// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "runtime-profiler.h" #include "assembler.h" #include "code-stubs.h" #include "compilation-cache.h" #include "deoptimizer.h" #include "execution.h" #include "global-handles.h" #include "mark-compact.h" #include "platform.h" #include "scopeinfo.h" namespace v8 { namespace internal { class PendingListNode : public Malloced { public: explicit PendingListNode(JSFunction* function); ~PendingListNode() { Destroy(); } PendingListNode* next() const { return next_; } void set_next(PendingListNode* node) { next_ = node; } Handle function() { return Handle::cast(function_); } // If the function is garbage collected before we've had the chance // to optimize it the weak handle will be null. bool IsValid() { return !function_.is_null(); } // Returns the number of microseconds this node has been pending. int Delay() const { return static_cast(OS::Ticks() - start_); } private: void Destroy(); static void WeakCallback(v8::Persistent object, void* data); PendingListNode* next_; Handle function_; // Weak handle. int64_t start_; }; // Optimization sampler constants. static const int kSamplerFrameCount = 2; static const int kSamplerFrameWeight[kSamplerFrameCount] = { 2, 1 }; static const int kSamplerTicksBetweenThresholdAdjustment = 32; static const int kSamplerThresholdInit = 3; static const int kSamplerThresholdMin = 1; static const int kSamplerThresholdDelta = 1; static const int kSamplerThresholdSizeFactorInit = 3; static const int kSamplerThresholdSizeFactorMin = 1; static const int kSamplerThresholdSizeFactorDelta = 1; static const int kSizeLimit = 1500; PendingListNode::PendingListNode(JSFunction* function) : next_(NULL) { GlobalHandles* global_handles = Isolate::Current()->global_handles(); function_ = global_handles->Create(function); start_ = OS::Ticks(); global_handles->MakeWeak(function_.location(), this, &WeakCallback); } void PendingListNode::Destroy() { if (!IsValid()) return; GlobalHandles* global_handles = Isolate::Current()->global_handles(); global_handles->Destroy(function_.location()); function_= Handle::null(); } void PendingListNode::WeakCallback(v8::Persistent, void* data) { reinterpret_cast(data)->Destroy(); } static bool IsOptimizable(JSFunction* function) { Code* code = function->code(); return code->kind() == Code::FUNCTION && code->optimizable(); } Atomic32 RuntimeProfiler::state_ = 0; // TODO(isolates): Create the semaphore lazily and clean it up when no // longer required. #ifdef ENABLE_LOGGING_AND_PROFILING Semaphore* RuntimeProfiler::semaphore_ = OS::CreateSemaphore(0); #endif RuntimeProfiler::RuntimeProfiler(Isolate* isolate) : isolate_(isolate), sampler_threshold_(kSamplerThresholdInit), sampler_threshold_size_factor_(kSamplerThresholdSizeFactorInit), sampler_ticks_until_threshold_adjustment_( kSamplerTicksBetweenThresholdAdjustment), js_ratio_(0), sampler_window_position_(0), optimize_soon_list_(NULL), state_window_position_(0) { state_counts_[0] = kStateWindowSize; state_counts_[1] = 0; memset(state_window_, 0, sizeof(state_window_)); ClearSampleBuffer(); } bool RuntimeProfiler::IsEnabled() { return V8::UseCrankshaft() && FLAG_opt; } void RuntimeProfiler::Optimize(JSFunction* function, bool eager, int delay) { ASSERT(IsOptimizable(function)); if (FLAG_trace_opt) { PrintF("[marking (%s) ", eager ? "eagerly" : "lazily"); function->PrintName(); PrintF(" for recompilation"); if (delay > 0) { PrintF(" (delayed %0.3f ms)", static_cast(delay) / 1000); } PrintF("]\n"); } // The next call to the function will trigger optimization. function->MarkForLazyRecompilation(); } void RuntimeProfiler::AttemptOnStackReplacement(JSFunction* function) { // See AlwaysFullCompiler (in compiler.cc) comment on why we need // Debug::has_break_points(). ASSERT(function->IsMarkedForLazyRecompilation()); if (!FLAG_use_osr || isolate_->debug()->has_break_points() || function->IsBuiltin()) { return; } SharedFunctionInfo* shared = function->shared(); // If the code is not optimizable or references context slots, don't try OSR. if (!shared->code()->optimizable() || !shared->allows_lazy_compilation()) { return; } // We are not prepared to do OSR