// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "lithium-allocator-inl.h" #include "arm/lithium-arm.h" #include "arm/lithium-codegen-arm.h" #include "hydrogen-osr.h" namespace v8 { namespace internal { #define DEFINE_COMPILE(type) \ void L##type::CompileToNative(LCodeGen* generator) { \ generator->Do##type(this); \ } LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE) #undef DEFINE_COMPILE #ifdef DEBUG void LInstruction::VerifyCall() { // Call instructions can use only fixed registers as temporaries and // outputs because all registers are blocked by the calling convention. // Inputs operands must use a fixed register or use-at-start policy or // a non-register policy. ASSERT(Output() == NULL || LUnallocated::cast(Output())->HasFixedPolicy() || !LUnallocated::cast(Output())->HasRegisterPolicy()); for (UseIterator it(this); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); ASSERT(operand->HasFixedPolicy() || operand->IsUsedAtStart()); } for (TempIterator it(this); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); ASSERT(operand->HasFixedPolicy() ||!operand->HasRegisterPolicy()); } } #endif void LInstruction::PrintTo(StringStream* stream) { stream->Add("%s ", this->Mnemonic()); PrintOutputOperandTo(stream); PrintDataTo(stream); if (HasEnvironment()) { stream->Add(" "); environment()->PrintTo(stream); } if (HasPointerMap()) { stream->Add(" "); pointer_map()->PrintTo(stream); } } void LInstruction::PrintDataTo(StringStream* stream) { stream->Add("= "); for (int i = 0; i < InputCount(); i++) { if (i > 0) stream->Add(" "); if (InputAt(i) == NULL) { stream->Add("NULL"); } else { InputAt(i)->PrintTo(stream); } } } void LInstruction::PrintOutputOperandTo(StringStream* stream) { if (HasResult()) result()->PrintTo(stream); } void LLabel::PrintDataTo(StringStream* stream) { LGap::PrintDataTo(stream); LLabel* rep = replacement(); if (rep != NULL) { stream->Add(" Dead block replaced with B%d", rep->block_id()); } } bool LGap::IsRedundant() const { for (int i = 0; i < 4; i++) { if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) { return false; } } return true; } void LGap::PrintDataTo(StringStream* stream) { for (int i = 0; i < 4; i++) { stream->Add("("); if (parallel_moves_[i] != NULL) { parallel_moves_[i]->PrintDataTo(stream); } stream->Add(") "); } } const char* LArithmeticD::Mnemonic() const { switch (op()) { case Token::ADD: return "add-d"; case Token::SUB: return "sub-d"; case Token::MUL: return "mul-d"; case Token::DIV: return "div-d"; case Token::MOD: return "mod-d"; default: UNREACHABLE(); return NULL; } } const char* LArithmeticT::Mnemonic() const { switch (op()) { case Token::ADD: return "add-t"; case Token::SUB: return "sub-t"; case Token::MUL: return "mul-t"; case Token::MOD: return "mod-t"; case Token::DIV: return "div-t"; case Token::BIT_AND: return "bit-and-t"; case Token::BIT_OR: return "bit-or-t"; case Token::BIT_XOR: return "bit-xor-t"; case Token::ROR: return "ror-t"; case Token::SHL: return "shl-t"; case Token::SAR: return "sar-t"; case Token::SHR: return "shr-t"; default: UNREACHABLE(); return NULL; } } bool LGoto::HasInterestingComment(LCodeGen* gen) const { return !gen->IsNextEmittedBlock(block_id()); } void LGoto::PrintDataTo(StringStream* stream) { stream->Add("B%d", block_id()); } void LBranch::PrintDataTo(StringStream* stream) { stream->Add("B%d | B%d on ", true_block_id(), false_block_id()); value()->PrintTo(stream); } void LCompareNumericAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if "); left()->PrintTo(stream); stream->Add(" %s ", Token::String(op())); right()->PrintTo(stream); stream->Add(" then B%d else B%d", true_block_id(), false_block_id()); } void LIsObjectAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_object("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LIsStringAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_string("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LIsSmiAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_smi("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LIsUndetectableAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if is_undetectable("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LStringCompareAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if string_compare("); left()->PrintTo(stream); right()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if has_instance_type("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if has_cached_array_index("); value()->PrintTo(stream); stream->Add(") then B%d else B%d", true_block_id(), false_block_id()); } void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if class_of_test("); value()->PrintTo(stream); stream->Add(", \"%o\") then B%d else B%d", *hydrogen()->class_name(), true_block_id(), false_block_id()); } void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) { stream->Add("if typeof "); value()->PrintTo(stream); stream->Add(" == \"%s\" then B%d else B%d", *hydrogen()->type_literal()->ToCString(), true_block_id(), false_block_id()); } void LStoreCodeEntry::PrintDataTo(StringStream* stream) { stream->Add(" = "); function()->PrintTo(stream); stream->Add(".code_entry = "); code_object()->PrintTo(stream); } void LInnerAllocatedObject::PrintDataTo(StringStream* stream) { stream->Add(" = "); base_object()->PrintTo(stream); stream->Add(" + %d", offset()); } void LCallConstantFunction::PrintDataTo(StringStream* stream) { stream->Add("#%d / ", arity()); } void LLoadContextSlot::PrintDataTo(StringStream* stream) { context()->PrintTo(stream); stream->Add("[%d]", slot_index()); } void LStoreContextSlot::PrintDataTo(StringStream* stream) { context()->PrintTo(stream); stream->Add("[%d] <- ", slot_index()); value()->PrintTo(stream); } void LInvokeFunction::PrintDataTo(StringStream* stream) { stream->Add("= "); function()->PrintTo(stream); stream->Add(" #%d / ", arity()); } void LCallKeyed::PrintDataTo(StringStream* stream) { stream->Add("[r2] #%d / ", arity()); } void LCallNamed::PrintDataTo(StringStream* stream) { SmartArrayPointer name_string = name()->ToCString(); stream->Add("%s #%d / ", *name_string, arity()); } void LCallGlobal::PrintDataTo(StringStream* stream) { SmartArrayPointer name_string = name()->ToCString(); stream->Add("%s #%d / ", *name_string, arity()); } void LCallKnownGlobal::PrintDataTo(StringStream* stream) { stream->Add("#%d / ", arity()); } void LCallNew::PrintDataTo(StringStream* stream) { stream->Add("= "); constructor()->PrintTo(stream); stream->Add(" #%d / ", arity()); } void LCallNewArray::PrintDataTo(StringStream* stream) { stream->Add("= "); constructor()->PrintTo(stream); stream->Add(" #%d / ", arity()); ElementsKind kind = hydrogen()->elements_kind(); stream->Add(" (%s) ", ElementsKindToString(kind)); } void LAccessArgumentsAt::PrintDataTo(StringStream* stream) { arguments()->PrintTo(stream); stream->Add(" length "); length()->PrintTo(stream); stream->Add(" index "); index()->PrintTo(stream); } void LStoreNamedField::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); hydrogen()->access().PrintTo(stream); stream->Add(" <- "); value()->PrintTo(stream); } void LStoreNamedGeneric::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add("."); stream->Add(*String::cast(*name())->ToCString()); stream->Add(" <- "); value()->PrintTo(stream); } void LLoadKeyed::PrintDataTo(StringStream* stream) { elements()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); if (hydrogen()->IsDehoisted()) { stream->Add(" + %d]", additional_index()); } else { stream->Add("]"); } } void LStoreKeyed::PrintDataTo(StringStream* stream) { elements()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); if (hydrogen()->IsDehoisted()) { stream->Add(" + %d] <-", additional_index()); } else { stream->Add("] <- "); } if (value() == NULL) { ASSERT(hydrogen()->IsConstantHoleStore() && hydrogen()->value()->representation().IsDouble()); stream->Add(""); } else { value()->PrintTo(stream); } } void LStoreKeyedGeneric::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add("["); key()->PrintTo(stream); stream->Add("] <- "); value()->PrintTo(stream); } void LTransitionElementsKind::PrintDataTo(StringStream* stream) { object()->PrintTo(stream); stream->Add(" %p -> %p", *original_map(), *transitioned_map()); } int LPlatformChunk::GetNextSpillIndex(RegisterKind kind) { // Skip a slot if for a double-width slot. if (kind == DOUBLE_REGISTERS) spill_slot_count_++; return spill_slot_count_++; } LOperand* LPlatformChunk::GetNextSpillSlot(RegisterKind kind) { int index = GetNextSpillIndex(kind); if (kind == DOUBLE_REGISTERS) { return LDoubleStackSlot::Create(index, zone()); } else { ASSERT(kind == GENERAL_REGISTERS); return LStackSlot::Create(index, zone()); } } LPlatformChunk* LChunkBuilder::Build() { ASSERT(is_unused()); chunk_ = new(zone()) LPlatformChunk(info(), graph()); LPhase phase("L_Building chunk", chunk_); status_ = BUILDING; // If compiling for OSR, reserve space for the unoptimized frame, // which will be subsumed into this frame. if (graph()->has_osr()) { for (int i = graph()->osr()->UnoptimizedFrameSlots(); i > 0; i--) { chunk_->GetNextSpillIndex(GENERAL_REGISTERS); } } const ZoneList* blocks = graph()->blocks(); for (int i = 0; i < blocks->length(); i++) { HBasicBlock* next = NULL; if (i < blocks->length() - 1) next = blocks->at(i + 1); DoBasicBlock(blocks->at(i), next); if (is_aborted()) return NULL; } status_ = DONE; return chunk_; } void