// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Platform specific code for MacOS goes here. For the POSIX comaptible parts // the implementation is in platform-posix.cc. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef MAP_TYPE #include "v8.h" #include "platform.h" // Manually define these here as weak imports, rather than including execinfo.h. // This lets us launch on 10.4 which does not have these calls. extern "C" { extern int backtrace(void**, int) __attribute__((weak_import)); extern char** backtrace_symbols(void* const*, int) __attribute__((weak_import)); extern void backtrace_symbols_fd(void* const*, int, int) __attribute__((weak_import)); } namespace v8 { namespace internal { // 0 is never a valid thread id on MacOSX since a ptread_t is // a pointer. static const pthread_t kNoThread = (pthread_t) 0; double ceiling(double x) { // Correct Mac OS X Leopard 'ceil' behavior. if (-1.0 < x && x < 0.0) { return -0.0; } else { return ceil(x); } } void OS::Setup() { // Seed the random number generator. // Convert the current time to a 64-bit integer first, before converting it // to an unsigned. Going directly will cause an overflow and the seed to be // set to all ones. The seed will be identical for different instances that // call this setup code within the same millisecond. uint64_t seed = static_cast(TimeCurrentMillis()); srandom(static_cast(seed)); } // We keep the lowest and highest addresses mapped as a quick way of // determining that pointers are outside the heap (used mostly in assertions // and verification). The estimate is conservative, ie, not all addresses in // 'allocated' space are actually allocated to our heap. The range is // [lowest, highest), inclusive on the low and and exclusive on the high end. static void* lowest_ever_allocated = reinterpret_cast(-1); static void* highest_ever_allocated = reinterpret_cast(0); static void UpdateAllocatedSpaceLimits(void* address, int size) { lowest_ever_allocated = Min(lowest_ever_allocated, address); highest_ever_allocated = Max(highest_ever_allocated, reinterpret_cast(reinterpret_cast(address) + size)); } bool OS::IsOutsideAllocatedSpace(void* address) { return address < lowest_ever_allocated || address >= highest_ever_allocated; } size_t OS::AllocateAlignment() { return getpagesize(); } void* OS::Allocate(const size_t requested, size_t* allocated, bool is_executable) { const size_t msize = RoundUp(requested, getpagesize()); int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); if (mbase == MAP_FAILED) { LOG(StringEvent("OS::Allocate", "mmap failed")); return NULL; } *allocated = msize; UpdateAllocatedSpaceLimits(mbase, msize); return mbase; } void OS::Free(void* address, const size_t size) { // TODO(1240712): munmap has a return value which is ignored here. int result = munmap(address, size); USE(result); ASSERT(result == 0); } #ifdef ENABLE_HEAP_PROTECTION void OS::Protect(void* address, size_t size) { UNIMPLEMENTED(); } void OS::Unprotect(void* address, size_t size, bool is_executable) { UNIMPLEMENTED(); } #endif void OS::Sleep(int milliseconds) { usleep(1000 * milliseconds); } void OS::Abort() { // Redirect to std abort to signal abnormal program termination abort(); } void OS::DebugBreak() { asm("int $3"); } class PosixMemoryMappedFile : public OS::MemoryMappedFile { public: PosixMemoryMappedFile(FILE* file, void* memory, int size) : file_(file), memory_(memory), size_(size) { } virtual ~PosixMemoryMappedFile(); virtual void* memory() { return memory_; } private: FILE* file_; void* memory_; int size_; }; OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size, void* initial) { FILE* file = fopen(name, "w+"); if (file == NULL) return NULL; fwrite(initial, size, 1, file); void* memory = mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0); return new PosixMemoryMappedFile(file, memory, size); } PosixMemoryMappedFile::~PosixMemoryMappedFile() { if (memory_) munmap(memory_, size_); fclose(file_); } void OS::LogSharedLibraryAddresses() { #ifdef ENABLE_LOGGING_AND_PROFILING unsigned int images_count = _dyld_image_count(); for (unsigned int i = 0; i < images_count; ++i) { const mach_header* header = _dyld_get_image_header(i); if (header == NULL) continue; #if V8_HOST_ARCH_X64 uint64_t size; char* code_ptr = getsectdatafromheader_64( reinterpret_cast(header), SEG_TEXT, SECT_TEXT, &size); #else unsigned int size; char* code_ptr = getsectdatafromheader(header, SEG_TEXT, SECT_TEXT, &size); #endif if (code_ptr == NULL) continue; const uintptr_t slide = _dyld_get_image_vmaddr_slide(i); const uintptr_t start = reinterpret_cast(code_ptr) + slide; LOG(SharedLibraryEvent(_dyld_get_image_name(i), start, start + size)); } #endif // ENABLE_LOGGING_AND_PROFILING } double OS::nan_value() { return NAN; } int OS::ActivationFrameAlignment() { // OS X activation frames must be 16 byte-aligned; see "Mac OS X ABI // Function Call Guide". return 16; } int OS::StackWalk(Vector frames) { // If weak link to execinfo lib has failed, ie because we are on 10.4, abort. if (backtrace == NULL) return 0; int frames_size = frames.length(); void** addresses = NewArray(frames_size); int frames_count = backtrace(addresses, frames_size); char** symbols; symbols = backtrace_symbols(addresses, frames_count); if (symbols == NULL) { DeleteArray(addresses); return kStackWalkError; } for (int i = 0; i < frames_count; i++) { frames[i].address = addresses[i]; // Format a text representation of the frame based on the information // available. SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen), "%s", symbols[i]); // Make sure line termination is in place. frames[i].text[kStackWalkMaxTextLen - 1] = '\0'; } DeleteArray(addresses); free(symbols); return frames_count; } // Constants used for mmap. static const int kMmapFd = -1; static const int kMmapFdOffset = 0; VirtualMemory::VirtualMemory(size_t size) { address_ = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, kMmapFd, kMmapFdOffset); size_ = size; } VirtualMemory::~VirtualMemory() { if (IsReserved()) { if (0 == munmap(address(), size())) address_ = MAP_FAILED; } } bool VirtualMemory::IsReserved() { return address_ != MAP_FAILED; } bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) { int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); if (MAP_FAILED == mmap(address, size, prot, MAP_PRIVATE | MAP_ANON | MAP_FIXED, kMmapFd, kMmapFdOffset)) { return false; } UpdateAllocatedSpaceLimits(address, size); return true; } bool VirtualMemory::Uncommit(void* address, size_t size) { return mmap(address, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, kMmapFd, kMmapFdOffset) != MAP_FAILED; } class ThreadHandle::PlatformData : public Malloced { public: explicit PlatformData(ThreadHandle::Kind kind) { Initialize(kind); } void Initialize(ThreadHandle::Kind kind) { switch (kind) { case ThreadHandle::SELF: thread_ = pthread_self(); break; case ThreadHandle::INVALID: thread_ = kNoThread; break; } } pthread_t thread_; // Thread handle for pthread. }; ThreadHandle::ThreadHandle(Kind kind) { data_ = new PlatformData(kind); } void ThreadHandle::Initialize(ThreadHandle::Kind kind) { data_->Initialize(kind); } ThreadHandle::~ThreadHandle() { delete data_; } bool ThreadHandle::IsSelf() const { return pthread_equal(data_->thread_, pthread_self()); } bool ThreadHandle::IsValid() const { return data_->thread_ != kNoThread; } Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) { } Thread::~Thread() { } static void* ThreadEntry(void* arg) { Thread* thread = reinterpret_cast(arg); // This is also initialized by the first argument to pthread_create() but we // don't know which thread will run first (the original thread or the new // one) so we initialize it here too. thread->thread_handle_data()->thread_ = pthread_self(); ASSERT(thread->IsValid()); thread->Run(); return NULL; } void Thread::Start() { pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this); } void Thread::Join() { pthread_join(thread_handle_data()->thread_, NULL); } Thread::LocalStorageKey Thread::CreateThreadLocalKey() { pthread_key_t key; int result = pthread_key_create(&key, NULL); USE(result); ASSERT(result == 0); return static_cast(key); } void Thread::DeleteThreadLocalKey(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); int result = pthread_key_delete(pthread_key); USE(result); ASSERT(result == 0); } void* Thread::GetThreadLocal(LocalStorageKey key) { pthread_key_t pthread_key = static_cast(key); return pthread_getspecific(pthread_key); } void Thread::SetThreadLocal(LocalStorageKey key, void* value) { pthread_key_t pthread_key = static_cast(key); pthread_setspecific(pthread_key, value); } void Thread::YieldCPU() { sched_yield(); } class MacOSMutex : public Mutex { public: MacOSMutex() { pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); pthread_mutex_init(&mutex_, &attr); } ~MacOSMutex() { pthread_mutex_destroy(&mutex_); } int Lock() { return pthread_mutex_lock(&mutex_); } int