcsr; } TestFloat; TestFloat test; // Save FIR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ abs_d(f10, f4); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, a))); __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, b))); __ abs_s(f10, f4); __ swc1(f10, MemOperand(a0, offsetof(TestFloat, b))); // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.a = -2.0; test.b = -2.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, 2.0); CHECK_EQ(test.b, 2.0); test.a = 2.0; test.b = 2.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, 2.0); CHECK_EQ(test.b, 2.0); // Testing biggest positive number test.a = std::numeric_limits::max(); test.b = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::max()); CHECK_EQ(test.b, std::numeric_limits::max()); // Testing smallest negative number test.a = -std::numeric_limits::max(); // lowest() test.b = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::max()); CHECK_EQ(test.b, std::numeric_limits::max()); // Testing smallest positive number test.a = -std::numeric_limits::min(); test.b = -std::numeric_limits::min(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::min()); CHECK_EQ(test.b, std::numeric_limits::min()); // Testing infinity test.a = -std::numeric_limits::max() / std::numeric_limits::min(); test.b = -std::numeric_limits::max() / std::numeric_limits::min(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.a, std::numeric_limits::max() / std::numeric_limits::min()); CHECK_EQ(test.b, std::numeric_limits::max() / std::numeric_limits::min()); test.a = std::numeric_limits::quiet_NaN(); test.b = std::numeric_limits::quiet_NaN(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(std::isnan(test.a), true); CHECK_EQ(std::isnan(test.b), true); test.a = std::numeric_limits::signaling_NaN(); test.b = std::numeric_limits::signaling_NaN(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(std::isnan(test.a), true); CHECK_EQ(std::isnan(test.b), true); } TEST(ADD_FMT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double a; double b; double c; float fa; float fb; float fc; } TestFloat; TestFloat test; __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, a))); __ ldc1(f8, MemOperand(a0, offsetof(TestFloat, b))); __ add_d(f10, f8, f4); __ sdc1(f10, MemOperand(a0, offsetof(TestFloat, c))); __ lwc1(f4, MemOperand(a0, offsetof(TestFloat, fa))); __ lwc1(f8, MemOperand(a0, offsetof(TestFloat, fb))); __ add_s(f10, f8, f4); __ swc1(f10, MemOperand(a0, offsetof(TestFloat, fc))); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.a = 2.0; test.b = 3.0; test.fa = 2.0; test.fb = 3.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.c, 5.0); CHECK_EQ(test.fc, 5.0); test.a = std::numeric_limits::max(); test.b = -std::numeric_limits::max(); // lowest() test.fa = std::numeric_limits::max(); test.fb = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.c, 0.0); CHECK_EQ(test.fc, 0.0); test.a = std::numeric_limits::max(); test.b = std::numeric_limits::max(); test.fa = std::numeric_limits::max(); test.fb = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(std::isfinite(test.c), false); CHECK_EQ(std::isfinite(test.fc), false); test.a = 5.0; test.b = std::numeric_limits::signaling_NaN(); test.fa = 5.0; test.fb = std::numeric_limits::signaling_NaN(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(std::isnan(test.c), true); CHECK_EQ(std::isnan(test.fc), true); } TEST(C_COND_FMT) { if ((IsMipsArchVariant(kMips32r1)) || (IsMipsArchVariant(kMips32r2))) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double dOp1; double dOp2; uint32_t dF; uint32_t dUn; uint32_t dEq; uint32_t dUeq; uint32_t dOlt; uint32_t dUlt; uint32_t dOle; uint32_t dUle; float fOp1; float fOp2; uint32_t fF; uint32_t fUn; uint32_t fEq; uint32_t fUeq; uint32_t fOlt; uint32_t fUlt; uint32_t fOle; uint32_t fUle; } TestFloat; TestFloat test; __ li(t1, 1); __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1))); __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2))); __ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1))); __ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2))); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(F, f4, f6, 0); __ c_s(F, f14, f16, 2); __ movt(t2, t1, 0); __ movt(t3, t1, 2); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dF)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fF)) ); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(UN, f4, f6, 2); __ c_s(UN, f14, f16, 4); __ movt(t2, t1, 2); __ movt(t3, t1, 4); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUn)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUn)) ); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(EQ, f4, f6, 4); __ c_s(EQ, f14, f16, 6); __ movt(t2, t1, 4); __ movt(t3, t1, 6); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dEq)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fEq)) ); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(UEQ, f4, f6, 6); __ c_s(UEQ, f14, f16, 0); __ movt(t2, t1, 6); __ movt(t3, t1, 0); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUeq)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUeq)) ); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(OLT, f4, f6, 0); __ c_s(OLT, f14, f16, 2); __ movt(t2, t1, 0); __ movt(t3, t1, 2); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dOlt)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fOlt)) ); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(ULT, f4, f6, 2); __ c_s(ULT, f14, f16, 4); __ movt(t2, t1, 2); __ movt(t3, t1, 4); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUlt)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUlt)) ); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(OLE, f4, f6, 4); __ c_s(OLE, f14, f16, 6); __ movt(t2, t1, 4); __ movt(t3, t1, 6); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dOle)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fOle)) ); __ mov(t2, zero_reg); __ mov(t3, zero_reg); __ c_d(ULE, f4, f6, 6); __ c_s(ULE, f14, f16, 0); __ movt(t2, t1, 6); __ movt(t3, t1, 0); __ sw(t2, MemOperand(a0, offsetof(TestFloat, dUle)) ); __ sw(t3, MemOperand(a0, offsetof(TestFloat, fUle)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.dOp1 = 2.0; test.dOp2 = 3.0; test.fOp1 = 2.0; test.fOp2 = 3.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 0U); CHECK_EQ(test.dOlt, 1U); CHECK_EQ(test.dUlt, 1U); CHECK_EQ(test.dOle, 1U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 0U); CHECK_EQ(test.fOlt, 1U); CHECK_EQ(test.fUlt, 1U); CHECK_EQ(test.fOle, 1U); CHECK_EQ(test.fUle, 1U); test.dOp1 = std::numeric_limits::max(); test.dOp2 = std::numeric_limits::min(); test.fOp1 = std::numeric_limits::min(); test.fOp2 = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 0U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 0U); CHECK_EQ(test.dOle, 0U); CHECK_EQ(test.dUle, 0U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 0U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 0U); CHECK_EQ(test.fOle, 0U); CHECK_EQ(test.fUle, 0U); test.dOp1 = -std::numeric_limits::max(); // lowest() test.dOp2 = -std::numeric_limits::max(); // lowest() test.fOp1 = std::numeric_limits::max(); test.fOp2 = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 0U); CHECK_EQ(test.dEq, 1U); CHECK_EQ(test.dUeq, 1U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 0U); CHECK_EQ(test.dOle, 1U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 0U); CHECK_EQ(test.fEq, 1U); CHECK_EQ(test.fUeq, 1U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 0U); CHECK_EQ(test.fOle, 1U); CHECK_EQ(test.fUle, 1U); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = 0.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = 0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dF, 0U); CHECK_EQ(test.dUn, 1U); CHECK_EQ(test.dEq, 0U); CHECK_EQ(test.dUeq, 1U); CHECK_EQ(test.dOlt, 0U); CHECK_EQ(test.dUlt, 1U); CHECK_EQ(test.dOle, 0U); CHECK_EQ(test.dUle, 1U); CHECK_EQ(test.fF, 0U); CHECK_EQ(test.fUn, 1U); CHECK_EQ(test.fEq, 0U); CHECK_EQ(test.fUeq, 1U); CHECK_EQ(test.fOlt, 0U); CHECK_EQ(test.fUlt, 1U); CHECK_EQ(test.fOle, 0U); CHECK_EQ(test.fUle, 1U); } } TEST(CMP_COND_FMT) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { double dOp1; double dOp2; double dF; double dUn; double dEq; double dUeq; double dOlt; double dUlt; double dOle; double dUle; double dOr; double dUne; double dNe; float fOp1; float fOp2; float fF; float fUn; float fEq; float fUeq; float fOlt; float fUlt; float fOle; float fUle; float fOr; float fUne; float