// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/wasm/wasm-macro-gen.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/wasm-run-utils.h" using namespace v8::base; using namespace v8::internal; using namespace v8::internal::compiler; using namespace v8::internal::wasm; namespace { typedef float (*FloatUnOp)(float); typedef float (*FloatBinOp)(float, float); typedef int32_t (*FloatCompareOp)(float, float); typedef int32_t (*Int32BinOp)(int32_t, int32_t); template T Negate(T a) { return -a; } template T Add(T a, T b) { return a + b; } template T Sub(T a, T b) { return a - b; } template int32_t Equal(T a, T b) { return a == b ? 0xFFFFFFFF : 0; } template int32_t NotEqual(T a, T b) { return a != b ? 0xFFFFFFFF : 0; } #if V8_TARGET_ARCH_ARM int32_t Equal(float a, float b) { return a == b ? 0xFFFFFFFF : 0; } int32_t NotEqual(float a, float b) { return a != b ? 0xFFFFFFFF : 0; } #endif // V8_TARGET_ARCH_ARM } // namespace // TODO(gdeepti): These are tests using sample values to verify functional // correctness of opcodes, add more tests for a range of values and macroize // tests. // TODO(bbudge) Figure out how to compare floats in Wasm code that can handle // NaNs. For now, our tests avoid using NaNs. #define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \ WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \ WASM_SIMD_##TYPE##_EXTRACT_LANE( \ lane_index, WASM_GET_LOCAL(value))), \ WASM_RETURN1(WASM_ZERO)) #define WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3) \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \ , WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3) #define WASM_SIMD_CHECK_SPLAT4(TYPE, value, LANE_TYPE, lv) \ WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv, lv, lv, lv) #define WASM_SIMD_CHECK_F32_LANE(TYPE, value, lane_value, lane_index) \ WASM_IF( \ WASM_I32_NE(WASM_I32_REINTERPRET_F32(WASM_GET_LOCAL(lane_value)), \ WASM_I32_REINTERPRET_F32(WASM_SIMD_##TYPE##_EXTRACT_LANE( \ lane_index, WASM_GET_LOCAL(value)))), \ WASM_RETURN1(WASM_ZERO)) #define WASM_SIMD_CHECK4_F32(TYPE, value, lv0, lv1, lv2, lv3) \ WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv0, 0) \ , WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv1, 1), \ WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv2, 2), \ WASM_SIMD_CHECK_F32_LANE(TYPE, value, lv3, 3) #define WASM_SIMD_CHECK_SPLAT4_F32(TYPE, value, lv) \ WASM_SIMD_CHECK4_F32(TYPE, value, lv, lv, lv, lv) #if V8_TARGET_ARCH_ARM WASM_EXEC_TEST(F32x4Splat) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte lane_val = 0; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK(WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT( WASM_GET_LOCAL(lane_val))), WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, lane_val), WASM_RETURN1(WASM_ONE))); FOR_FLOAT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); } } WASM_EXEC_TEST(F32x4ReplaceLane) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte old_val = 0; byte new_val = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(old_val))), WASM_SET_LOCAL( simd, WASM_SIMD_F32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, old_val, old_val, old_val), WASM_SET_LOCAL( simd, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, old_val, old_val), WASM_SET_LOCAL( simd, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(F32x4, simd, F32, new_val, new_val, new_val, old_val), WASM_SET_LOCAL( simd, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_SPLAT4(F32x4, simd, F32, new_val), WASM_RETURN1(WASM_ONE))); CHECK_EQ(1, r.Call(3.14159, -1.5)); } // Tests both signed and unsigned conversion. WASM_EXEC_TEST(F32x4FromInt32x4) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte a = 0; byte expected_signed = 1; byte expected_unsigned = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL( simd1, WASM_SIMD_F32x4_FROM_I32x4(WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected_signed), WASM_SET_LOCAL( simd2, WASM_SIMD_F32x4_FROM_U32x4(WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd2, expected_unsigned), WASM_RETURN1(WASM_ONE))); FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, static_cast(*i), static_cast(static_cast(*i)))); } } WASM_EXEC_TEST(S32x4Select) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte val1 = 0; byte val2 = 1; byte mask = r.AllocateLocal(kWasmS128); byte src1 = r.AllocateLocal(kWasmS128); byte src2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_SPLAT(WASM_ZERO)), WASM_SET_LOCAL(src1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val1))), WASM_SET_LOCAL(src2, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(val2))), WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE( 1, WASM_GET_LOCAL(mask), WASM_I32V(-1))), WASM_SET_LOCAL(mask, WASM_SIMD_I32x4_REPLACE_LANE( 2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), WASM_SET_LOCAL(mask, WASM_SIMD_S32x4_SELECT(WASM_GET_LOCAL(mask), WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2))), WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 0), WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 1), WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val1, 2), WASM_SIMD_CHECK_LANE(I32x4, mask, I32, val2, 3), WASM_RETURN1(WASM_ONE))); CHECK_EQ(1, r.Call(0x1234, 0x5678)); } void RunF32x4UnOpTest(WasmOpcode simd_op, FloatUnOp expected_op) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte a = 0; byte expected = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL( simd, WASM_SIMD_UNOP(simd_op & 0xffu, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd, expected), WASM_RETURN1(WASM_ONE))); FOR_FLOAT32_INPUTS(i) { if (std::isnan(*i)) continue; CHECK_EQ(1, r.Call(*i, expected_op(*i))); } } WASM_EXEC_TEST(F32x4Abs) { RunF32x4UnOpTest(kExprF32x4Abs, std::abs); } WASM_EXEC_TEST(F32x4Neg) { RunF32x4UnOpTest(kExprF32x4Neg, Negate); } void RunF32x4BinOpTest(WasmOpcode simd_op, FloatBinOp expected_op) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op & 0xffu, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT4_F32(F32x4, simd1, expected), WASM_RETURN1(WASM_ONE))); FOR_FLOAT32_INPUTS(i) { if (std::isnan(*i)) continue; FOR_FLOAT32_INPUTS(j) { if (std::isnan(*j)) continue; float expected = expected_op(*i, *j); // SIMD on some platforms may handle denormalized numbers differently. // TODO(bbudge) On platforms that flush denorms to zero, test with // expected == 0. if (std::fpclassify(expected) == FP_SUBNORMAL) continue; CHECK_EQ(1, r.Call(*i, *j, expected)); } } } WASM_EXEC_TEST(F32x4Add) { RunF32x4BinOpTest(kExprF32x4Add, Add); } WASM_EXEC_TEST(F32x4Sub) { RunF32x4BinOpTest(kExprF32x4Sub, Sub); } void RunF32x4CompareOpTest(WasmOpcode simd_op, FloatCompareOp expected_op) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op & 0xffu, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_RETURN1(WASM_ONE))); FOR_FLOAT32_INPUTS(i) { if (std::isnan(*i)) continue; FOR_FLOAT32_INPUTS(j) { if (std::isnan(*j)) continue; // SIMD on some platforms may handle denormalized numbers differently. // Check for number pairs that are very close together. if (std::fpclassify(*i - *j) == FP_SUBNORMAL) continue; CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_EXEC_TEST(F32x4Equal) { RunF32x4CompareOpTest(kExprF32x4Eq, Equal); } WASM_EXEC_TEST(F32x4NotEqual) { RunF32x4CompareOpTest(kExprF32x4Ne, NotEqual); } #endif // V8_TARGET_ARCH_ARM WASM_EXEC_TEST(I32x4Splat) { FLAG_wasm_simd_prototype = true; // Store SIMD value in a local variable, use extract lane to check lane values // This test is not a test for ExtractLane as Splat does not create // interesting SIMD values. // // SetLocal(1, I32x4Splat(Local(0))); // For each lane index // if(Local(0) != I32x4ExtractLane(Local(1), index) // return 0 // // return 1 WasmRunner r(kExecuteCompiled); byte lane_val = 0; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK(WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT( WASM_GET_LOCAL(lane_val))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, lane_val), WASM_RETURN1(WASM_ONE))); FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); } } WASM_EXEC_TEST(I32x4ReplaceLane) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte old_val = 0; byte new_val = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(old_val))), WASM_SET_LOCAL( simd, WASM_SIMD_I32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, old_val, old_val, old_val), WASM_SET_LOCAL( simd, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, old_val, old_val), WASM_SET_LOCAL( simd, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, new_val, old_val), WASM_SET_LOCAL( simd, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, new_val), WASM_RETURN1(WASM_ONE))); CHECK_EQ(1, r.Call(1, 2)); } #if V8_TARGET_ARCH_ARM // Determines if conversion from float to int will be valid. bool CanRoundToZeroAndConvert(double val, bool unsigned_integer) { const double max_uint = static_cast(0xffffffffu); const double max_int = static_cast(kMaxInt); const double min_int = static_cast(kMinInt); // Check for NaN. if (val != val) { return false; } // Round to zero and check for overflow. This code works because 32 bit // integers can be exactly represented by ieee-754 64bit floating-point // values. return unsigned_integer ? (val < (max_uint + 1.0)) && (val > -1) : (val < (max_int + 1.0)) && (val > (min_int - 1.0)); } int ConvertInvalidValue(double val, bool unsigned_integer) { if (val != val) { return 0; } else { if (unsigned_integer) { return (val < 0) ? 0 : 0xffffffffu; } else { return (val < 0) ? kMinInt : kMaxInt; } } } int32_t ConvertToInt(double val, bool unsigned_integer) { int32_t result = unsigned_integer ? static_cast(val) : static_cast(val); if (!CanRoundToZeroAndConvert(val, unsigned_integer)) { result = ConvertInvalidValue(val, unsigned_integer); } return result; } // Tests both signed and unsigned conversion. WASM_EXEC_TEST(I32x4FromFloat32x4) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte a = 0; byte expected_signed = 1; byte expected_unsigned = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL( simd1, WASM_SIMD_I32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected_signed), WASM_SET_LOCAL( simd2, WASM_SIMD_U32x4_FROM_F32x4(WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, expected_unsigned), WASM_RETURN1(WASM_ONE))); FOR_FLOAT32_INPUTS(i) { int32_t signed_value = ConvertToInt(*i, false); int32_t unsigned_value = ConvertToInt(*i, true); CHECK_EQ(1, r.Call(*i, signed_value, unsigned_value)); } } #endif // V8_TARGET_ARCH_ARM void RunI32x4BinOpTest(WasmOpcode simd_op, Int32BinOp expected_op) { FLAG_wasm_simd_prototype = true; WasmRunner r(kExecuteCompiled); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_BLOCK( WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op & 0xffu, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_RETURN1(WASM_ONE))); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_EXEC_TEST(I32x4Add) { RunI32x4BinOpTest(kExprI32x4Add, Add); } WASM_EXEC_TEST(I32x4Sub) { RunI32x4BinOpTest(kExprI32x4Sub, Sub); } #if V8_TARGET_ARCH_ARM WASM_EXEC_TEST(I32x4Equal) { RunI32x4BinOpTest(kExprI32x4Eq, Equal); } WASM_EXEC_TEST(I32x4NotEqual) { RunI32x4BinOpTest(kExprI32x4Ne, NotEqual); } #endif // V8_TARGET_ARCH_ARM