Unlock() { return pthread_mutex_unlock(&mutex_); } private: pthread_mutex_t mutex_; }; Mutex* OS::CreateMutex() { return new MacOSMutex(); } class MacOSSemaphore : public Semaphore { public: explicit MacOSSemaphore(int count) { semaphore_create(mach_task_self(), &semaphore_, SYNC_POLICY_FIFO, count); } ~MacOSSemaphore() { semaphore_destroy(mach_task_self(), semaphore_); } // The MacOS mach semaphore documentation claims it does not have spurious // wakeups, the way pthreads semaphores do. So the code from the linux // platform is not needed here. void Wait() { semaphore_wait(semaphore_); } bool Wait(int timeout); void Signal() { semaphore_signal(semaphore_); } private: semaphore_t semaphore_; }; bool MacOSSemaphore::Wait(int timeout) { mach_timespec_t ts; ts.tv_sec = timeout / 1000000; ts.tv_nsec = (timeout % 1000000) * 1000; return semaphore_timedwait(semaphore_, ts) != KERN_OPERATION_TIMED_OUT; } Semaphore* OS::CreateSemaphore(int count) { return new MacOSSemaphore(count); } #ifdef ENABLE_LOGGING_AND_PROFILING class Sampler::PlatformData : public Malloced { public: explicit PlatformData(Sampler* sampler) : sampler_(sampler), task_self_(mach_task_self()), profiled_thread_(0), sampler_thread_(0) { } Sampler* sampler_; // Note: for profiled_thread_ Mach primitives are used instead of PThread's // because the latter doesn't provide thread manipulation primitives required. // For details, consult "Mac OS X Internals" book, Section 7.3. mach_port_t task_self_; thread_act_t profiled_thread_; pthread_t sampler_thread_; // Sampler thread handler. void Runner() { // Loop until the sampler is disengaged. while (sampler_->IsActive()) { TickSample sample; // If profiling, we record the pc and sp of the profiled thread. if (sampler_->IsProfiling() && KERN_SUCCESS == thread_suspend(profiled_thread_)) { #if V8_HOST_ARCH_X64 thread_state_flavor_t flavor = x86_THREAD_STATE64; x86_thread_state64_t state; mach_msg_type_number_t count = x86_THREAD_STATE64_COUNT; #if __DARWIN_UNIX03 #define REGISTER_FIELD(name) __r ## name #else #define REGISTER_FIELD(name) r ## name #endif // __DARWIN_UNIX03 #elif V8_HOST_ARCH_IA32 thread_state_flavor_t flavor = i386_THREAD_STATE; i386_thread_state_t state; mach_msg_type_number_t count = i386_THREAD_STATE_COUNT; #if __DARWIN_UNIX03 #define REGISTER_FIELD(name) __e ## name #else #define REGISTER_FIELD(name) e ## name #endif // __DARWIN_UNIX03 #else #error Unsupported Mac OS X host architecture. #endif // V8_HOST_ARCH if (thread_get_state(profiled_thread_, flavor, reinterpret_cast(&state), &count) == KERN_SUCCESS) { sample.pc = state.REGISTER_FIELD(ip); sample.sp = state.REGISTER_FIELD(sp); sample.fp = state.REGISTER_FIELD(bp); sampler_->SampleStack(&sample); } thread_resume(profiled_thread_); } // We always sample the VM state. sample.state = Logger::state(); // Invoke tick handler with program counter and stack pointer. sampler_->Tick(&sample); // Wait until next sampling. usleep(sampler_->interval_ * 1000); } } }; #undef REGISTER_FIELD // Entry point for sampler thread. static void* SamplerEntry(void* arg) { Sampler::PlatformData* data = reinterpret_cast(arg); data->Runner(); return 0; } Sampler::Sampler(int interval, bool profiling) : interval_(interval), profiling_(profiling), active_(false) { data_ = new PlatformData(this); } Sampler::~Sampler() { delete data_; } void Sampler::Start() { // If we are profiling, we need to be able to access the calling // thread. if (IsProfiling()) { data_->profiled_thread_ = mach_thread_self(); } // Create sampler thread with high priority. // According to POSIX spec, when SCHED_FIFO policy is used, a thread // runs until it exits or blocks. pthread_attr_t sched_attr; sched_param fifo_param; pthread_attr_init(&sched_attr); pthread_attr_setinheritsched(&sched_attr, PTHREAD_EXPLICIT_SCHED); pthread_attr_setschedpolicy(&sched_attr, SCHED_FIFO); fifo_param.sched_priority = sched_get_priority_max(SCHED_FIFO); pthread_attr_setschedparam(&sched_attr, &fifo_param); active_ = true; pthread_create(&data_->sampler_thread_, &sched_attr, SamplerEntry, data_); } void Sampler::Stop() { // Seting active to false triggers termination of the sampler // thread. active_ = false; // Wait for sampler thread to terminate. pthread_join(data_->sampler_thread_, NULL); // Deallocate Mach port for thread. if (IsProfiling()) { mach_port_deallocate(data_->task_self_, data_->profiled_thread_); } } #endif // ENABLE_LOGGING_AND_PROFILING } } // namespace v8::internal