fNe; } TestFloat; TestFloat test; __ li(t1, 1); __ ldc1(f4, MemOperand(a0, offsetof(TestFloat, dOp1))); __ ldc1(f6, MemOperand(a0, offsetof(TestFloat, dOp2))); __ lwc1(f14, MemOperand(a0, offsetof(TestFloat, fOp1))); __ lwc1(f16, MemOperand(a0, offsetof(TestFloat, fOp2))); __ cmp_d(F, f2, f4, f6); __ cmp_s(F, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dF)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fF)) ); __ cmp_d(UN, f2, f4, f6); __ cmp_s(UN, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUn)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUn)) ); __ cmp_d(EQ, f2, f4, f6); __ cmp_s(EQ, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dEq)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fEq)) ); __ cmp_d(UEQ, f2, f4, f6); __ cmp_s(UEQ, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUeq)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUeq)) ); __ cmp_d(LT, f2, f4, f6); __ cmp_s(LT, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOlt)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOlt)) ); __ cmp_d(ULT, f2, f4, f6); __ cmp_s(ULT, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUlt)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUlt)) ); __ cmp_d(LE, f2, f4, f6); __ cmp_s(LE, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOle)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOle)) ); __ cmp_d(ULE, f2, f4, f6); __ cmp_s(ULE, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUle)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUle)) ); __ cmp_d(ORD, f2, f4, f6); __ cmp_s(ORD, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dOr)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fOr)) ); __ cmp_d(UNE, f2, f4, f6); __ cmp_s(UNE, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dUne)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fUne)) ); __ cmp_d(NE, f2, f4, f6); __ cmp_s(NE, f12, f14, f16); __ sdc1(f2, MemOperand(a0, offsetof(TestFloat, dNe)) ); __ swc1(f12, MemOperand(a0, offsetof(TestFloat, fNe)) ); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); uint64_t dTrue = 0xFFFFFFFFFFFFFFFF; uint64_t dFalse = 0x0000000000000000; uint32_t fTrue = 0xFFFFFFFF; uint32_t fFalse = 0x00000000; test.dOp1 = 2.0; test.dOp2 = 3.0; test.fOp1 = 2.0; test.fOp2 = 3.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dFalse); CHECK_EQ(bit_cast(test.dOlt), dTrue); CHECK_EQ(bit_cast(test.dUlt), dTrue); CHECK_EQ(bit_cast(test.dOle), dTrue); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dTrue); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fFalse); CHECK_EQ(bit_cast(test.fOlt), fTrue); CHECK_EQ(bit_cast(test.fUlt), fTrue); CHECK_EQ(bit_cast(test.fOle), fTrue); CHECK_EQ(bit_cast(test.fUle), fTrue); test.dOp1 = std::numeric_limits::max(); test.dOp2 = std::numeric_limits::min(); test.fOp1 = std::numeric_limits::min(); test.fOp2 = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dFalse); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dFalse); CHECK_EQ(bit_cast(test.dOle), dFalse); CHECK_EQ(bit_cast(test.dUle), dFalse); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dTrue); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fFalse); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fFalse); CHECK_EQ(bit_cast(test.fOle), fFalse); CHECK_EQ(bit_cast(test.fUle), fFalse); test.dOp1 = -std::numeric_limits::max(); // lowest() test.dOp2 = -std::numeric_limits::max(); // lowest() test.fOp1 = std::numeric_limits::max(); test.fOp2 = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dFalse); CHECK_EQ(bit_cast(test.dEq), dTrue); CHECK_EQ(bit_cast(test.dUeq), dTrue); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dFalse); CHECK_EQ(bit_cast(test.dOle), dTrue); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dTrue); CHECK_EQ(bit_cast(test.dUne), dFalse); CHECK_EQ(bit_cast(test.dNe), dFalse); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fFalse); CHECK_EQ(bit_cast(test.fEq), fTrue); CHECK_EQ(bit_cast(test.fUeq), fTrue); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fFalse); CHECK_EQ(bit_cast(test.fOle), fTrue); CHECK_EQ(bit_cast(test.fUle), fTrue); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = 0.