for a function that already has an // allocated arguments object. The optimized code would bypass it for // arguments accesses, which is unsound. Don't try OSR. if (shared->scope_info()->HasArgumentsShadow()) return; // We're using on-stack replacement: patch the unoptimized code so that // any back edge in any unoptimized frame will trigger on-stack // replacement for that frame. if (FLAG_trace_osr) { PrintF("[patching stack checks in "); function->PrintName(); PrintF(" for on-stack replacement]\n"); } // Get the stack check stub code object to match against. We aren't // prepared to generate it, but we don't expect to have to. StackCheckStub check_stub; Object* check_code; MaybeObject* maybe_check_code = check_stub.TryGetCode(); if (maybe_check_code->ToObject(&check_code)) { Code* replacement_code = isolate_->builtins()->builtin(Builtins::OnStackReplacement); Code* unoptimized_code = shared->code(); Deoptimizer::PatchStackCheckCode(unoptimized_code, Code::cast(check_code), replacement_code); } } void RuntimeProfiler::ClearSampleBuffer() { memset(sampler_window_, 0, sizeof(sampler_window_)); memset(sampler_window_weight_, 0, sizeof(sampler_window_weight_)); } int RuntimeProfiler::LookupSample(JSFunction* function) { int weight = 0; for (int i = 0; i < kSamplerWindowSize; i++) { Object* sample = sampler_window_[i]; if (sample != NULL) { if (function == sample) { weight += sampler_window_weight_[i]; } } } return weight; } void RuntimeProfiler::AddSample(JSFunction* function, int weight) { ASSERT(IsPowerOf2(kSamplerWindowSize)); sampler_window_[sampler_window_position_] = function; sampler_window_weight_[sampler_window_position_] = weight; sampler_window_position_ = (sampler_window_position_ + 1) & (kSamplerWindowSize - 1); } void RuntimeProfiler::OptimizeNow() { HandleScope scope(isolate_); PendingListNode* current = optimize_soon_list_; while (current != NULL) { PendingListNode* next = current->next(); if (current->IsValid()) { Handle function = current->function(); int delay = current->Delay(); if (IsOptimizable(*function)) { Optimize(*function, true, delay); } } delete current; current = next; } optimize_soon_list_ = NULL; // Run through the JavaScript frames and collect them. If we already // have a sample of the function, we mark it for optimizations // (eagerly or lazily). JSFunction* samples[kSamplerFrameCount]; int sample_count = 0; int frame_count = 0; for (JavaScriptFrameIterator it; frame_count++ < kSamplerFrameCount && !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); JSFunction* function = JSFunction::cast(frame->function()); // Adjust threshold each time we have processed // a certain number of ticks. if (sampler_ticks_until_threshold_adjustment_ > 0) { sampler_ticks_until_threshold_adjustment_--; if (sampler_ticks_until_threshold_adjustment_ <= 0) { // If the threshold is not already at the minimum // modify and reset the ticks until next adjustment. if (sampler_threshold_ > kSamplerThresholdMin) { sampler_threshold_ -= kSamplerThresholdDelta; sampler_ticks_until_threshold_adjustment_ = kSamplerTicksBetweenThresholdAdjustment; } } } if (function->IsMarkedForLazyRecompilation()) { Code* unoptimized = function->shared()->code(); int nesting = unoptimized->allow_osr_at_loop_nesting_level(); if (nesting == 0) AttemptOnStackReplacement(function); int new_nesting = Min(nesting + 1, Code::kMaxLoopNestingMarker); unoptimized->set_allow_osr_at_loop_nesting_level(new_nesting); } // Do not record non-optimizable functions. if (!IsOptimizable(function)) continue; samples[sample_count++] = function; int function_size = function->shared()->SourceSize(); int threshold_size_factor = (function_size > kSizeLimit) ? sampler_threshold_size_factor_ : 1; int threshold = sampler_threshold_ * threshold_size_factor; int current_js_ratio = NoBarrier_Load(&js_ratio_); // Adjust threshold depending on the ratio of time spent // in JS code. if (current_js_ratio < 20) { // If we spend less than 20% of the time in JS code, // do not optimize. continue; } else if (current_js_ratio < 75) { // Below 75% of time spent in JS code, only optimize very // frequently used functions. threshold *= 3; } if (LookupSample(function) >= threshold) { Optimize(function, false, 0); isolate_->compilation_cache()->MarkForEagerOptimizing( Handle(function)); } } // Add the collected functions as samples. It's important not to do // this as part of collecting them because this will interfere with // the sample lookup in case of recursive functions. for (int i = 0; i < sample_count; i++) { AddSample(samples[i], kSamplerFrameWeight[i]); } } void RuntimeProfiler::OptimizeSoon(JSFunction* function) { if (!IsOptimizable(function)) return; PendingListNode* node = new PendingListNode(function); node->set_next(optimize_soon_list_); optimize_soon_list_ = node; } #ifdef ENABLE_LOGGING_AND_PROFILING void RuntimeProfiler::UpdateStateRatio(SamplerState current_state) { SamplerState old_state = state_window_[state_window_position_]; state_counts_[old_state]--; state_window_[state_window_position_] = current_state; state_counts_[current_state]++; ASSERT(IsPowerOf2(kStateWindowSize)); state_window_position_ = (state_window_position_ + 1) & (kStateWindowSize - 1); NoBarrier_Store(&js_ratio_, state_counts_[IN_JS_STATE] * 100 / kStateWindowSize); } #endif void RuntimeProfiler::NotifyTick() { #ifdef ENABLE_LOGGING_AND_PROFILING // Record state sample. SamplerState state = IsSomeIsolateInJS() ? IN_JS_STATE : IN_NON_JS_STATE; UpdateStateRatio(state); isolate_->stack_guard()->RequestRuntimeProfilerTick(); #endif } void RuntimeProfiler::Setup() { ClearSampleBuffer(); // If the ticker hasn't already started, make sure to do so to get // the ticks for the runtime profiler. if (IsEnabled()) isolate_->logger()->EnsureTickerStarted(); } void RuntimeProfiler::Reset() { sampler_threshold_ = kSamplerThresholdInit; sampler_threshold_size_factor_ = kSamplerThresholdSizeFactorInit; sampler_ticks_until_threshold_adjustment_ = kSamplerTicksBetweenThresholdAdjustment; } void RuntimeProfiler::TearDown() { // Nothing to do. } int RuntimeProfiler::SamplerWindowSize() { return kSamplerWindowSize; } // Update the pointers in the sampler window after a GC. void RuntimeProfiler::UpdateSamplesAfterScavenge() { for (int i = 0; i < kSamplerWindowSize; i++) { Object* function = sampler_window_[i]; if (function != NULL && isolate_->heap()->InNewSpace(function)) { MapWord map_word = HeapObject::cast(function)->map_word(); if (map_word.IsForwardingAddress()) { sampler_window_[i] = map_word.ToForwardingAddress(); } else { sampler_window_[i] = NULL; } } } } void RuntimeProfiler::HandleWakeUp(Isolate* isolate) { #ifdef ENABLE_LOGGING_AND_PROFILING // The profiler thread must still be waiting. ASSERT(NoBarrier_Load(&state_) >= 0); // In IsolateEnteredJS we have already incremented the counter and // undid the decrement done by the profiler thread. Increment again // to get the right count of active isolates. NoBarrier_AtomicIncrement(&state_, 1); semaphore_->Signal(); isolate->ResetEagerOptimizingData(); #endif } bool RuntimeProfiler::IsSomeIsolateInJS() { return NoBarrier_Load(&state_) > 0; } bool RuntimeProfiler::WaitForSomeIsolateToEnterJS() { #ifdef ENABLE_LOGGING_AND_PROFILING Atomic32 old_state = NoBarrier_CompareAndSwap(&state_, 0, -1); ASSERT(old_state >= -1); if (old_state != 0) return false; semaphore_->Wait(); #endif return true; } void RuntimeProfiler::WakeUpRuntimeProfilerThreadBeforeShutdown() { #ifdef ENABLE_LOGGING_AND_PROFILING semaphore_->Signal(); #endif } void RuntimeProfiler::RemoveDeadSamples() { for (int i = 0; i < kSamplerWindowSize; i++) { Object* function = sampler_window_[i]; if (function != NULL && !HeapObject::cast(function)->IsMarked()) { sampler_window_[i] = NULL; } } } void RuntimeProfiler::UpdateSamplesAfterCompact(ObjectVisitor* visitor) { for (int i = 0; i < kSamplerWindowSize; i++) { visitor->VisitPointer(&sampler_window_[i]); } } bool RuntimeProfilerRateLimiter::SuspendIfNecessary() { #ifdef ENABLE_LOGGING_AND_PROFILING static const int kNonJSTicksThreshold = 100; if (RuntimeProfiler::IsSomeIsolateInJS()) { non_js_ticks_ = 0; } else { if (non_js_ticks_ < kNonJSTicksThreshold) { ++non_js_ticks_; } else { return RuntimeProfiler::WaitForSomeIsolateToEnterJS(); } } #endif return false; } } } // namespace v8::internal