// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_GLOBALS_H_ #define V8_GLOBALS_H_ #include #include #include #include "src/base/build_config.h" #include "src/base/logging.h" #include "src/base/macros.h" // Unfortunately, the INFINITY macro cannot be used with the '-pedantic' // warning flag and certain versions of GCC due to a bug: // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931 // For now, we use the more involved template-based version from , but // only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x) #if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0) # include // NOLINT # define V8_INFINITY std::numeric_limits::infinity() #elif V8_LIBC_MSVCRT # define V8_INFINITY HUGE_VAL #elif V8_OS_AIX #define V8_INFINITY (__builtin_inff()) #else # define V8_INFINITY INFINITY #endif #if V8_TARGET_ARCH_IA32 || (V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_32_BIT) || \ V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \ V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_X87 #define V8_TURBOFAN_BACKEND 1 #else #define V8_TURBOFAN_BACKEND 0 #endif #if V8_TURBOFAN_BACKEND #define V8_TURBOFAN_TARGET 1 #else #define V8_TURBOFAN_TARGET 0 #endif namespace v8 { namespace base { class Mutex; class RecursiveMutex; class VirtualMemory; } namespace internal { // Determine whether we are running in a simulated environment. // Setting USE_SIMULATOR explicitly from the build script will force // the use of a simulated environment. #if !defined(USE_SIMULATOR) #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64) #define USE_SIMULATOR 1 #endif #endif // Determine whether the architecture uses an embedded constant pool // (contiguous constant pool embedded in code object). #if V8_TARGET_ARCH_PPC #define V8_EMBEDDED_CONSTANT_POOL 1 #else #define V8_EMBEDDED_CONSTANT_POOL 0 #endif #ifdef V8_TARGET_ARCH_ARM // Set stack limit lower for ARM than for other architectures because // stack allocating MacroAssembler takes 120K bytes. // See issue crbug.com/405338 #define V8_DEFAULT_STACK_SIZE_KB 864 #else // Slightly less than 1MB, since Windows' default stack size for // the main execution thread is 1MB for both 32 and 64-bit. #define V8_DEFAULT_STACK_SIZE_KB 984 #endif // Determine whether double field unboxing feature is enabled. #if V8_TARGET_ARCH_64_BIT #define V8_DOUBLE_FIELDS_UNBOXING 1 #else #define V8_DOUBLE_FIELDS_UNBOXING 0 #endif typedef uint8_t byte; typedef byte* Address; // ----------------------------------------------------------------------------- // Constants const int KB = 1024; const int MB = KB * KB; const int GB = KB * KB * KB; const int kMaxInt = 0x7FFFFFFF; const int kMinInt = -kMaxInt - 1; const int kMaxInt8 = (1 << 7) - 1; const int kMinInt8 = -(1 << 7); const int kMaxUInt8 = (1 << 8) - 1; const int kMinUInt8 = 0; const int kMaxInt16 = (1 << 15) - 1; const int kMinInt16 = -(1 << 15); const int kMaxUInt16 = (1 << 16) - 1; const int kMinUInt16 = 0; const uint32_t kMaxUInt32 = 0xFFFFFFFFu; const int kCharSize = sizeof(char); // NOLINT const int kShortSize = sizeof(short); // NOLINT const int kIntSize = sizeof(int); // NOLINT const int kInt32Size = sizeof(int32_t); // NOLINT const int kInt64Size = sizeof(int64_t); // NOLINT const int kFloatSize = sizeof(float); // NOLINT const int kDoubleSize = sizeof(double); // NOLINT const int kIntptrSize = sizeof(intptr_t); // NOLINT const int kPointerSize = sizeof(void*); // NOLINT #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT const int kRegisterSize = kPointerSize + kPointerSize; #else const int kRegisterSize = kPointerSize; #endif const int kPCOnStackSize = kRegisterSize; const int kFPOnStackSize = kRegisterSize; const int kDoubleSizeLog2 = 3; #if V8_HOST_ARCH_64_BIT const int kPointerSizeLog2 = 3; const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000); const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF); const bool kRequiresCodeRange = true; #if V8_TARGET_ARCH_MIPS64 // To use pseudo-relative jumps such as j/jal instructions which have 28-bit // encoded immediate, the addresses have to be in range of 256MB aligned // region. Used only for large object space. const size_t kMaximalCodeRangeSize = 256 * MB; #else const size_t kMaximalCodeRangeSize = 512 * MB; #endif #if V8_OS_WIN const size_t kMinimumCodeRangeSize = 4 * MB; const size_t kReservedCodeRangePages = 1; #else const size_t kMinimumCodeRangeSize = 3 * MB; const size_t kReservedCodeRangePages = 0; #endif #else const int kPointerSizeLog2 = 2; const intptr_t kIntptrSignBit = 0x80000000; const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu; #if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT // x32 port also requires code range. const bool kRequiresCodeRange = true; const size_t kMaximalCodeRangeSize = 256 * MB; const size_t kMinimumCodeRangeSize = 3 * MB; const size_t kReservedCodeRangePages = 0; #else const bool kRequiresCodeRange = false; const size_t kMaximalCodeRangeSize = 0 * MB; const size_t kMinimumCodeRangeSize = 0 * MB; const size_t kReservedCodeRangePages = 0; #endif #endif STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2)); const int kBitsPerByte = 8; const int kBitsPerByteLog2 = 3; const int kBitsPerPointer = kPointerSize * kBitsPerByte; const int kBitsPerInt = kIntSize * kBitsPerByte; // IEEE 754 single precision floating point number bit layout. const uint32_t kBinary32SignMask = 0x80000000u; const uint32_t kBinary32ExponentMask = 0x7f800000u; const uint32_t kBinary32MantissaMask = 0x007fffffu; const int kBinary32ExponentBias = 127; const int kBinary32MaxExponent = 0xFE; const int kBinary32MinExponent = 0x01; const int kBinary32MantissaBits = 23; const int kBinary32ExponentShift = 23; // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no // other bits set. const uint64_t kQuietNaNMask = static_cast(0xfff) << 51; // Latin1/UTF-16 constants // Code-point values in Unicode 4.0 are 21 bits wide. // Code units in UTF-16 are 16 bits wide. typedef uint16_t uc16; typedef int32_t uc32; const int kOneByteSize = kCharSize; const int kUC16Size = sizeof(uc16); // NOLINT // 128 bit SIMD value size. const int kSimd128Size = 16; // Round up n to be a multiple of sz, where sz is a power of 2. #define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1)) // FUNCTION_ADDR(f) gets the address of a C function f. #define FUNCTION_ADDR(f) \ (reinterpret_cast(reinterpret_cast(f))) // FUNCTION_CAST(addr) casts an address into a function // of type F. Used to invoke generated code from within C. template F FUNCTION_CAST(Address addr) { return reinterpret_cast(reinterpret_cast(addr)); } // ----------------------------------------------------------------------------- // Forward declarations for frequently used classes // (sorted alphabetically) class FreeStoreAllocationPolicy; template class List; // ----------------------------------------------------------------------------- // Declarations for use in both the preparser and the rest of V8. // The Strict Mode (ECMA-262 5th edition, 4.2.2). enum LanguageMode { // LanguageMode is expressed as a bitmask. Descriptions of the bits: STRICT_BIT = 1 << 0, STRONG_BIT = 1 << 1, LANGUAGE_END, // Shorthands for some common language modes. SLOPPY = 0, STRICT = STRICT_BIT, STRONG = STRICT_BIT | STRONG_BIT }; inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) { switch (mode) { case SLOPPY: return os << "sloppy"; case STRICT: return os << "strict"; case STRONG: return os << "strong"; default: return os << "unknown"; } } inline bool is_sloppy(LanguageMode language_mode) { return (language_mode & STRICT_BIT) == 0; } inline bool is_strict(LanguageMode language_mode) { return language_mode & STRICT_BIT; } inline bool is_strong(LanguageMode language_mode) { return language_mode & STRONG_BIT; } inline bool is_valid_language_mode(int language_mode) { return language_mode == SLOPPY || language_mode == STRICT || language_mode == STRONG; } inline LanguageMode construct_language_mode(bool strict_bit, bool strong_bit) { int language_mode = 0; if (strict_bit) language_mode |= STRICT_BIT; if (strong_bit) language_mode |= STRONG_BIT; DCHECK(is_valid_language_mode(language_mode)); return static_cast(language_mode); } // Strong mode behaviour must sometimes be signalled by a two valued enum where // caching is involved, to prevent sloppy and strict mode from being incorrectly // differentiated. enum class Strength : bool { WEAK, // sloppy, strict behaviour STRONG // strong behaviour }; inline bool is_strong(Strength strength) { return strength == Strength::STRONG; } inline std::ostream& operator<<(std::ostream& os, const Strength& strength) { return os << (is_strong(strength) ? "strong" : "weak"); } inline Strength strength(LanguageMode language_mode) { return is_strong(language_mode) ? Strength::STRONG : Strength::WEAK; } inline size_t hash_value(Strength strength) { return static_cast(strength); } // Mask for the sign bit in a smi. const intptr_t kSmiSignMask = kIntptrSignBit; const int kObjectAlignmentBits = kPointerSizeLog2; const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits; const intptr_t kObjectAlignmentMask = kObjectAlignment - 1; // Desired alignment for pointers. const intptr_t kPointerAlignment = (1 << kPointerSizeLog2); const intptr_t kPointerAlignmentMask = kPointerAlignment - 1; // Desired alignment for double values. const intptr_t kDoubleAlignment = 8; const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1; // Desired alignment for 128 bit SIMD values. const intptr_t kSimd128Alignment = 16; const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1; // Desired alignment for generated code is 32 bytes (to improve cache line // utilization). const int kCodeAlignmentBits = 5; const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits; const intptr_t kCodeAlignmentMask = kCodeAlignment - 1; // The owner field of a page is tagged with the page header tag. We need that // to find out if a slot is part of a large object. If we mask out the lower // 0xfffff bits (1M pages), go to the owner offset, and see that this field // is tagged with the page header tag, we can just look up the owner. // Otherwise, we know that we are somewhere (not within the first 1M) in a // large object. const int kPageHeaderTag = 3; const int kPageHeaderTagSize = 2; const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1; // Zap-value: The value used for zapping dead objects. // Should be a recognizable hex value tagged as a failure. #ifdef V8_HOST_ARCH_64_BIT const Address kZapValue = reinterpret_cast
(V8_UINT64_C(0xdeadbeedbeadbeef)); const Address kHandleZapValue = reinterpret_cast
(V8_UINT64_C(0x1baddead0baddeaf)); const Address kGlobalHandleZapValue = reinterpret_cast
(V8_UINT64_C(0x1baffed00baffedf)); const Address kFromSpaceZapValue = reinterpret_cast
(V8_UINT64_C(0x1beefdad0beefdaf)); const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb); const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef); const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf; #else const Address kZapValue = reinterpret_cast
(0xdeadbeef); const Address kHandleZapValue = reinterpret_cast
(0xbaddeaf); const Address kGlobalHandleZapValue = reinterpret_cast
(0xbaffedf); const Address kFromSpaceZapValue = reinterpret_cast