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = 0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(bit_cast(test.dF), dFalse); CHECK_EQ(bit_cast(test.dUn), dTrue); CHECK_EQ(bit_cast(test.dEq), dFalse); CHECK_EQ(bit_cast(test.dUeq), dTrue); CHECK_EQ(bit_cast(test.dOlt), dFalse); CHECK_EQ(bit_cast(test.dUlt), dTrue); CHECK_EQ(bit_cast(test.dOle), dFalse); CHECK_EQ(bit_cast(test.dUle), dTrue); CHECK_EQ(bit_cast(test.dOr), dFalse); CHECK_EQ(bit_cast(test.dUne), dTrue); CHECK_EQ(bit_cast(test.dNe), dFalse); CHECK_EQ(bit_cast(test.fF), fFalse); CHECK_EQ(bit_cast(test.fUn), fTrue); CHECK_EQ(bit_cast(test.fEq), fFalse); CHECK_EQ(bit_cast(test.fUeq), fTrue); CHECK_EQ(bit_cast(test.fOlt), fFalse); CHECK_EQ(bit_cast(test.fUlt), fTrue); CHECK_EQ(bit_cast(test.fOle), fFalse); CHECK_EQ(bit_cast(test.fUle), fTrue); } } TEST(CVT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test_float { float cvt_d_s_in; double cvt_d_s_out; int32_t cvt_d_w_in; double cvt_d_w_out; int64_t cvt_d_l_in; double cvt_d_l_out; float cvt_l_s_in; int64_t cvt_l_s_out; double cvt_l_d_in; int64_t cvt_l_d_out; double cvt_s_d_in; float cvt_s_d_out; int32_t cvt_s_w_in; float cvt_s_w_out; int64_t cvt_s_l_in; float cvt_s_l_out; float cvt_w_s_in; int32_t cvt_w_s_out; double cvt_w_d_in; int32_t cvt_w_d_out; } TestFloat; TestFloat test; // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); #define GENERATE_CVT_TEST(x, y, z) \ __ y##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_in))); \ __ x(f0, f0); \ __ nop(); \ __ z##c1(f0, MemOperand(a0, offsetof(TestFloat, x##_out))); GENERATE_CVT_TEST(cvt_d_s, lw, sd) GENERATE_CVT_TEST(cvt_d_w, lw, sd) if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { GENERATE_CVT_TEST(cvt_d_l, ld, sd) } if (IsFp64Mode()) { GENERATE_CVT_TEST(cvt_l_s, lw, sd) GENERATE_CVT_TEST(cvt_l_d, ld, sd) } GENERATE_CVT_TEST(cvt_s_d, ld, sw) GENERATE_CVT_TEST(cvt_s_w, lw, sw) if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { GENERATE_CVT_TEST(cvt_s_l, ld, sw) } GENERATE_CVT_TEST(cvt_w_s, lw, sw) GENERATE_CVT_TEST(cvt_w_d, ld, sw) // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); test.cvt_d_s_in = -0.51; test.cvt_d_w_in = -1; test.cvt_d_l_in = -1; test.cvt_l_s_in = -0.51; test.cvt_l_d_in = -0.51; test.cvt_s_d_in = -0.51; test.cvt_s_w_in = -1; test.cvt_s_l_in = -1; test.cvt_w_s_in = -0.51; test.cvt_w_d_in = -0.51; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); } if (IsFp64Mode()) { CHECK_EQ(test.cvt_l_s_out, -1); CHECK_EQ(test.cvt_l_d_out, -1); } CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); } CHECK_EQ(test.cvt_w_s_out, -1); CHECK_EQ(test.cvt_w_d_out, -1); test.cvt_d_s_in = 0.49; test.cvt_d_w_in = 1; test.cvt_d_l_in = 1; test.cvt_l_s_in = 0.49; test.cvt_l_d_in = 0.49; test.cvt_s_d_in = 0.49; test.cvt_s_w_in = 1; test.cvt_s_l_in = 1; test.cvt_w_s_in = 0.49; test.cvt_w_d_in = 0.49; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); } if (IsFp64Mode()) { CHECK_EQ(test.cvt_l_s_out, 0); CHECK_EQ(test.cvt_l_d_out, 0); } CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); } CHECK_EQ(test.cvt_w_s_out, 0); CHECK_EQ(test.cvt_w_d_out, 0); test.cvt_d_s_in = std::numeric_limits::max(); test.cvt_d_w_in = std::numeric_limits::max(); test.cvt_d_l_in = std::numeric_limits::max(); test.cvt_l_s_in = std::numeric_limits::max(); test.cvt_l_d_in = std::numeric_limits::max(); test.cvt_s_d_in = std::numeric_limits::max(); test.cvt_s_w_in = std::numeric_limits::max(); test.cvt_s_l_in = std::numeric_limits::max(); test.cvt_w_s_in = std::numeric_limits::max(); test.cvt_w_d_in = std::numeric_limits::max(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); } if (IsFp64Mode()) { CHECK_EQ(test.cvt_l_s_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_l_d_out, std::numeric_limits::max()); } CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); } CHECK_EQ(test.cvt_w_s_out, std::numeric_limits::max()); CHECK_EQ(test.cvt_w_d_out, std::numeric_limits::max()); test.cvt_d_s_in = -std::numeric_limits::max(); // lowest() test.cvt_d_w_in = std::numeric_limits::min(); // lowest() test.cvt_d_l_in = std::numeric_limits::min(); // lowest() test.cvt_l_s_in = -std::numeric_limits::max(); // lowest() test.cvt_l_d_in = -std::numeric_limits::max(); // lowest() test.cvt_s_d_in = -std::numeric_limits::max(); // lowest() test.cvt_s_w_in = std::numeric_limits::min(); // lowest() test.cvt_s_l_in = std::numeric_limits::min(); // lowest() test.cvt_w_s_in = -std::numeric_limits::max(); // lowest() test.cvt_w_d_in = -std::numeric_limits::max(); // lowest() (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); } // The returned value when converting from fixed-point to float-point // is not consistent between board, simulator and specification // in this test case, therefore modifying the test if (IsFp64Mode()) { CHECK(test.cvt_l_s_out == std::numeric_limits::min() || test.cvt_l_s_out == std::numeric_limits::max()); CHECK(test.cvt_l_d_out == std::numeric_limits::min() || test.cvt_l_d_out == std::numeric_limits::max()); } CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); } CHECK(test.cvt_w_s_out == std::numeric_limits::min() || test.cvt_w_s_out == std::numeric_limits::max()); CHECK(test.cvt_w_d_out == std::numeric_limits::min() || test.cvt_w_d_out == std::numeric_limits::max()); test.cvt_d_s_in = std::numeric_limits::min(); test.cvt_d_w_in = std::numeric_limits::min(); test.cvt_d_l_in = std::numeric_limits::min(); test.cvt_l_s_in = std::numeric_limits::min(); test.cvt_l_d_in = std::numeric_limits::min(); test.cvt_s_d_in = std::numeric_limits::min(); test.cvt_s_w_in = std::numeric_limits::min(); test.cvt_s_l_in = std::numeric_limits::min(); test.cvt_w_s_in = std::numeric_limits::min(); test.cvt_w_d_in = std::numeric_limits::min(); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.cvt_d_s_out, static_cast(test.cvt_d_s_in)); CHECK_EQ(test.cvt_d_w_out, static_cast(test.cvt_d_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_d_l_out, static_cast(test.cvt_d_l_in)); } if (IsFp64Mode()) { CHECK_EQ(test.cvt_l_s_out, 0); CHECK_EQ(test.cvt_l_d_out, 0); } CHECK_EQ(test.cvt_s_d_out, static_cast(test.cvt_s_d_in)); CHECK_EQ(test.cvt_s_w_out, static_cast(test.cvt_s_w_in)); if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && IsFp64Mode()) { CHECK_EQ(test.cvt_s_l_out, static_cast(test.cvt_s_l_in)); } CHECK_EQ(test.cvt_w_s_out, 0); CHECK_EQ(test.cvt_w_d_out, 0); } TEST(DIV_FMT) { CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); typedef struct test { double dOp1; double dOp2; double dRes; float fOp1; float fOp2; float fRes; } Test; Test test; // Save FCSR. __ cfc1(a1, FCSR); // Disable FPU exceptions. __ ctc1(zero_reg, FCSR); __ ldc1(f4, MemOperand(a0, offsetof(Test, dOp1)) ); __ ldc1(f2, MemOperand(a0, offsetof(Test, dOp2)) ); __ nop(); __ div_d(f6, f4, f2); __ sdc1(f6, MemOperand(a0, offsetof(Test, dRes)) ); __ lwc1(f4, MemOperand(a0, offsetof(Test, fOp1)) ); __ lwc1(f2, MemOperand(a0, offsetof(Test, fOp2)) ); __ nop(); __ div_s(f6, f4, f2); __ swc1(f6, MemOperand(a0, offsetof(Test, fRes)) ); // Restore FCSR. __ ctc1(a1, FCSR); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F3 f = FUNCTION_CAST(code->entry()); (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); const int test_size = 3; double dOp1[test_size] = { 5.0, DBL_MAX, DBL_MAX, }; double dOp2[test_size] = { 2.0, 2.0, -DBL_MAX, }; double dRes[test_size] = { 2.5, DBL_MAX / 2.0, -1.0, }; float fOp1[test_size] = { 5.0, FLT_MAX, FLT_MAX, }; float fOp2[test_size] = { 2.0, 2.0, -FLT_MAX, }; float fRes[test_size] = { 2.5, FLT_MAX / 2.0, -1.0, }; for (int i = 0; i < test_size; i++) { test.dOp1 = dOp1[i]; test.dOp2 = dOp2[i]; test.fOp1 = fOp1[i]; test.fOp2 = fOp2[i]; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(test.dRes, dRes[i]); CHECK_EQ(test.fRes, fRes[i]); } test.dOp1 = DBL_MAX; test.dOp2 = -0.0; test.fOp1 = FLT_MAX; test.fOp2 = -0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(false, std::isfinite(test.dRes)); CHECK_EQ(false, std::isfinite(test.fRes)); test.dOp1 = 0.0; test.dOp2 = -0.0; test.fOp1 = 0.0; test.fOp2 = -0.