LChunkBuilder::Abort(BailoutReason reason) { info()->set_bailout_reason(reason); status_ = ABORTED; } LUnallocated* LChunkBuilder::ToUnallocated(Register reg) { return new(zone()) LUnallocated(LUnallocated::FIXED_REGISTER, Register::ToAllocationIndex(reg)); } LUnallocated* LChunkBuilder::ToUnallocated(DoubleRegister reg) { return new(zone()) LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER, DoubleRegister::ToAllocationIndex(reg)); } LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) { return Use(value, ToUnallocated(fixed_register)); } LOperand* LChunkBuilder::UseFixedDouble(HValue* value, DoubleRegister reg) { return Use(value, ToUnallocated(reg)); } LOperand* LChunkBuilder::UseRegister(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER, LUnallocated::USED_AT_START)); } LOperand* LChunkBuilder::UseTempRegister(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::WRITABLE_REGISTER)); } LOperand* LChunkBuilder::Use(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::NONE)); } LOperand* LChunkBuilder::UseAtStart(HValue* value) { return Use(value, new(zone()) LUnallocated(LUnallocated::NONE, LUnallocated::USED_AT_START)); } LOperand* LChunkBuilder::UseOrConstant(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : Use(value); } LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseAtStart(value); } LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegister(value); } LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : UseRegisterAtStart(value); } LOperand* LChunkBuilder::UseConstant(HValue* value) { return chunk_->DefineConstantOperand(HConstant::cast(value)); } LOperand* LChunkBuilder::UseAny(HValue* value) { return value->IsConstant() ? chunk_->DefineConstantOperand(HConstant::cast(value)) : Use(value, new(zone()) LUnallocated(LUnallocated::ANY)); } LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) { if (value->EmitAtUses()) { HInstruction* instr = HInstruction::cast(value); VisitInstruction(instr); } operand->set_virtual_register(value->id()); return operand; } template LInstruction* LChunkBuilder::Define(LTemplateInstruction<1, I, T>* instr, LUnallocated* result) { result->set_virtual_register(current_instruction_->id()); instr->set_result(result); return instr; } template LInstruction* LChunkBuilder::DefineAsRegister( LTemplateInstruction<1, I, T>* instr) { return Define(instr, new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER)); } template LInstruction* LChunkBuilder::DefineAsSpilled( LTemplateInstruction<1, I, T>* instr, int index) { return Define(instr, new(zone()) LUnallocated(LUnallocated::FIXED_SLOT, index)); } template LInstruction* LChunkBuilder::DefineSameAsFirst( LTemplateInstruction<1, I, T>* instr) { return Define(instr, new(zone()) LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT)); } template LInstruction* LChunkBuilder::DefineFixed( LTemplateInstruction<1, I, T>* instr, Register reg) { return Define(instr, ToUnallocated(reg)); } template LInstruction* LChunkBuilder::DefineFixedDouble( LTemplateInstruction<1, I, T>* instr, DoubleRegister reg) { return Define(instr, ToUnallocated(reg)); } LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) { HEnvironment* hydrogen_env = current_block_->last_environment(); int argument_index_accumulator = 0; ZoneList objects_to_materialize(0, zone()); instr->set_environment(CreateEnvironment(hydrogen_env, &argument_index_accumulator, &objects_to_materialize)); return instr; } LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr, HInstruction* hinstr, CanDeoptimize can_deoptimize) { info()->MarkAsNonDeferredCalling(); #ifdef DEBUG instr->VerifyCall(); #endif instr->MarkAsCall(); instr = AssignPointerMap(instr); if (hinstr->HasObservableSideEffects()) { ASSERT(hinstr->next()->IsSimulate()); HSimulate* sim = HSimulate::cast(hinstr->next()); ASSERT(instruction_pending_deoptimization_environment_ == NULL); ASSERT(pending_deoptimization_ast_id_.IsNone()); instruction_pending_deoptimization_environment_ = instr; pending_deoptimization_ast_id_ = sim->ast_id(); } // If instruction does not have side-effects lazy deoptimization // after the call will try to deoptimize to the point before the call. // Thus we still need to attach environment to this call even if // call sequence can not deoptimize eagerly. bool needs_environment = (can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) || !hinstr->HasObservableSideEffects(); if (needs_environment && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); } return instr; } LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) { ASSERT(!instr->HasPointerMap()); instr->set_pointer_map(new(zone()) LPointerMap(zone())); return instr; } LUnallocated* LChunkBuilder::TempRegister() { LUnallocated* operand = new(zone()) LUnallocated(LUnallocated::MUST_HAVE_REGISTER); int vreg = allocator_->GetVirtualRegister(); if (!allocator_->AllocationOk()) { Abort(kOutOfVirtualRegistersWhileTryingToAllocateTempRegister); vreg = 0; } operand->set_virtual_register(vreg); return operand; } LOperand* LChunkBuilder::FixedTemp(Register reg) { LUnallocated* operand = ToUnallocated(reg); ASSERT(operand->HasFixedPolicy()); return operand; } LOperand* LChunkBuilder::FixedTemp(DoubleRegister reg) { LUnallocated* operand = ToUnallocated(reg); ASSERT(operand->HasFixedPolicy()); return operand; } LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) { return new(zone()) LLabel(instr->block()); } LInstruction* LChunkBuilder::DoDummyUse(HDummyUse* instr) { return DefineAsRegister(new(zone()) LDummyUse(UseAny(instr->value()))); } LInstruction* LChunkBuilder::DoEnvironmentMarker(HEnvironmentMarker* instr) { UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) { return AssignEnvironment(new(zone()) LDeoptimize); } LInstruction* LChunkBuilder::DoShift(Token::Value op, HBitwiseBinaryOperation* instr) { if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); LOperand* left = UseRegisterAtStart(instr->left()); HValue* right_value = instr->right(); LOperand* right = NULL; int constant_value = 0; bool does_deopt = false; if (right_value->IsConstant()) { HConstant* constant = HConstant::cast(right_value); right = chunk_->DefineConstantOperand(constant); constant_value = constant->Integer32Value() & 0x1f; // Left shifts can deoptimize if we shift by > 0 and the result cannot be // truncated to smi. if (instr->representation().IsSmi() && constant_value > 0) { does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToSmi); } } else { right = UseRegisterAtStart(right_value); } // Shift operations can only deoptimize if we do a logical shift // by 0 and the result cannot be truncated to int32. if (op == Token::SHR && constant_value == 0) { if (FLAG_opt_safe_uint32_operations) { does_deopt = !instr->CheckFlag(HInstruction::kUint32); } else { does_deopt = !instr->CheckUsesForFlag(HValue::kTruncatingToInt32); } } LInstruction* result = DefineAsRegister(new(zone()) LShiftI(op, left, right, does_deopt)); return does_deopt ? AssignEnvironment(result) : result; } else { return DoArithmeticT(op, instr); } } LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op, HArithmeticBinaryOperation* instr) { ASSERT(instr->representation().IsDouble()); ASSERT(instr->left()->representation().IsDouble()); ASSERT(instr->right()->representation().IsDouble()); if (op == Token::MOD) { LOperand* left = UseFixedDouble(instr->left(), d1); LOperand* right = UseFixedDouble(instr->right(), d2); LArithmeticD* result = new(zone()) LArithmeticD(op, left, right); // We call a C function for double modulo. It can't trigger a GC. We need // to use fixed result register for the call. // TODO(fschneider): Allow any register as input registers. return MarkAsCall(DefineFixedDouble(result, d1), instr); } else { LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); LArithmeticD* result = new(zone()) LArithmeticD(op, left, right); return DefineAsRegister(result); } } LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op, HBinaryOperation* instr) { HValue* left = instr->left(); HValue* right = instr->right(); ASSERT(left->representation().IsTagged()); ASSERT(right->representation().IsTagged()); LOperand* context = UseFixed(instr->context(), cp); LOperand* left_operand = UseFixed(left, r1); LOperand* right_operand = UseFixed(right, r0); LArithmeticT* result = new(zone()) LArithmeticT(op, context, left_operand, right_operand); return MarkAsCall(DefineFixed(result, r0), instr); } void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) { ASSERT(is_building()); current_block_ = block; next_block_ = next_block; if (block->IsStartBlock()) { block->UpdateEnvironment(graph_->start_environment()); argument_count_ = 0; } else if (block->predecessors()->length() == 1) { // We have a single predecessor => copy environment and outgoing // argument count from the predecessor. ASSERT(block->phis()->length() == 0); HBasicBlock* pred = block->predecessors()->at(0); HEnvironment* last_environment = pred->last_environment(); ASSERT(last_environment != NULL); // Only copy the environment, if it is later used again. if (pred->end()->SecondSuccessor() == NULL) { ASSERT(pred->end()->FirstSuccessor() == block); } else { if (pred->end()->FirstSuccessor()->block_id() > block->block_id() || pred->end()->SecondSuccessor()->block_id() > block->block_id()) { last_environment = last_environment->Copy(); } } block->UpdateEnvironment(last_environment); ASSERT(pred->argument_count() >= 