(0xbeefdaf); const uint32_t kSlotsZapValue = 0xbeefdeef; const uint32_t kDebugZapValue = 0xbadbaddb; const uint32_t kFreeListZapValue = 0xfeed1eaf; #endif const int kCodeZapValue = 0xbadc0de; const uint32_t kPhantomReferenceZap = 0xca11bac; // On Intel architecture, cache line size is 64 bytes. // On ARM it may be less (32 bytes), but as far this constant is // used for aligning data, it doesn't hurt to align on a greater value. #define PROCESSOR_CACHE_LINE_SIZE 64 // Constants relevant to double precision floating point numbers. // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30. const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32); // ----------------------------------------------------------------------------- // Forward declarations for frequently used classes class AccessorInfo; class Allocation; class Arguments; class Assembler; class Code; class CodeGenerator; class CodeStub; class Context; class Debug; class Debugger; class DebugInfo; class Descriptor; class DescriptorArray; class TransitionArray; class ExternalReference; class FixedArray; class FunctionTemplateInfo; class MemoryChunk; class SeededNumberDictionary; class UnseededNumberDictionary; class NameDictionary; class GlobalDictionary; template class MaybeHandle; template class Handle; class Heap; class HeapObject; class IC; class InterceptorInfo; class Isolate; class JSReceiver; class JSArray; class JSFunction; class JSObject; class LargeObjectSpace; class MacroAssembler; class Map; class MapSpace; class MarkCompactCollector; class NewSpace; class Object; class OldSpace; class Foreign; class Scope; class ScopeInfo; class Script; class Smi; template class SplayTree; class String; class Symbol; class Name; class Struct; class Symbol; class Variable; class RelocInfo; class Deserializer; class MessageLocation; typedef bool (*WeakSlotCallback)(Object** pointer); typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer); // ----------------------------------------------------------------------------- // Miscellaneous // NOTE: SpaceIterator depends on AllocationSpace enumeration values being // consecutive. // Keep this enum in sync with the ObjectSpace enum in v8.h enum AllocationSpace { NEW_SPACE, // Semispaces collected with copying collector. OLD_SPACE, // May contain pointers to new space. CODE_SPACE, // No pointers to new space, marked executable. MAP_SPACE, // Only and all map objects. LO_SPACE, // Promoted large objects. FIRST_SPACE = NEW_SPACE, LAST_SPACE = LO_SPACE, FIRST_PAGED_SPACE = OLD_SPACE, LAST_PAGED_SPACE = MAP_SPACE }; const int kSpaceTagSize = 3; const int kSpaceTagMask = (1 << kSpaceTagSize) - 1; enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned, kSimd128Unaligned }; // A flag that indicates whether objects should be pretenured when // allocated (allocated directly into the old generation) or not // (allocated in the young generation if the object size and type // allows). enum PretenureFlag { NOT_TENURED, TENURED }; inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) { switch (flag) { case NOT_TENURED: return os << "NotTenured"; case TENURED: return os << "Tenured"; } UNREACHABLE(); return os; } enum MinimumCapacity { USE_DEFAULT_MINIMUM_CAPACITY, USE_CUSTOM_MINIMUM_CAPACITY }; enum GarbageCollector { SCAVENGER, MARK_COMPACTOR }; enum Executability { NOT_EXECUTABLE, EXECUTABLE }; enum VisitMode { VISIT_ALL, VISIT_ALL_IN_SCAVENGE, VISIT_ALL_IN_SWEEP_NEWSPACE, VISIT_ONLY_STRONG }; // Flag indicating whether code is built into the VM (one of the natives files). enum NativesFlag { NOT_NATIVES_CODE, NATIVES_CODE }; // ParseRestriction is used to restrict the set of valid statements in a // unit of compilation. Restriction violations cause a syntax error. enum ParseRestriction { NO_PARSE_RESTRICTION, // All expressions are allowed. ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression. }; // A CodeDesc describes a buffer holding instructions and relocation // information. The instructions start at the beginning of the buffer // and grow forward, the relocation information starts at the end of // the buffer and grows backward. A constant pool may exist at the // end of the instructions. // // |<--------------- buffer_size ----------------------------------->| // |<------------- instr_size ---------->| |<-- reloc_size -->| // | |<- const_pool_size ->| | // +=====================================+========+==================+ // | instructions | data | free | reloc info | // +=====================================+========+==================+ // ^ // | // buffer struct CodeDesc { byte* buffer; int buffer_size; int instr_size; int reloc_size; int constant_pool_size; Assembler* origin; }; // Callback function used for iterating objects in heap spaces, // for example, scanning heap objects. typedef int (*HeapObjectCallback)(HeapObject* obj); // Callback function used for checking constraints when copying/relocating // objects. Returns true if an object can be copied/relocated from its // old_addr to a new_addr. typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr); // Callback function on inline caches, used for iterating over inline caches // in compiled code. typedef void (*InlineCacheCallback)(Code* code, Address ic); // State for inline cache call sites. Aliased as IC::State. enum InlineCacheState { // Has never been executed. UNINITIALIZED, // Has been executed but monomorhic state has been delayed. PREMONOMORPHIC, // Has been executed and only one receiver type has been seen. MONOMORPHIC, // Check failed due to prototype (or map deprecation). PROTOTYPE_FAILURE, // Multiple receiver types have been seen. POLYMORPHIC, // Many receiver types have been seen. MEGAMORPHIC, // A generic handler is installed and no extra typefeedback is recorded. GENERIC, // Special state for debug break or step in prepare stubs. DEBUG_STUB, // Type-vector-based ICs have a default state, with the full calculation // of IC state only determined by a look at the IC and the typevector // together. DEFAULT }; enum CallFunctionFlags { NO_CALL_FUNCTION_FLAGS, CALL_AS_METHOD, // Always wrap the receiver and call to the JSFunction. Only use this flag // both the receiver type and the target method are statically known. WRAP_AND_CALL }; enum CallConstructorFlags { NO_CALL_CONSTRUCTOR_FLAGS = 0, // The call target is cached in the instruction stream. RECORD_CONSTRUCTOR_TARGET = 1, SUPER_CONSTRUCTOR_CALL = 1 << 1, SUPER_CALL_RECORD_TARGET = SUPER_CONSTRUCTOR_CALL | RECORD_CONSTRUCTOR_TARGET }; enum CacheHolderFlag { kCacheOnPrototype, kCacheOnPrototypeReceiverIsDictionary, kCacheOnPrototypeReceiverIsPrimitive, kCacheOnReceiver }; // The Store Buffer (GC). typedef enum { kStoreBufferFullEvent, kStoreBufferStartScanningPagesEvent, kStoreBufferScanningPageEvent } StoreBufferEvent; typedef void (*StoreBufferCallback)(Heap* heap, MemoryChunk* page, StoreBufferEvent event); // Union used for fast testing of specific double values. union DoubleRepresentation { double value; int64_t bits; DoubleRepresentation(double x) { value = x; } bool operator==(const DoubleRepresentation& other) const { return bits == other.bits; } }; // Union used for customized checking of the IEEE double types // inlined within v8 runtime, rather than going to the underlying // platform headers and libraries union IeeeDoubleLittleEndianArchType { double d; struct { unsigned int man_low :32; unsigned int man_high :20; unsigned int exp :11; unsigned int sign :1; } bits; }; union IeeeDoubleBigEndianArchType { double d; struct { unsigned int sign :1; unsigned int exp :11; unsigned int man_high :20; unsigned int man_low :32; } bits; }; // AccessorCallback struct AccessorDescriptor { Object* (*getter)(Isolate* isolate, Object* object, void* data); Object* (*setter)( Isolate* isolate, JSObject* object, Object* value, void* data); void* data; }; // ----------------------------------------------------------------------------- // Macros // Testers for test. #define HAS_SMI_TAG(value) \ ((reinterpret_cast(value) & kSmiTagMask) == kSmiTag) // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer #define OBJECT_POINTER_ALIGN(value) \ (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask) // POINTER_SIZE_ALIGN returns the value aligned as a pointer. #define POINTER_SIZE_ALIGN(value) \ (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask) // CODE_POINTER_ALIGN returns the value aligned as a generated code segment. #define CODE_POINTER_ALIGN(value) \ (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask) // DOUBLE_POINTER_ALIGN returns the value algined for double pointers. #define DOUBLE_POINTER_ALIGN(value) \ (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask) // CPU feature flags. enum CpuFeature { // x86 SSE4_1, SSE3, SAHF, AVX, FMA3, BMI1, BMI2, LZCNT, POPCNT, ATOM, // ARM VFP3, ARMv7, ARMv8, SUDIV, MLS, UNALIGNED_ACCESSES, MOVW_MOVT_IMMEDIATE_LOADS, VFP32DREGS, NEON, // MIPS, MIPS64 FPU, FP64FPU, MIPSr1, MIPSr2, MIPSr6, // ARM64 ALWAYS_ALIGN_CSP, COHERENT_CACHE, // PPC FPR_GPR_MOV, LWSYNC, ISELECT, NUMBER_OF_CPU_FEATURES }; // Used to specify if a macro instruction must perform a smi check on tagged // values. enum SmiCheckType { DONT_DO_SMI_CHECK, DO_SMI_CHECK }; enum ScopeType { EVAL_SCOPE, // The top-level scope for an eval source. FUNCTION_SCOPE, // The top-level scope for a function. MODULE_SCOPE, // The scope introduced by a module literal SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval. CATCH_SCOPE, // The scope introduced by catch. BLOCK_SCOPE, // The scope introduced by a new block. WITH_SCOPE, // The scope introduced by with. ARROW_SCOPE // The top-level scope for an arrow function literal. }; // The mips architecture prior to revision 5 has inverted encoding for sNaN. #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6)) || \ (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6)) const uint32_t kHoleNanUpper32 = 0xFFFF7FFF; const uint32_t kHoleNanLower32 = 0xFFFF7FFF; #else const uint32_t kHoleNanUpper32 = 0xFFF7FFFF; const uint32_t kHoleNanLower32 = 0xFFF7FFFF; #endif const uint64_t kHoleNanInt64 = (static_cast(kHoleNanUpper32) << 32) | kHoleNanLower32; // The order of this enum has to be kept in sync with the predicates below. enum VariableMode { // User declared variables: VAR, // declared via 'var', and 'function' declarations CONST_LEGACY, // declared via legacy 'const' declarations LET, // declared via 'let' declarations (first lexical) CONST, // declared via 'const' declarations IMPORT, // declared via 'import' declarations (last lexical) // Variables introduced by the compiler: INTERNAL, // like VAR, but not user-visible (may or may not // be in a context) TEMPORARY, // temporary variables (not user-visible), stack-allocated // unless the scope as a whole has forced context allocation DYNAMIC, // always require dynamic lookup (we don't know // the declaration) DYNAMIC_GLOBAL, // requires dynamic lookup, but we know that the // variable is global unless it has been shadowed // by an eval-introduced variable DYNAMIC_LOCAL // requires dynamic lookup, but we know that the // variable is local and where it is unless it // has been shadowed by an eval-introduced // variable }; inline bool IsDynamicVariableMode(VariableMode mode) { return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL; } inline bool IsDeclaredVariableMode(VariableMode mode) { return mode >= VAR && mode <= IMPORT; } inline bool IsLexicalVariableMode(VariableMode mode) { return mode >= LET && mode <= IMPORT; } inline bool IsImmutableVariableMode(VariableMode mode) { return mode == CONST || mode == CONST_LEGACY || mode == IMPORT; } // ES6 Draft Rev3 10.2 specifies declarative environment records with mutable // and immutable bindings that can be in two states: initialized and // uninitialized. In ES5 only immutable bindings have these two states. When // accessing a binding, it needs to be checked for initialization. However in // the following cases the binding is initialized immediately after creation // so the initialization check can always be skipped: // 1. Var declared local variables. // var foo; // 2. A local variable introduced by a function declaration. // function foo() {} // 3. Parameters // function x(foo) {} // 4. Catch bound variables. // try {} catch (foo) {} // 6. Function variables of named function expressions. // var x = function foo() {} // 7. Implicit binding of 