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(true, std::isnan(test.dRes)); CHECK_EQ(true, std::isnan(test.fRes)); test.dOp1 = std::numeric_limits::quiet_NaN(); test.dOp2 = -5.0; test.fOp1 = std::numeric_limits::quiet_NaN(); test.fOp2 = -5.0; (CALL_GENERATED_CODE(isolate, f, &test, 0, 0, 0, 0)); CHECK_EQ(true, std::isnan(test.dRes)); CHECK_EQ(true, std::isnan(test.fRes)); } uint32_t run_align(uint32_t rs_value, uint32_t rt_value, uint8_t bp) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ align(v0, a0, a1, bp); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast(CALL_GENERATED_CODE( isolate, f, rs_value, rt_value, 0, 0, 0)); return res; } TEST(r6_align) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseAlign { uint32_t rs_value; uint32_t rt_value; uint8_t bp; uint32_t expected_res; }; struct TestCaseAlign tc[] = { // rs_value, rt_value, bp, expected_res { 0x11223344, 0xaabbccdd, 0, 0xaabbccdd }, { 0x11223344, 0xaabbccdd, 1, 0xbbccdd11 }, { 0x11223344, 0xaabbccdd, 2, 0xccdd1122 }, { 0x11223344, 0xaabbccdd, 3, 0xdd112233 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAlign); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_align(tc[i].rs_value, tc[i].rt_value, tc[i].bp)); } } } uint32_t PC; // The program counter. uint32_t run_aluipc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ aluipc(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); PC = (uint32_t) f; // Set the program counter. uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_aluipc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseAluipc { int16_t offset; }; struct TestCaseAluipc tc[] = { // offset { -32768 }, // 0x8000 { -1 }, // 0xFFFF { 0 }, { 1 }, { 32767 }, // 0x7FFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAluipc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint32_t res = run_aluipc(tc[i].offset); // Now, the program_counter (PC) is set. uint32_t expected_res = ~0x0FFFF & (PC + (tc[i].offset << 16)); CHECK_EQ(expected_res, res); } } } uint32_t run_auipc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ auipc(v0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); PC = (uint32_t) f; // Set the program counter. uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_auipc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseAuipc { int16_t offset; }; struct TestCaseAuipc tc[] = { // offset { -32768 }, // 0x8000 { -1 }, // 0xFFFF { 0 }, { 1 }, { 32767 }, // 0x7FFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAuipc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint32_t res = run_auipc(tc[i].offset); // Now, the program_counter (PC) is set. uint32_t expected_res = PC + (tc[i].offset << 16); CHECK_EQ(expected_res, res); } } } uint32_t run_lwpc(int offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); // 256k instructions; 2^8k // addiu t7, t0, 0xffff; (0x250fffff) // ... // addiu t4, t0, 0x0000; (0x250c0000) uint32_t addiu_start_1 = 0x25000000; for (int32_t i = 0xfffff; i >= 0xc0000; --i) { uint32_t addiu_new = addiu_start_1 + i; __ dd(addiu_new); } __ lwpc(t8, offset); // offset 0; 0xef080000 (t8 register) __ mov(v0, t8); // 256k instructions; 2^8k // addiu t0, t0, 0x0000; (0x25080000) // ... // addiu t3, t0, 0xffff; (0x250bffff) uint32_t addiu_start_2 = 0x25000000; for (int32_t i = 0x80000; i <= 0xbffff; ++i) { uint32_t addiu_new = addiu_start_2 + i; __ dd(addiu_new); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_lwpc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseLwpc { int offset; uint32_t expected_res; }; struct TestCaseLwpc tc[] = { // offset, expected_res { -262144, 0x250fffff }, // offset 0x40000 { -4, 0x250c0003 }, { -1, 0x250c0000 }, { 0, 0xef080000 }, { 1, 0x03001025 }, // mov(v0, t8) { 2, 0x25080000 }, { 4, 0x25080002 }, { 262143, 0x250bfffd }, // offset 0x3ffff }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseLwpc); for (size_t i = 0; i < nr_test_cases; ++i) { uint32_t res = run_lwpc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint32_t run_jic(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label get_program_counter, stop_execution; __ push(ra); __ li(v0, 0); __ li(t1, 0x66); __ addiu(v0, v0, 0x1); // <-- offset = -32 __ addiu(v0, v0, 0x2); __ addiu(v0, v0, 0x10); __ addiu(v0, v0, 0x20); __ beq(v0, t1, &stop_execution); __ nop(); __ bal(&get_program_counter); // t0 <- program counter __ nop(); __ jic(t0, offset); __ addiu(v0, v0, 0x100); __ addiu(v0, v0, 0x200); __ addiu(v0, v0, 0x1000); __ addiu(v0, v0, 0x2000); // <--- offset = 16 __ pop(ra); __ jr(ra); __ nop(); __ bind(&get_program_counter); __ mov(t0, ra); __ jr(ra); __ nop(); __ bind(&stop_execution); __ pop(ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_jic) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseJic { // As rt will be used t0 register which will have value of // the program counter for the jic instruction. int16_t offset; uint32_t expected_res; }; struct TestCaseJic tc[] = { // offset, expected_result { 16, 0x2033 }, { 4, 0x3333 }, { -32, 0x66 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJic); for (size_t i = 0; i < nr_test_cases; ++i) { uint32_t res = run_jic(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_beqzc(int32_t value, int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label stop_execution; __ li(v0, 0); __ li(t1, 0x66); __ addiu(v0, v0, 0x1); // <-- offset = -32 __ addiu(v0, v0, 0x2); __ addiu(v0, v0, 0x10); __ addiu(v0, v0, 0x20); __ beq(v0, t1, &stop_execution); __ nop(); __ beqzc(a0, offset); // BEQZC rs, offset __ addiu(v0, v0, 0x1); __ addiu(v0, v0, 0x100); __ addiu(v0, v0, 0x200); __ addiu(v0, v0, 0x1000); __ addiu(v0, v0, 0x2000); // <--- offset = 16 __ jr(ra); __ nop(); __ bind(&stop_execution); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, value, 0, 0, 0, 0)); return res; } TEST(r6_beqzc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseBeqzc { uint32_t value; int32_t offset; uint32_t expected_res; }; struct TestCaseBeqzc tc[] = { // value, offset, expected_res { 0x0, -8, 0x66 }, { 0x0, 0, 0x3334 }, { 0x0, 1, 0x3333 }, { 0xabc, 1, 0x3334 }, { 0x0, 4, 0x2033 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBeqzc); for (size_t i = 0; i < nr_test_cases; ++i) { uint32_t res = run_beqzc(tc[i].value, tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint32_t run_jialc(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label main_block, get_program_counter; __ push(ra); __ li(v0, 0); __ beq(v0, v0, &main_block); __ nop(); // Block 1 __ addiu(v0, v0, 0x1); // <-- offset = -40 __ addiu(v0, v0, 0x2); __ jr(ra); __ nop(); // Block 2 __ addiu(v0, v0, 0x10); // <-- offset = -24 __ addiu(v0, v0, 0x20); __ jr(ra); __ nop(); // Block 3 (Main) __ bind(&main_block); __ bal(&get_program_counter); // t0 <- program counter __ nop(); __ jialc(t0, offset); __ addiu(v0, v0, 0x4); __ pop(ra); __ jr(ra); __ nop(); // Block 4 __ addiu(v0, v0, 0x100); // <-- offset = 20 __ addiu(v0, v0, 0x200); __ jr(ra); __ nop(); // Block 5 __ addiu(v0, v0, 0x1000); // <--- offset = 36 __ addiu(v0, v0, 0x2000); __ jr(ra); __ nop(); __ bind(&get_program_counter); __ mov(t0, ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_jialc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseJialc { int16_t offset; uint32_t expected_res; }; struct TestCaseJialc tc[] = { // offset, expected_res { -40, 0x7 }, { -24, 0x34 }, { 20, 0x304 }, { 36, 0x3004 } }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseJialc); for (size_t i = 0; i < nr_test_cases; ++i) { uint32_t res = run_jialc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint64_t run_addiupc(int32_t imm19) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ addiupc(v0, imm19); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); PC = (uint32_t) f; // Set the program counter. uint32_t rs = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, imm19, 0, 0, 0, 0)); return rs; } TEST(r6_addiupc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseAddiupc { int32_t imm19; }; struct TestCaseAddiupc tc[] = { // imm19 { -262144 }, // 0x40000 { -1 }, // 0x7FFFF { 0 }, { 1 }, // 0x00001 { 262143 } // 0x3FFFF }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAddiupc); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint32_t res = run_addiupc(tc[i].imm19); // Now, the program_counter (PC) is set. uint32_t expected_res = PC + (tc[i].imm19 << 2); CHECK_EQ(expected_res, res); } } } int32_t run_bc(int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label continue_1, stop_execution; __ push(ra); __ li(v0, 0); __ li(t8, 0); __ li(t9, 2); // A condition for stopping execution. uint32_t instruction_addiu = 0x24420001; // addiu v0, v0, 1 for (int32_t i = -100; i <= -11; ++i) { __ dd(instruction_addiu); } __ addiu(t8, t8, 1); // -10 __ beq(t8, t9, &stop_execution); // -9 __ nop(); // -8 __ beq(t8, t8, &continue_1); // -7 __ nop(); // -6 __ bind(&stop_execution); __ pop(ra); // -5, -4 __ jr(ra); // -3 __ nop(); // -2 __ bind(&continue_1); __ bc(offset); // -1 for (int32_t i = 0; i <= 99; ++i) { __ dd(instruction_addiu); } __ pop(ra); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_bc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseBc { int32_t offset; int32_t expected_res; }; struct TestCaseBc tc[] = { // offset, expected_result { -100, (abs(-100) - 10) * 2 }, { -11, (abs(-100) - 10 + 1) }, { 0, (abs(-100) - 10 + 1 + 99) }, { 1, (abs(-100) - 10 + 99) }, { 99, (abs(-100) - 10 + 1) }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBc); for (size_t i = 0; i < nr_test_cases; ++i) { int32_t res = run_bc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } int32_t run_balc(int32_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); Label continue_1, stop_execution; __ push(ra); __ li(v0, 0); __ li(t8, 0); __ li(t9, 2); // A condition for stopping execution. __ beq(t8, t8, &continue_1); __ nop(); uint32_t instruction_addiu = 0x24420001; // addiu v0, v0, 1 for (int32_t i = -117; i <= -57; ++i) { __ dd(instruction_addiu); } __ jr(ra); // -56 __ nop(); // -55 for (int32_t i = -54; i <= -4; ++i) { __ dd(instruction_addiu); } __ jr(ra); // -3 __ nop(); // -2 __ bind(&continue_1); __ balc(offset); // -1 __ pop(ra); // 0, 1 __ jr(ra); // 2 __ nop(); // 3 for (int32_t i = 4; i <= 44; ++i) { __ dd(instruction_addiu); } __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } uint32_t run_aui(uint32_t rs, uint16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ li(t0, rs); __ aui(v0, t0, offset); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast (CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(r6_aui) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseAui { uint32_t rs; uint16_t offset; uint32_t ref_res; }; struct TestCaseAui tc[] = { // input, offset, result {0xfffeffff, 1, 0xffffffff}, {0xffffffff, 0, 0xffffffff}, {0, 0xffff, 0xffff0000}, {0x0008ffff, 0xfff7, 0xffffffff}, {32767, 32767, 0x7fff7fff}, // overflow cases {0xffffffff, 0x1, 0x0000ffff}, {0xffffffff, 0xffff, 0xfffeffff}, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseAui); for (size_t i = 0; i < nr_test_cases; ++i) { PC = 0; uint32_t res = run_aui(tc[i].rs, tc[i].offset); CHECK_EQ(tc[i].ref_res, res); } } } TEST(r6_balc) { if (IsMipsArchVariant(kMips32r6)) { CcTest::InitializeVM(); struct TestCaseBalc { int32_t offset; int32_t expected_res; }; struct TestCaseBalc tc[] = { // offset, expected_result { -117, 61 }, { -54, 51 }, { 0, 0 }, { 4, 41 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBalc); for (size_t i = 0; i < nr_test_cases; ++i) { int32_t res = run_balc(tc[i].offset); CHECK_EQ(tc[i].expected_res, res); } } } uint32_t run_bal(int16_t offset) { Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, NULL, 0, v8::internal::CodeObjectRequired::kYes); __ mov(t0, ra); __ bal(offset); // Equivalent for "BGEZAL zero_reg, offset". __ nop(); __ mov(ra, t0); __ jr(ra); __ nop(); __ li(v0, 1); __ jr(ra); __ nop(); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); uint32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 0, 0, 0, 0, 0)); return res; } TEST(bal) { CcTest::InitializeVM(); struct TestCaseBal { int16_t offset; uint32_t expected_res; }; struct TestCaseBal tc[] = { // offset, expected_res { 4, 1 }, }; size_t nr_test_cases = sizeof(tc) / sizeof(TestCaseBal); for (size_t i = 0; i < nr_test_cases; ++i) { CHECK_EQ(tc[i].expected_res, run_bal(tc[i].offset)); } } TEST(Trampoline) { // Private member of Assembler class. static const int kMaxBranchOffset = (1 << (18 - 1)) - 1; CcTest::InitializeVM(); Isolate* isolate = CcTest::i_isolate(); HandleScope scope(isolate); MacroAssembler assm(isolate, nullptr, 0, v8::internal::CodeObjectRequired::kYes); Label done; size_t nr_calls = kMaxBranchOffset / (2 * Instruction::kInstrSize) + 2; for (size_t i = 0; i < nr_calls; ++i) { __ BranchShort(&done, eq, a0, Operand(a1)); } __ bind(&done); __ Ret(USE_DELAY_SLOT); __ mov(v0, zero_reg); CodeDesc desc; assm.GetCode(&desc); Handle code = isolate->factory()->NewCode( desc, Code::ComputeFlags(Code::STUB), Handle()); F2 f = FUNCTION_CAST(code->entry()); int32_t res = reinterpret_cast( CALL_GENERATED_CODE(isolate, f, 42, 42, 0, 0, 0)); CHECK_EQ(res, 0); } #undef __