0); argument_count_ = pred->argument_count(); } else { // We are at a state join => process phis. HBasicBlock* pred = block->predecessors()->at(0); // No need to copy the environment, it cannot be used later. HEnvironment* last_environment = pred->last_environment(); for (int i = 0; i < block->phis()->length(); ++i) { HPhi* phi = block->phis()->at(i); if (phi->HasMergedIndex()) { last_environment->SetValueAt(phi->merged_index(), phi); } } for (int i = 0; i < block->deleted_phis()->length(); ++i) { if (block->deleted_phis()->at(i) < last_environment->length()) { last_environment->SetValueAt(block->deleted_phis()->at(i), graph_->GetConstantUndefined()); } } block->UpdateEnvironment(last_environment); // Pick up the outgoing argument count of one of the predecessors. argument_count_ = pred->argument_count(); } HInstruction* current = block->first(); int start = chunk_->instructions()->length(); while (current != NULL && !is_aborted()) { // Code for constants in registers is generated lazily. if (!current->EmitAtUses()) { VisitInstruction(current); } current = current->next(); } int end = chunk_->instructions()->length() - 1; if (end >= start) { block->set_first_instruction_index(start); block->set_last_instruction_index(end); } block->set_argument_count(argument_count_); next_block_ = NULL; current_block_ = NULL; } void LChunkBuilder::VisitInstruction(HInstruction* current) { HInstruction* old_current = current_instruction_; current_instruction_ = current; if (current->has_position()) position_ = current->position(); LInstruction* instr = NULL; if (current->CanReplaceWithDummyUses()) { if (current->OperandCount() == 0) { instr = DefineAsRegister(new(zone()) LDummy()); } else { instr = DefineAsRegister(new(zone()) LDummyUse(UseAny(current->OperandAt(0)))); } for (int i = 1; i < current->OperandCount(); ++i) { LInstruction* dummy = new(zone()) LDummyUse(UseAny(current->OperandAt(i))); dummy->set_hydrogen_value(current); chunk_->AddInstruction(dummy, current_block_); } } else { instr = current->CompileToLithium(this); } argument_count_ += current->argument_delta(); ASSERT(argument_count_ >= 0); if (instr != NULL) { // Associate the hydrogen instruction first, since we may need it for // the ClobbersRegisters() or ClobbersDoubleRegisters() calls below. instr->set_hydrogen_value(current); #if DEBUG // Make sure that the lithium instruction has either no fixed register // constraints in temps or the result OR no uses that are only used at // start. If this invariant doesn't hold, the register allocator can decide // to insert a split of a range immediately before the instruction due to an // already allocated register needing to be used for the instruction's fixed // register constraint. In this case, The register allocator won't see an // interference between the split child and the use-at-start (it would if // the it was just a plain use), so it is free to move the split child into // the same register that is used for the use-at-start. // See https://code.google.com/p/chromium/issues/detail?id=201590 if (!(instr->ClobbersRegisters() && instr->ClobbersDoubleRegisters())) { int fixed = 0; int used_at_start = 0; for (UseIterator it(instr); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); if (operand->IsUsedAtStart()) ++used_at_start; } if (instr->Output() != NULL) { if (LUnallocated::cast(instr->Output())->HasFixedPolicy()) ++fixed; } for (TempIterator it(instr); !it.Done(); it.Advance()) { LUnallocated* operand = LUnallocated::cast(it.Current()); if (operand->HasFixedPolicy()) ++fixed; } ASSERT(fixed == 0 || used_at_start == 0); } #endif if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) { instr = AssignPointerMap(instr); } if (FLAG_stress_environments && !instr->HasEnvironment()) { instr = AssignEnvironment(instr); } chunk_->AddInstruction(instr, current_block_); } current_instruction_ = old_current; } LEnvironment* LChunkBuilder::CreateEnvironment( HEnvironment* hydrogen_env, int* argument_index_accumulator, ZoneList* objects_to_materialize) { if (hydrogen_env == NULL) return NULL; LEnvironment* outer = CreateEnvironment(hydrogen_env->outer(), argument_index_accumulator, objects_to_materialize); BailoutId ast_id = hydrogen_env->ast_id(); ASSERT(!ast_id.IsNone() || hydrogen_env->frame_type() != JS_FUNCTION); int value_count = hydrogen_env->length() - hydrogen_env->specials_count(); LEnvironment* result = new(zone()) LEnvironment( hydrogen_env->closure(), hydrogen_env->frame_type(), ast_id, hydrogen_env->parameter_count(), argument_count_, value_count, outer, hydrogen_env->entry(), zone()); int argument_index = *argument_index_accumulator; int object_index = objects_to_materialize->length(); for (int i = 0; i < hydrogen_env->length(); ++i) { if (hydrogen_env->is_special_index(i)) continue; LOperand* op; HValue* value = hydrogen_env->values()->at(i); if (value->IsArgumentsObject() || value->IsCapturedObject()) { objects_to_materialize->Add(value, zone()); op = LEnvironment::materialization_marker(); } else if (value->IsPushArgument()) { op = new(zone()) LArgument(argument_index++); } else { op = UseAny(value); } result->AddValue(op, value->representation(), value->CheckFlag(HInstruction::kUint32)); } for (int i = object_index; i < objects_to_materialize->length(); ++i) { HValue* object_to_materialize = objects_to_materialize->at(i); int previously_materialized_object = -1; for (int prev = 0; prev < i; ++prev) { if (objects_to_materialize->at(prev) == objects_to_materialize->at(i)) { previously_materialized_object = prev; break; } } int length = object_to_materialize->OperandCount(); bool is_arguments = object_to_materialize->IsArgumentsObject(); if (previously_materialized_object >= 0) { result->AddDuplicateObject(previously_materialized_object); continue; } else { result->AddNewObject(is_arguments ? length - 1 : length, is_arguments); } for (int i = is_arguments ? 1 : 0; i < length; ++i) { LOperand* op; HValue* value = object_to_materialize->OperandAt(i); if (value->IsArgumentsObject() || value->IsCapturedObject()) { objects_to_materialize->Add(value, zone()); op = LEnvironment::materialization_marker(); } else { ASSERT(!value->IsPushArgument()); op = UseAny(value); } result->AddValue(op, value->representation(), value->CheckFlag(HInstruction::kUint32)); } } if (hydrogen_env->frame_type() == JS_FUNCTION) { *argument_index_accumulator = argument_index; } return result; } LInstruction* LChunkBuilder::DoGoto(HGoto* instr) { return new(zone()) LGoto(instr->FirstSuccessor()); } LInstruction* LChunkBuilder::DoBranch(HBranch* instr) { LInstruction* goto_instr = CheckElideControlInstruction(instr); if (goto_instr != NULL) return goto_instr; HValue* value = instr->value(); LBranch* result = new(zone()) LBranch(UseRegister(value)); // Tagged values that are not known smis or booleans require a // deoptimization environment. If the instruction is generic no // environment is needed since all cases are handled. Representation rep = value->representation(); HType type = value->type(); ToBooleanStub::Types expected = instr->expected_input_types(); if (rep.IsTagged() && !type.IsSmi() && !type.IsBoolean() && !expected.IsGeneric()) { return AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoDebugBreak(HDebugBreak* instr) { return new(zone()) LDebugBreak(); } LInstruction* LChunkBuilder::DoCompareMap(HCompareMap* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); LOperand* temp = TempRegister(); return new(zone()) LCmpMapAndBranch(value, temp); } LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* instr) { info()->MarkAsRequiresFrame(); LOperand* value = UseRegister(instr->value()); return DefineAsRegister(new(zone()) LArgumentsLength(value)); } LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) { info()->MarkAsRequiresFrame(); return DefineAsRegister(new(zone()) LArgumentsElements); } LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) { LOperand* context = UseFixed(instr->context(), cp); LInstanceOf* result = new(zone()) LInstanceOf(context, UseFixed(instr->left(), r0), UseFixed(instr->right(), r1)); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoInstanceOfKnownGlobal( HInstanceOfKnownGlobal* instr) { LInstanceOfKnownGlobal* result = new(zone()) LInstanceOfKnownGlobal( UseFixed(instr->context(), cp), UseFixed(instr->left(), r0), FixedTemp(r4)); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoWrapReceiver(HWrapReceiver* instr) { LOperand* receiver = UseRegisterAtStart(instr->receiver()); LOperand* function = UseRegisterAtStart(instr->function()); LWrapReceiver* result = new(zone()) LWrapReceiver(receiver, function); return AssignEnvironment(DefineSameAsFirst(result)); } LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) { LOperand* function = UseFixed(instr->function(), r1); LOperand* receiver = UseFixed(instr->receiver(), r0); LOperand* length = UseFixed(instr->length(), r2); LOperand* elements = UseFixed(instr->elements(), r3); LApplyArguments* result = new(zone()) LApplyArguments(function, receiver, length, elements); return MarkAsCall(DefineFixed(result, r0), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoPushArgument(HPushArgument* instr) { LOperand* argument = Use(instr->argument()); return new(zone()) LPushArgument(argument); } LInstruction* LChunkBuilder::DoStoreCodeEntry( HStoreCodeEntry* store_code_entry) { LOperand* function = UseRegister(store_code_entry->function()); LOperand* code_object = UseTempRegister(store_code_entry->code_object()); return new(zone()) LStoreCodeEntry(function, code_object); } LInstruction* LChunkBuilder::DoInnerAllocatedObject( HInnerAllocatedObject* inner_object) { LOperand* base_object = UseRegisterAtStart(inner_object->base_object()); LInnerAllocatedObject* result = new(zone()) LInnerAllocatedObject(base_object); return DefineAsRegister(result); } LInstruction* LChunkBuilder::DoThisFunction(HThisFunction* instr) { return instr->HasNoUses() ? NULL : DefineAsRegister(new(zone()) LThisFunction); } LInstruction* LChunkBuilder::DoContext(HContext* instr) { if (instr->HasNoUses()) return NULL; if (info()->IsStub()) { return DefineFixed(new(zone()) LContext, cp); } return DefineAsRegister(new(zone()) LContext); } LInstruction* LChunkBuilder::DoOuterContext(HOuterContext* instr) { LOperand* context = UseRegisterAtStart(instr->value()); return DefineAsRegister(new(zone()) LOuterContext(context)); } LInstruction* LChunkBuilder::DoDeclareGlobals(HDeclareGlobals* instr) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall(new(zone()) LDeclareGlobals(context), instr); } LInstruction* LChunkBuilder::DoGlobalObject(HGlobalObject* instr) { LOperand* context = UseRegisterAtStart(instr->value()); return DefineAsRegister(new(zone()) LGlobalObject(context)); } LInstruction* LChunkBuilder::DoGlobalReceiver(HGlobalReceiver* instr) { LOperand* global_object = UseRegisterAtStart(instr->value()); return DefineAsRegister(new(zone()) LGlobalReceiver(global_object)); } LInstruction* LChunkBuilder::DoCallConstantFunction( HCallConstantFunction* instr) { return MarkAsCall(DefineFixed(new(zone()) LCallConstantFunction, r0), instr); } LInstruction* LChunkBuilder::DoInvokeFunction(HInvokeFunction* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* function = UseFixed(instr->function(), r1); LInvokeFunction* result = new(zone()) LInvokeFunction(context, function); return MarkAsCall(DefineFixed(result, r0), instr, CANNOT_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) { switch (instr->op()) { case kMathFloor: return DoMathFloor(instr); case kMathRound: return DoMathRound(instr); case kMathAbs: return DoMathAbs(instr); case kMathLog: return DoMathLog(instr); case kMathSin: return DoMathSin(instr); case kMathCos: return DoMathCos(instr); case kMathTan: return DoMathTan(instr); case kMathExp: return DoMathExp(instr); case kMathSqrt: return DoMathSqrt(instr); case kMathPowHalf: return DoMathPowHalf(instr); default: UNREACHABLE(); return NULL; } } LInstruction* LChunkBuilder::DoMathFloor(HUnaryMathOperation* instr) { LOperand* input = UseRegister(instr->value()); LMathFloor* result = new(zone()) LMathFloor(input); return AssignEnvironment(AssignPointerMap(DefineAsRegister(result))); } LInstruction* LChunkBuilder::DoMathRound(HUnaryMathOperation* instr) { LOperand* input = UseRegister(instr->value()); LOperand* temp = FixedTemp(d3); LMathRound* result = new(zone()) LMathRound(input, temp); return AssignEnvironment(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoMathAbs(HUnaryMathOperation* instr) { Representation r = instr->value()->representation(); LOperand* context = (r.IsDouble() || r.IsSmiOrInteger32()) ? NULL : UseFixed(instr->context(), cp); LOperand* input = UseRegister(instr->value()); LMathAbs* result = new(zone()) LMathAbs(context, input); return AssignEnvironment(AssignPointerMap(DefineAsRegister(result))); } LInstruction* LChunkBuilder::DoMathLog(HUnaryMathOperation* instr) { LOperand* input = UseFixedDouble(instr->value(), d2); LMathLog* result = new(zone()) LMathLog(input); return MarkAsCall(DefineFixedDouble(result, d2), instr); } LInstruction* LChunkBuilder::DoMathSin(HUnaryMathOperation* instr) { LOperand* input = UseFixedDouble(instr->value(), d2); LMathSin* result = new(zone()) LMathSin(input); return MarkAsCall(DefineFixedDouble(result, d2), instr); } LInstruction* LChunkBuilder::DoMathCos(HUnaryMathOperation* instr) { LOperand* input = UseFixedDouble(instr->value(), d2); LMathCos* result = new(zone()) LMathCos(input); return MarkAsCall(DefineFixedDouble(result, d2), instr); } LInstruction* LChunkBuilder::DoMathTan(HUnaryMathOperation* instr) { LOperand* input = UseFixedDouble(instr->value(), d2); LMathTan* result = new(zone()) LMathTan(input); return MarkAsCall(DefineFixedDouble(result, d2), instr); } LInstruction* LChunkBuilder::DoMathExp(HUnaryMathOperation* instr) { ASSERT(instr->representation().IsDouble()); ASSERT(instr->value()->representation().IsDouble()); LOperand* input = UseRegister(instr->value()); LOperand* temp1 = TempRegister(); LOperand* temp2 = TempRegister(); LOperand* double_temp = FixedTemp(d3); // Chosen by fair dice roll. LMathExp* result = new(zone()) LMathExp(input, double_temp, temp1, temp2); return DefineAsRegister(result); } LInstruction* LChunkBuilder::DoMathSqrt(HUnaryMathOperation* instr) { LOperand* input = UseRegister(instr->value()); LMathSqrt* result = new(zone()) LMathSqrt(input); return DefineAsRegister(result); } LInstruction* LChunkBuilder::DoMathPowHalf(HUnaryMathOperation* instr) { LOperand* input = UseFixedDouble(instr->value(), d2); LOperand* temp = FixedTemp(d3); LMathPowHalf* result = new(zone()) LMathPowHalf(input, temp); return DefineFixedDouble(result, d2); } LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) { ASSERT(instr->key()->representation().IsTagged()); LOperand* context = UseFixed(instr->context(), cp); LOperand* key = UseFixed(instr->key(), r2); return MarkAsCall( DefineFixed(new(zone()) LCallKeyed(context, key), r0), instr); } LInstruction* LChunkBuilder::DoCallNamed(HCallNamed* instr) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall(DefineFixed(new(zone()) LCallNamed(context), r0), instr); } LInstruction* LChunkBuilder::DoCallGlobal(HCallGlobal* instr) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall(DefineFixed(new(zone()) LCallGlobal(context), r0), instr); } LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) { return MarkAsCall(DefineFixed(new(zone()) LCallKnownGlobal, r0), instr); } LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* constructor = UseFixed(instr->constructor(), r1); LCallNew* result = new(zone()) LCallNew(context, constructor); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoCallNewArray(HCallNewArray* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* constructor = UseFixed(instr->constructor(), r1); LCallNewArray* result = new(zone()) LCallNewArray(context, constructor); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* function = UseFixed(instr->function(), r1); LCallFunction* call = new(zone()) LCallFunction(context, function); LInstruction* result = DefineFixed(call, r0); if (instr->IsTailCall()) return result; return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall(DefineFixed(new(zone()) LCallRuntime(context), r0), instr); } LInstruction* LChunkBuilder::DoRor(HRor* instr) { return DoShift(Token::ROR, instr); } LInstruction* LChunkBuilder::DoShr(HShr* instr) { return DoShift(Token::SHR, instr); } LInstruction* LChunkBuilder::DoSar(HSar* instr) { return DoShift(Token::SAR, instr); } LInstruction* LChunkBuilder::DoShl(HShl* instr) { return DoShift(Token::SHL, instr); } LInstruction* LChunkBuilder::DoBitwise(HBitwise* instr) { if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); ASSERT(instr->CheckFlag(HValue::kTruncatingToInt32)); LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand()); LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand()); return DefineAsRegister(new(zone()) LBitI(left, right)); } else { return DoArithmeticT(instr->op(), instr); } } LInstruction* LChunkBuilder::DoDiv(HDiv* instr) { if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); if (instr->HasPowerOf2Divisor()) { ASSERT(!instr->CheckFlag(HValue::kCanBeDivByZero)); LOperand* value = UseRegisterAtStart(instr->left()); LDivI* div = new(zone()) LDivI(value, UseConstant(instr->right()), NULL); return AssignEnvironment(DefineAsRegister(div)); } LOperand* dividend = UseRegister(instr->left()); LOperand* divisor = UseRegister(instr->right()); LOperand* temp = CpuFeatures::IsSupported(SUDIV) ? NULL : FixedTemp(d4); LDivI* div = new(zone()) LDivI(dividend, divisor, temp); return AssignEnvironment(DefineAsRegister(div)); } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::DIV, instr); } else { return DoArithmeticT(Token::DIV, instr); } } bool LChunkBuilder::HasMagicNumberForDivisor(int32_t divisor) { uint32_t divisor_abs = abs(divisor); // Dividing by 0, 1, and powers of 2 is easy. // Note that IsPowerOf2(0) returns true; ASSERT(IsPowerOf2(0) == true); if (IsPowerOf2(divisor_abs)) return true; // We have magic numbers for a few specific divisors. // Details and proofs can be found in: // - Hacker's Delight, Henry S. Warren, Jr. // - The PowerPC Compiler Writer’s Guide // and probably many others. // // We handle // * // but not // * int32_t power_of_2_factor = CompilerIntrinsics::CountTrailingZeros(divisor_abs); DivMagicNumbers magic_numbers = DivMagicNumberFor(divisor_abs >> power_of_2_factor); if (magic_numbers.M != InvalidDivMagicNumber.M) return true; return false; } HValue* LChunkBuilder::SimplifiedDivisorForMathFloorOfDiv(HValue* divisor) { if (CpuFeatures::IsSupported(SUDIV)) { // A value with an integer representation does not need to be transformed. if (divisor->representation().IsInteger32()) { return divisor; // A change from an integer32 