'this'. // 8. Implicit binding of 'arguments' in functions. // // ES5 specified object environment records which are introduced by ES elements // such as Program and WithStatement that associate identifier bindings with the // properties of some object. In the specification only mutable bindings exist // (which may be non-writable) and have no distinct initialization step. However // V8 allows const declarations in global code with distinct creation and // initialization steps which are represented by non-writable properties in the // global object. As a result also these bindings need to be checked for // initialization. // // The following enum specifies a flag that indicates if the binding needs a // distinct initialization step (kNeedsInitialization) or if the binding is // immediately initialized upon creation (kCreatedInitialized). enum InitializationFlag { kNeedsInitialization, kCreatedInitialized }; enum MaybeAssignedFlag { kNotAssigned, kMaybeAssigned }; // Serialized in PreparseData, so numeric values should not be changed. enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 }; enum ClearExceptionFlag { KEEP_EXCEPTION, CLEAR_EXCEPTION }; enum MinusZeroMode { TREAT_MINUS_ZERO_AS_ZERO, FAIL_ON_MINUS_ZERO }; enum Signedness { kSigned, kUnsigned }; enum FunctionKind { kNormalFunction = 0, kArrowFunction = 1 << 0, kGeneratorFunction = 1 << 1, kConciseMethod = 1 << 2, kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod, kAccessorFunction = 1 << 3, kDefaultConstructor = 1 << 4, kSubclassConstructor = 1 << 5, kBaseConstructor = 1 << 6, kInObjectLiteral = 1 << 7, kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor, kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor, kConciseMethodInObjectLiteral = kConciseMethod | kInObjectLiteral, kConciseGeneratorMethodInObjectLiteral = kConciseGeneratorMethod | kInObjectLiteral, kAccessorFunctionInObjectLiteral = kAccessorFunction | kInObjectLiteral, }; inline bool IsValidFunctionKind(FunctionKind kind) { return kind == FunctionKind::kNormalFunction || kind == FunctionKind::kArrowFunction || kind == FunctionKind::kGeneratorFunction || kind == FunctionKind::kConciseMethod || kind == FunctionKind::kConciseGeneratorMethod || kind == FunctionKind::kAccessorFunction || kind == FunctionKind::kDefaultBaseConstructor || kind == FunctionKind::kDefaultSubclassConstructor || kind == FunctionKind::kBaseConstructor || kind == FunctionKind::kSubclassConstructor || kind == FunctionKind::kConciseMethodInObjectLiteral || kind == FunctionKind::kConciseGeneratorMethodInObjectLiteral || kind == FunctionKind::kAccessorFunctionInObjectLiteral; } inline bool IsArrowFunction(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kArrowFunction; } inline bool IsGeneratorFunction(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kGeneratorFunction; } inline bool IsConciseMethod(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kConciseMethod; } inline bool IsAccessorFunction(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kAccessorFunction; } inline bool IsDefaultConstructor(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kDefaultConstructor; } inline bool IsBaseConstructor(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kBaseConstructor; } inline bool IsSubclassConstructor(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kSubclassConstructor; } inline bool IsConstructor(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & (FunctionKind::kBaseConstructor | FunctionKind::kSubclassConstructor | FunctionKind::kDefaultConstructor); } inline bool IsInObjectLiteral(FunctionKind kind) { DCHECK(IsValidFunctionKind(kind)); return kind & FunctionKind::kInObjectLiteral; } inline FunctionKind WithObjectLiteralBit(FunctionKind kind) { kind = static_cast(kind | FunctionKind::kInObjectLiteral); DCHECK(IsValidFunctionKind(kind)); return kind; } } } // namespace v8::internal namespace i = v8::internal; #endif // V8_GLOBALS_H_