can be replaced by the integer32 value. } else if (divisor->IsChange() && HChange::cast(divisor)->from().IsInteger32()) { return HChange::cast(divisor)->value(); } } if (divisor->IsConstant() && HConstant::cast(divisor)->HasInteger32Value()) { HConstant* constant_val = HConstant::cast(divisor); int32_t int32_val = constant_val->Integer32Value(); if (LChunkBuilder::HasMagicNumberForDivisor(int32_val) || CpuFeatures::IsSupported(SUDIV)) { return constant_val->CopyToRepresentation(Representation::Integer32(), divisor->block()->zone()); } } return NULL; } LInstruction* LChunkBuilder::DoMathFloorOfDiv(HMathFloorOfDiv* instr) { HValue* right = instr->right(); LOperand* dividend = UseRegister(instr->left()); LOperand* divisor = CpuFeatures::IsSupported(SUDIV) ? UseRegister(right) : UseOrConstant(right); LOperand* remainder = TempRegister(); ASSERT(CpuFeatures::IsSupported(SUDIV) || (right->IsConstant() && HConstant::cast(right)->HasInteger32Value() && HasMagicNumberForDivisor(HConstant::cast(right)->Integer32Value()))); return AssignEnvironment(DefineAsRegister( new(zone()) LMathFloorOfDiv(dividend, divisor, remainder))); } LInstruction* LChunkBuilder::DoMod(HMod* instr) { HValue* left = instr->left(); HValue* right = instr->right(); if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); if (instr->HasPowerOf2Divisor()) { ASSERT(!right->CanBeZero()); LModI* mod = new(zone()) LModI(UseRegisterAtStart(left), UseOrConstant(right)); LInstruction* result = DefineAsRegister(mod); return (left->CanBeNegative() && instr->CheckFlag(HValue::kBailoutOnMinusZero)) ? AssignEnvironment(result) : result; } else if (CpuFeatures::IsSupported(SUDIV)) { LModI* mod = new(zone()) LModI(UseRegister(left), UseRegister(right)); LInstruction* result = DefineAsRegister(mod); return (right->CanBeZero() || (left->RangeCanInclude(kMinInt) && right->RangeCanInclude(-1) && instr->CheckFlag(HValue::kBailoutOnMinusZero)) || (left->CanBeNegative() && instr->CanBeZero() && instr->CheckFlag(HValue::kBailoutOnMinusZero))) ? AssignEnvironment(result) : result; } else { LModI* mod = new(zone()) LModI(UseRegister(left), UseRegister(right), FixedTemp(d10), FixedTemp(d11)); LInstruction* result = DefineAsRegister(mod); return (right->CanBeZero() || (left->CanBeNegative() && instr->CanBeZero() && instr->CheckFlag(HValue::kBailoutOnMinusZero))) ? AssignEnvironment(result) : result; } } else if (instr->representation().IsDouble()) { return DoArithmeticD(Token::MOD, instr); } else { return DoArithmeticT(Token::MOD, instr); } } LInstruction* LChunkBuilder::DoMul(HMul* instr) { if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); HValue* left = instr->BetterLeftOperand(); HValue* right = instr->BetterRightOperand(); LOperand* left_op; LOperand* right_op; bool can_overflow = instr->CheckFlag(HValue::kCanOverflow); bool bailout_on_minus_zero = instr->CheckFlag(HValue::kBailoutOnMinusZero); if (right->IsConstant()) { HConstant* constant = HConstant::cast(right); int32_t constant_value = constant->Integer32Value(); // Constants -1, 0 and 1 can be optimized if the result can overflow. // For other constants, it can be optimized only without overflow. if (!can_overflow || ((constant_value >= -1) && (constant_value <= 1))) { left_op = UseRegisterAtStart(left); right_op = UseConstant(right); } else { if (bailout_on_minus_zero) { left_op = UseRegister(left); } else { left_op = UseRegisterAtStart(left); } right_op = UseRegister(right); } } else { if (bailout_on_minus_zero) { left_op = UseRegister(left); } else { left_op = UseRegisterAtStart(left); } right_op = UseRegister(right); } LMulI* mul = new(zone()) LMulI(left_op, right_op); if (can_overflow || bailout_on_minus_zero) { AssignEnvironment(mul); } return DefineAsRegister(mul); } else if (instr->representation().IsDouble()) { if (instr->UseCount() == 1 && (instr->uses().value()->IsAdd() || instr->uses().value()->IsSub())) { HBinaryOperation* use = HBinaryOperation::cast(instr->uses().value()); if (use->IsAdd() && instr == use->left()) { // This mul is the lhs of an add. The add and mul will be folded into a // multiply-add in DoAdd. return NULL; } if (instr == use->right() && use->IsAdd() && !use->left()->IsMul()) { // This mul is the rhs of an add, where the lhs is not another mul. // The add and mul will be folded into a multiply-add in DoAdd. return NULL; } if (instr == use->right() && use->IsSub()) { // This mul is the rhs of a sub. The sub and mul will be folded into a // multiply-sub in DoSub. return NULL; } } return DoArithmeticD(Token::MUL, instr); } else { return DoArithmeticT(Token::MUL, instr); } } LInstruction* LChunkBuilder::DoSub(HSub* instr) { if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); if (instr->left()->IsConstant()) { // If lhs is constant, do reverse subtraction instead. return DoRSub(instr); } LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseOrConstantAtStart(instr->right()); LSubI* sub = new(zone()) LSubI(left, right); LInstruction* result = DefineAsRegister(sub); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { if (instr->right()->IsMul()) { return DoMultiplySub(instr->left(), HMul::cast(instr->right())); } return DoArithmeticD(Token::SUB, instr); } else { return DoArithmeticT(Token::SUB, instr); } } LInstruction* LChunkBuilder::DoRSub(HSub* instr) { ASSERT(instr->representation().IsSmiOrInteger32()); ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); // Note: The lhs of the subtraction becomes the rhs of the // reverse-subtraction. LOperand* left = UseRegisterAtStart(instr->right()); LOperand* right = UseOrConstantAtStart(instr->left()); LRSubI* rsb = new(zone()) LRSubI(left, right); LInstruction* result = DefineAsRegister(rsb); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } LInstruction* LChunkBuilder::DoMultiplyAdd(HMul* mul, HValue* addend) { LOperand* multiplier_op = UseRegisterAtStart(mul->left()); LOperand* multiplicand_op = UseRegisterAtStart(mul->right()); LOperand* addend_op = UseRegisterAtStart(addend); return DefineSameAsFirst(new(zone()) LMultiplyAddD(addend_op, multiplier_op, multiplicand_op)); } LInstruction* LChunkBuilder::DoMultiplySub(HValue* minuend, HMul* mul) { LOperand* minuend_op = UseRegisterAtStart(minuend); LOperand* multiplier_op = UseRegisterAtStart(mul->left()); LOperand* multiplicand_op = UseRegisterAtStart(mul->right()); return DefineSameAsFirst(new(zone()) LMultiplySubD(minuend_op, multiplier_op, multiplicand_op)); } LInstruction* LChunkBuilder::DoAdd(HAdd* instr) { if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); LOperand* left = UseRegisterAtStart(instr->BetterLeftOperand()); LOperand* right = UseOrConstantAtStart(instr->BetterRightOperand()); LAddI* add = new(zone()) LAddI(left, right); LInstruction* result = DefineAsRegister(add); if (instr->CheckFlag(HValue::kCanOverflow)) { result = AssignEnvironment(result); } return result; } else if (instr->representation().IsDouble()) { if (instr->left()->IsMul()) { return DoMultiplyAdd(HMul::cast(instr->left()), instr->right()); } if (instr->right()->IsMul()) { ASSERT(!instr->left()->IsMul()); return DoMultiplyAdd(HMul::cast(instr->right()), instr->left()); } return DoArithmeticD(Token::ADD, instr); } else { return DoArithmeticT(Token::ADD, instr); } } LInstruction* LChunkBuilder::DoMathMinMax(HMathMinMax* instr) { LOperand* left = NULL; LOperand* right = NULL; if (instr->representation().IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(instr->representation())); ASSERT(instr->right()->representation().Equals(instr->representation())); left = UseRegisterAtStart(instr->BetterLeftOperand()); right = UseOrConstantAtStart(instr->BetterRightOperand()); } else { ASSERT(instr->representation().IsDouble()); ASSERT(instr->left()->representation().IsDouble()); ASSERT(instr->right()->representation().IsDouble()); left = UseRegisterAtStart(instr->left()); right = UseRegisterAtStart(instr->right()); } return DefineAsRegister(new(zone()) LMathMinMax(left, right)); } LInstruction* LChunkBuilder::DoPower(HPower* instr) { ASSERT(instr->representation().IsDouble()); // We call a C function for double power. It can't trigger a GC. // We need to use fixed result register for the call. Representation exponent_type = instr->right()->representation(); ASSERT(instr->left()->representation().IsDouble()); LOperand* left = UseFixedDouble(instr->left(), d1); LOperand* right = exponent_type.IsDouble() ? UseFixedDouble(instr->right(), d2) : UseFixed(instr->right(), r2); LPower* result = new(zone()) LPower(left, right); return MarkAsCall(DefineFixedDouble(result, d3), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoCompareGeneric(HCompareGeneric* instr) { ASSERT(instr->left()->representation().IsTagged()); ASSERT(instr->right()->representation().IsTagged()); LOperand* context = UseFixed(instr->context(), cp); LOperand* left = UseFixed(instr->left(), r1); LOperand* right = UseFixed(instr->right(), r0); LCmpT* result = new(zone()) LCmpT(context, left, right); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoCompareNumericAndBranch( HCompareNumericAndBranch* instr) { Representation r = instr->representation(); if (r.IsSmiOrInteger32()) { ASSERT(instr->left()->representation().Equals(r)); ASSERT(instr->right()->representation().Equals(r)); LOperand* left = UseRegisterOrConstantAtStart(instr->left()); LOperand* right = UseRegisterOrConstantAtStart(instr->right()); return new(zone()) LCompareNumericAndBranch(left, right); } else { ASSERT(r.IsDouble()); ASSERT(instr->left()->representation().IsDouble()); ASSERT(instr->right()->representation().IsDouble()); LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); return new(zone()) LCompareNumericAndBranch(left, right); } } LInstruction* LChunkBuilder::DoCompareObjectEqAndBranch( HCompareObjectEqAndBranch* instr) { LInstruction* goto_instr = CheckElideControlInstruction(instr); if (goto_instr != NULL) return goto_instr; LOperand* left = UseRegisterAtStart(instr->left()); LOperand* right = UseRegisterAtStart(instr->right()); return new(zone()) LCmpObjectEqAndBranch(left, right); } LInstruction* LChunkBuilder::DoCompareHoleAndBranch( HCompareHoleAndBranch* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return new(zone()) LCmpHoleAndBranch(value); } LInstruction* LChunkBuilder::DoCompareMinusZeroAndBranch( HCompareMinusZeroAndBranch* instr) { LInstruction* goto_instr = CheckElideControlInstruction(instr); if (goto_instr != NULL) return goto_instr; LOperand* value = UseRegister(instr->value()); LOperand* scratch = TempRegister(); return new(zone()) LCompareMinusZeroAndBranch(value, scratch); } LInstruction* LChunkBuilder::DoIsObjectAndBranch(HIsObjectAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); LOperand* temp = TempRegister(); return new(zone()) LIsObjectAndBranch(value, temp); } LInstruction* LChunkBuilder::DoIsStringAndBranch(HIsStringAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); LOperand* temp = TempRegister(); return new(zone()) LIsStringAndBranch(value, temp); } LInstruction* LChunkBuilder::DoIsSmiAndBranch(HIsSmiAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); return new(zone()) LIsSmiAndBranch(Use(instr->value())); } LInstruction* LChunkBuilder::DoIsUndetectableAndBranch( HIsUndetectableAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return new(zone()) LIsUndetectableAndBranch(value, TempRegister()); } LInstruction* LChunkBuilder::DoStringCompareAndBranch( HStringCompareAndBranch* instr) { ASSERT(instr->left()->representation().IsTagged()); ASSERT(instr->right()->representation().IsTagged()); LOperand* context = UseFixed(instr->context(), cp); LOperand* left = UseFixed(instr->left(), r1); LOperand* right = UseFixed(instr->right(), r0); LStringCompareAndBranch* result = new(zone()) LStringCompareAndBranch(context, left, right); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoHasInstanceTypeAndBranch( HHasInstanceTypeAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return new(zone()) LHasInstanceTypeAndBranch(value); } LInstruction* LChunkBuilder::DoGetCachedArrayIndex( HGetCachedArrayIndex* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegisterAtStart(instr->value()); return DefineAsRegister(new(zone()) LGetCachedArrayIndex(value)); } LInstruction* LChunkBuilder::DoHasCachedArrayIndexAndBranch( HHasCachedArrayIndexAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); return new(zone()) LHasCachedArrayIndexAndBranch( UseRegisterAtStart(instr->value())); } LInstruction* LChunkBuilder::DoClassOfTestAndBranch( HClassOfTestAndBranch* instr) { ASSERT(instr->value()->representation().IsTagged()); LOperand* value = UseRegister(instr->value()); return new(zone()) LClassOfTestAndBranch(value, TempRegister()); } LInstruction* LChunkBuilder::DoMapEnumLength(HMapEnumLength* instr) { LOperand* map = UseRegisterAtStart(instr->value()); return DefineAsRegister(new(zone()) LMapEnumLength(map)); } LInstruction* LChunkBuilder::DoElementsKind(HElementsKind* instr) { LOperand* object = UseRegisterAtStart(instr->value()); return DefineAsRegister(new(zone()) LElementsKind(object)); } LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) { LOperand* object = UseRegister(instr->value()); LValueOf* result = new(zone()) LValueOf(object, TempRegister()); return DefineAsRegister(result); } LInstruction* LChunkBuilder::DoDateField(HDateField* instr) { LOperand* object = UseFixed(instr->value(), r0); LDateField* result = new(zone()) LDateField(object, FixedTemp(r1), instr->index()); return MarkAsCall(DefineFixed(result, r0), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoSeqStringGetChar(HSeqStringGetChar* instr) { LOperand* string = UseRegisterAtStart(instr->string()); LOperand* index = UseRegisterOrConstantAtStart(instr->index()); return DefineAsRegister(new(zone()) LSeqStringGetChar(string, index)); } LInstruction* LChunkBuilder::DoSeqStringSetChar(HSeqStringSetChar* instr) { LOperand* string = UseRegisterAtStart(instr->string()); LOperand* index = FLAG_debug_code ? UseRegisterAtStart(instr->index()) : UseRegisterOrConstantAtStart(instr->index()); LOperand* value = UseRegisterAtStart(instr->value()); LOperand* context = FLAG_debug_code ? UseFixed(instr->context(), cp) : NULL; return new(zone()) LSeqStringSetChar(context, string, index, value); } LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) { LOperand* value = UseRegisterOrConstantAtStart(instr->index()); LOperand* length = UseRegister(instr->length()); return AssignEnvironment(new(zone()) LBoundsCheck(value, length)); } LInstruction* LChunkBuilder::DoBoundsCheckBaseIndexInformation( HBoundsCheckBaseIndexInformation* instr) { UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoAbnormalExit(HAbnormalExit* instr) { // The control instruction marking the end of a block that completed // abruptly (e.g., threw an exception). There is nothing specific to do. return NULL; } LInstruction* LChunkBuilder::DoThrow(HThrow* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* value = UseFixed(instr->value(), r0); return MarkAsCall(new(zone()) LThrow(context, value), instr); } LInstruction* LChunkBuilder::DoUseConst(HUseConst* instr) { return NULL; } LInstruction* LChunkBuilder::DoForceRepresentation(HForceRepresentation* bad) { // All HForceRepresentation instructions should be eliminated in the // representation change phase of Hydrogen. UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoChange(HChange* instr) { Representation from = instr->from(); Representation to = instr->to(); if (from.IsSmi()) { if (to.IsTagged()) { LOperand* value = UseRegister(instr->value()); return DefineSameAsFirst(new(zone()) LDummyUse(value)); } from = Representation::Tagged(); } if (from.IsTagged()) { if (to.IsDouble()) { LOperand* value = UseRegister(instr->value()); LNumberUntagD* res = new(zone()) LNumberUntagD(value); return AssignEnvironment(DefineAsRegister(res)); } else if (to.IsSmi()) { HValue* val = instr->value(); LOperand* value = UseRegister(val); if (val->type().IsSmi()) { return DefineSameAsFirst(new(zone()) LDummyUse(value)); } return AssignEnvironment(DefineSameAsFirst(new(zone()) LCheckSmi(value))); } else { ASSERT(to.IsInteger32()); LOperand* value = NULL; LInstruction* res = NULL; HValue* val = instr->value(); if (val->type().IsSmi() || val->representation().IsSmi()) { value = UseRegisterAtStart(val); res = DefineAsRegister(new(zone()) LSmiUntag(value, false)); } else { value = UseRegister(val); LOperand* temp1 = TempRegister(); LOperand* temp2 = FixedTemp(d11); res = DefineSameAsFirst(new(zone()) LTaggedToI(value, temp1, temp2)); res = AssignEnvironment(res); } return res; } } else if (from.IsDouble()) { if (to.IsTagged()) { info()->MarkAsDeferredCalling(); LOperand* value = UseRegister(instr->value()); LOperand* temp1 = TempRegister(); LOperand* temp2 = TempRegister(); // Make sure that the temp and result_temp registers are // different. LUnallocated* result_temp = TempRegister(); LNumberTagD* result = new(zone()) LNumberTagD(value, temp1, temp2); Define(result, result_temp); return AssignPointerMap(result); } else if (to.IsSmi()) { LOperand* value = UseRegister(instr->value()); return AssignEnvironment( DefineAsRegister(new(zone()) LDoubleToSmi(value))); } else { ASSERT(to.IsInteger32()); LOperand* value = UseRegister(instr->value()); LDoubleToI* res = new(zone()) LDoubleToI(value); return AssignEnvironment(DefineAsRegister(res)); } } else if (from.IsInteger32()) { info()->MarkAsDeferredCalling(); if (to.IsTagged()) { HValue* val = instr->value(); LOperand* value = UseRegisterAtStart(val); if (val->CheckFlag(HInstruction::kUint32)) { LNumberTagU* result = new(zone()) LNumberTagU(value); return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result))); } else if (val->HasRange() && val->range()->IsInSmiRange()) { return DefineAsRegister(new(zone()) LSmiTag(value)); } else { LNumberTagI* result = new(zone()) LNumberTagI(value); return AssignEnvironment(AssignPointerMap(DefineAsRegister(result))); } } else if (to.IsSmi()) { HValue* val = instr->value(); LOperand* value = UseRegister(val); LInstruction* result = val->CheckFlag(HInstruction::kUint32) ? DefineSameAsFirst(new(zone()) LUint32ToSmi(value)) : DefineSameAsFirst(new(zone()) LInteger32ToSmi(value)); if (val->HasRange() && val->range()->IsInSmiRange()) { return result; } return AssignEnvironment(result); } else { ASSERT(to.IsDouble()); if (instr->value()->CheckFlag(HInstruction::kUint32)) { return DefineAsRegister( new(zone()) LUint32ToDouble(UseRegister(instr->value()))); } else { return DefineAsRegister( new(zone()) LInteger32ToDouble(Use(instr->value()))); } } } UNREACHABLE(); return NULL; } LInstruction* LChunkBuilder::DoCheckHeapObject(HCheckHeapObject* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new(zone()) LCheckNonSmi(value)); } LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new(zone()) LCheckSmi(value)); } LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LInstruction* result = new(zone()) LCheckInstanceType(value); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoCheckValue(HCheckValue* instr) { LOperand* value = UseRegisterAtStart(instr->value()); return AssignEnvironment(new(zone()) LCheckValue(value)); } LInstruction* LChunkBuilder::DoCheckMaps(HCheckMaps* instr) { LOperand* value = NULL; if (!instr->CanOmitMapChecks()) { value = UseRegisterAtStart(instr->value()); if (instr->has_migration_target()) info()->MarkAsDeferredCalling(); } LCheckMaps* result = new(zone()) LCheckMaps(value); if (!instr->CanOmitMapChecks()) { AssignEnvironment(result); if (instr->has_migration_target()) return AssignPointerMap(result); } return result; } LInstruction* LChunkBuilder::DoClampToUint8(HClampToUint8* instr) { HValue* value = instr->value(); Representation input_rep = value->representation(); LOperand* reg = UseRegister(value); if (input_rep.IsDouble()) { return DefineAsRegister(new(zone()) LClampDToUint8(reg)); } else if (input_rep.IsInteger32()) { return DefineAsRegister(new(zone()) LClampIToUint8(reg)); } else { ASSERT(input_rep.IsSmiOrTagged()); // Register allocator doesn't (yet) support allocation of double // temps. Reserve d1 explicitly. LClampTToUint8* result = new(zone()) LClampTToUint8(reg, FixedTemp(d11)); return AssignEnvironment(DefineAsRegister(result)); } } LInstruction* LChunkBuilder::DoReturn(HReturn* instr) { LOperand* context = info()->IsStub() ? UseFixed(instr->context(), cp) : NULL; LOperand* parameter_count = UseRegisterOrConstant(instr->parameter_count()); return new(zone()) LReturn(UseFixed(instr->value(), r0), context, parameter_count); } LInstruction* LChunkBuilder::DoConstant(HConstant* instr) { Representation r = instr->representation(); if (r.IsSmi()) { return DefineAsRegister(new(zone()) LConstantS); } else if (r.IsInteger32()) { return DefineAsRegister(new(zone()) LConstantI); } else if (r.IsDouble()) { return DefineAsRegister(new(zone()) LConstantD); } else if (r.IsExternal()) { return DefineAsRegister(new(zone()) LConstantE); } else if (r.IsTagged()) { return DefineAsRegister(new(zone()) LConstantT); } else { UNREACHABLE(); return NULL; } } LInstruction* LChunkBuilder::DoLoadGlobalCell(HLoadGlobalCell* instr) { LLoadGlobalCell* result = new(zone()) LLoadGlobalCell; return instr->RequiresHoleCheck() ? AssignEnvironment(DefineAsRegister(result)) : DefineAsRegister(result); } LInstruction* LChunkBuilder::DoLoadGlobalGeneric(HLoadGlobalGeneric* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* global_object = UseFixed(instr->global_object(), r0); LLoadGlobalGeneric* result = new(zone()) LLoadGlobalGeneric(context, global_object); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoStoreGlobalCell(HStoreGlobalCell* instr) { LOperand* value = UseRegister(instr->value()); // Use a temp to check the value in the cell in the case where we perform // a hole check. return instr->RequiresHoleCheck() ? AssignEnvironment(new(zone()) LStoreGlobalCell(value, TempRegister())) : new(zone()) LStoreGlobalCell(value, NULL); } LInstruction* LChunkBuilder::DoStoreGlobalGeneric(HStoreGlobalGeneric* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* global_object = UseFixed(instr->global_object(), r1); LOperand* value = UseFixed(instr->value(), r0); LStoreGlobalGeneric* result = new(zone()) LStoreGlobalGeneric(context, global_object, value); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoLoadContextSlot(HLoadContextSlot* instr) { LOperand* context = UseRegisterAtStart(instr->value()); LInstruction* result = DefineAsRegister(new(zone()) LLoadContextSlot(context)); return instr->RequiresHoleCheck() ? AssignEnvironment(result) : result; } LInstruction* LChunkBuilder::DoStoreContextSlot(HStoreContextSlot* instr) { LOperand* context; LOperand* value; if (instr->NeedsWriteBarrier()) { context = UseTempRegister(instr->context()); value = UseTempRegister(instr->value()); } else { context = UseRegister(instr->context()); value = UseRegister(instr->value()); } LInstruction* result = new(zone()) LStoreContextSlot(context, value); return instr->RequiresHoleCheck() ? AssignEnvironment(result) : result; } LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) { LOperand* obj = UseRegisterAtStart(instr->object()); return DefineAsRegister(new(zone()) LLoadNamedField(obj)); } LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* object = UseFixed(instr->object(), r0); LInstruction* result = DefineFixed(new(zone()) LLoadNamedGeneric(context, object), r0); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoLoadFunctionPrototype( HLoadFunctionPrototype* instr) { return AssignEnvironment(DefineAsRegister( new(zone()) LLoadFunctionPrototype(UseRegister(instr->function())))); } LInstruction* LChunkBuilder::DoLoadRoot(HLoadRoot* instr) { return DefineAsRegister(new(zone()) LLoadRoot); } LInstruction* LChunkBuilder::DoLoadExternalArrayPointer( HLoadExternalArrayPointer* instr) { LOperand* input = UseRegisterAtStart(instr->value()); return DefineAsRegister(new(zone()) LLoadExternalArrayPointer(input)); } LInstruction* LChunkBuilder::DoLoadKeyed(HLoadKeyed* instr) { ASSERT(instr->key()->representation().IsSmiOrInteger32()); ElementsKind elements_kind = instr->elements_kind(); LOperand* key = UseRegisterOrConstantAtStart(instr->key()); LLoadKeyed* result = NULL; if (!instr->is_external()) { LOperand* obj = NULL; if (instr->representation().IsDouble()) { obj = UseRegister(instr->elements()); } else { ASSERT(instr->representation().IsSmiOrTagged()); obj = UseRegisterAtStart(instr->elements()); } result = new(zone()) LLoadKeyed(obj, key); } else { ASSERT( (instr->representation().IsInteger32() && (elements_kind != EXTERNAL_FLOAT_ELEMENTS) && (elements_kind != EXTERNAL_DOUBLE_ELEMENTS)) || (instr->representation().IsDouble() && ((elements_kind == EXTERNAL_FLOAT_ELEMENTS) || (elements_kind == EXTERNAL_DOUBLE_ELEMENTS)))); LOperand* external_pointer = UseRegister(instr->elements()); result = new(zone()) LLoadKeyed(external_pointer, key); } DefineAsRegister(result); // An unsigned int array load might overflow and cause a deopt, make sure it // has an environment. bool can_deoptimize = instr->RequiresHoleCheck() || (elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS); return can_deoptimize ? AssignEnvironment(result) : result; } LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* object = UseFixed(instr->object(), r1); LOperand* key = UseFixed(instr->key(), r0); LInstruction* result = DefineFixed(new(zone()) LLoadKeyedGeneric(context, object, key), r0); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoStoreKeyed(HStoreKeyed* instr) { if (!instr->is_external()) { ASSERT(instr->elements()->representation().IsTagged()); bool needs_write_barrier = instr->NeedsWriteBarrier(); LOperand* object = NULL; LOperand* key = NULL; LOperand* val = NULL; if (instr->value()->representation().IsDouble()) { object = UseRegisterAtStart(instr->elements()); val = UseRegister(instr->value()); key = UseRegisterOrConstantAtStart(instr->key()); } else { ASSERT(instr->value()->representation().IsSmiOrTagged()); if (needs_write_barrier) { object = UseTempRegister(instr->elements()); val = UseTempRegister(instr->value()); key = UseTempRegister(instr->key()); } else { object = UseRegisterAtStart(instr->elements()); val = UseRegisterAtStart(instr->value()); key = UseRegisterOrConstantAtStart(instr->key()); } } return new(zone()) LStoreKeyed(object, key, val); } ASSERT( (instr->value()->representation().IsInteger32() && (instr->elements_kind() != EXTERNAL_FLOAT_ELEMENTS) && (instr->elements_kind() != EXTERNAL_DOUBLE_ELEMENTS)) || (instr->value()->representation().IsDouble() && ((instr->elements_kind() == EXTERNAL_FLOAT_ELEMENTS) || (instr->elements_kind() == EXTERNAL_DOUBLE_ELEMENTS)))); ASSERT(instr->elements()->representation().IsExternal()); LOperand* val = UseRegister(instr->value()); LOperand* key = UseRegisterOrConstantAtStart(instr->key()); LOperand* external_pointer = UseRegister(instr->elements()); return new(zone()) LStoreKeyed(external_pointer, key, val); } LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* obj = UseFixed(instr->object(), r2); LOperand* key = UseFixed(instr->key(), r1); LOperand* val = UseFixed(instr->value(), r0); ASSERT(instr->object()->representation().IsTagged()); ASSERT(instr->key()->representation().IsTagged()); ASSERT(instr->value()->representation().IsTagged()); return MarkAsCall( new(zone()) LStoreKeyedGeneric(context, obj, key, val), instr); } LInstruction* LChunkBuilder::DoTransitionElementsKind( HTransitionElementsKind* instr) { LOperand* object = UseRegister(instr->object()); if (IsSimpleMapChangeTransition(instr->from_kind(), instr->to_kind())) { LOperand* new_map_reg = TempRegister(); LTransitionElementsKind* result = new(zone()) LTransitionElementsKind(object, NULL, new_map_reg); return result; } else { LOperand* context = UseFixed(instr->context(), cp); LTransitionElementsKind* result = new(zone()) LTransitionElementsKind(object, context, NULL); return AssignPointerMap(result); } } LInstruction* LChunkBuilder::DoTrapAllocationMemento( HTrapAllocationMemento* instr) { LOperand* object = UseRegister(instr->object()); LOperand* temp = TempRegister(); LTrapAllocationMemento* result = new(zone()) LTrapAllocationMemento(object, temp); return AssignEnvironment(result); } LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) { bool is_in_object = instr->access().IsInobject(); bool needs_write_barrier = instr->NeedsWriteBarrier(); bool needs_write_barrier_for_map = instr->has_transition() && instr->NeedsWriteBarrierForMap(); LOperand* obj; if (needs_write_barrier) { obj = is_in_object ? UseRegister(instr->object()) : UseTempRegister(instr->object()); } else { obj = needs_write_barrier_for_map ? UseRegister(instr->object()) : UseRegisterAtStart(instr->object()); } LOperand* val; if (needs_write_barrier || (FLAG_track_fields && instr->field_representation().IsSmi())) { val = UseTempRegister(instr->value()); } else if (FLAG_track_double_fields && instr->field_representation().IsDouble()) { val = UseRegisterAtStart(instr->value()); } else { val = UseRegister(instr->value()); } // We need a temporary register for write barrier of the map field. LOperand* temp = needs_write_barrier_for_map ? TempRegister() : NULL; LStoreNamedField* result = new(zone()) LStoreNamedField(obj, val, temp); if (FLAG_track_heap_object_fields && instr->field_representation().IsHeapObject()) { if (!instr->value()->type().IsHeapObject()) { return AssignEnvironment(result); } } return result; } LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* obj = UseFixed(instr->object(), r1); LOperand* val = UseFixed(instr->value(), r0); LInstruction* result = new(zone()) LStoreNamedGeneric(context, obj, val); return MarkAsCall(result, instr); } LInstruction* LChunkBuilder::DoStringAdd(HStringAdd* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* left = FLAG_new_string_add ? UseFixed(instr->left(), r1) : UseRegisterAtStart(instr->left()); LOperand* right = FLAG_new_string_add ? UseFixed(instr->right(), r0) : UseRegisterAtStart(instr->right()); return MarkAsCall( DefineFixed(new(zone()) LStringAdd(context, left, right), r0), instr); } LInstruction* LChunkBuilder::DoStringCharCodeAt(HStringCharCodeAt* instr) { LOperand* string = UseTempRegister(instr->string()); LOperand* index = UseTempRegister(instr->index()); LOperand* context = UseAny(instr->context()); LStringCharCodeAt* result = new(zone()) LStringCharCodeAt(context, string, index); return AssignEnvironment(AssignPointerMap(DefineAsRegister(result))); } LInstruction* LChunkBuilder::DoStringCharFromCode(HStringCharFromCode* instr) { LOperand* char_code = UseRegister(instr->value()); LOperand* context = UseAny(instr->context()); LStringCharFromCode* result = new(zone()) LStringCharFromCode(context, char_code); return AssignPointerMap(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoAllocate(HAllocate* instr) { info()->MarkAsDeferredCalling(); LOperand* context = UseAny(instr->context()); LOperand* size = instr->size()->IsConstant() ? UseConstant(instr->size()) : UseTempRegister(instr->size()); LOperand* temp1 = TempRegister(); LOperand* temp2 = TempRegister(); LAllocate* result = new(zone()) LAllocate(context, size, temp1, temp2); return AssignPointerMap(DefineAsRegister(result)); } LInstruction* LChunkBuilder::DoRegExpLiteral(HRegExpLiteral* instr) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall( DefineFixed(new(zone()) LRegExpLiteral(context), r0), instr); } LInstruction* LChunkBuilder::DoFunctionLiteral(HFunctionLiteral* instr) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall( DefineFixed(new(zone()) LFunctionLiteral(context), r0), instr); } LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) { ASSERT(argument_count_ == 0); allocator_->MarkAsOsrEntry(); current_block_->last_environment()->set_ast_id(instr->ast_id()); return AssignEnvironment(new(zone()) LOsrEntry); } LInstruction* LChunkBuilder::DoParameter(HParameter* instr) { LParameter* result = new(zone()) LParameter; if (instr->kind() == HParameter::STACK_PARAMETER) { int spill_index = chunk()->GetParameterStackSlot(instr->index()); return DefineAsSpilled(result, spill_index); } else { ASSERT(info()->IsStub()); CodeStubInterfaceDescriptor* descriptor = info()->code_stub()->GetInterfaceDescriptor(info()->isolate()); int index = static_cast(instr->index()); Register reg = descriptor->GetParameterRegister(index); return DefineFixed(result, reg); } } LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) { // Use an index that corresponds to the location in the unoptimized frame, // which the optimized frame will subsume. int env_index = instr->index(); int spill_index = 0; if (instr->environment()->is_parameter_index(env_index)) { spill_index = chunk()->GetParameterStackSlot(env_index); } else { spill_index = env_index - instr->environment()->first_local_index(); if (spill_index > LUnallocated::kMaxFixedSlotIndex) { Abort(kTooManySpillSlotsNeededForOSR); spill_index = 0; } } return DefineAsSpilled(new(zone()) LUnknownOSRValue, spill_index); } LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall(DefineFixed(new(zone()) LCallStub(context), r0), instr); } LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) { // There are no real uses of the arguments object. // arguments.length and element access are supported directly on // stack arguments, and any real arguments object use causes a bailout. // So this value is never used. return NULL; } LInstruction* LChunkBuilder::DoCapturedObject(HCapturedObject* instr) { instr->ReplayEnvironment(current_block_->last_environment()); // There are no real uses of a captured object. return NULL; } LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) { info()->MarkAsRequiresFrame(); LOperand* args = UseRegister(instr->arguments()); LOperand* length = UseRegisterOrConstantAtStart(instr->length()); LOperand* index = UseRegisterOrConstantAtStart(instr->index()); return DefineAsRegister(new(zone()) LAccessArgumentsAt(args, length, index)); } LInstruction* LChunkBuilder::DoToFastProperties(HToFastProperties* instr) { LOperand* object = UseFixed(instr->value(), r0); LToFastProperties* result = new(zone()) LToFastProperties(object); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) { LOperand* context = UseFixed(instr->context(), cp); LTypeof* result = new(zone()) LTypeof(context, UseFixed(instr->value(), r0)); return MarkAsCall(DefineFixed(result, r0), instr); } LInstruction* LChunkBuilder::DoTypeofIsAndBranch(HTypeofIsAndBranch* instr) { LInstruction* goto_instr = CheckElideControlInstruction(instr); if (goto_instr != NULL) return goto_instr; return new(zone()) LTypeofIsAndBranch(UseTempRegister(instr->value())); } LInstruction* LChunkBuilder::DoIsConstructCallAndBranch( HIsConstructCallAndBranch* instr) { return new(zone()) LIsConstructCallAndBranch(TempRegister()); } LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) { instr->ReplayEnvironment(current_block_->last_environment()); // If there is an instruction pending deoptimization environment create a // lazy bailout instruction to capture the environment. if (pending_deoptimization_ast_id_ == instr->ast_id()) { LInstruction* result = new(zone()) LLazyBailout; result = AssignEnvironment(result); // Store the lazy deopt environment with the instruction if needed. Right // now it is only used for LInstanceOfKnownGlobal. instruction_pending_deoptimization_environment_-> SetDeferredLazyDeoptimizationEnvironment(result->environment()); instruction_pending_deoptimization_environment_ = NULL; pending_deoptimization_ast_id_ = BailoutId::None(); return result; } return NULL; } LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) { if (instr->is_function_entry()) { LOperand* context = UseFixed(instr->context(), cp); return MarkAsCall(new(zone()) LStackCheck(context), instr); } else { ASSERT(instr->is_backwards_branch()); LOperand* context = UseAny(instr->context()); return AssignEnvironment( AssignPointerMap(new(zone()) LStackCheck(context))); } } LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) { HEnvironment* outer = current_block_->last_environment(); HConstant* undefined = graph()->GetConstantUndefined(); HEnvironment* inner = outer->CopyForInlining(instr->closure(), instr->arguments_count(), instr->function(), undefined, instr->inlining_kind(), instr->undefined_receiver()); // Only replay binding of arguments object if it wasn't removed from graph. if (instr->arguments_var() != NULL && instr->arguments_object()->IsLinked()) { inner->Bind(instr->arguments_var(), instr->arguments_object()); } inner->set_entry(instr); current_block_->UpdateEnvironment(inner); chunk_->AddInlinedClosure(instr->closure()); return NULL; } LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) { LInstruction* pop = NULL; HEnvironment* env = current_block_->last_environment(); if (env->entry()->arguments_pushed()) { int argument_count = env->arguments_environment()->parameter_count(); pop = new(zone()) LDrop(argument_count); ASSERT(instr->argument_delta() == -argument_count); } HEnvironment* outer = current_block_->last_environment()-> DiscardInlined(false); current_block_->UpdateEnvironment(outer); return pop; } LInstruction* LChunkBuilder::DoForInPrepareMap(HForInPrepareMap* instr) { LOperand* context = UseFixed(instr->context(), cp); LOperand* object = UseFixed(instr->enumerable(), r0); LForInPrepareMap* result = new(zone()) LForInPrepareMap(context, object); return MarkAsCall(DefineFixed(result, r0), instr, CAN_DEOPTIMIZE_EAGERLY); } LInstruction* LChunkBuilder::DoForInCacheArray(HForInCacheArray* instr) { LOperand* map = UseRegister(instr->map()); return AssignEnvironment(DefineAsRegister(new(zone()) LForInCacheArray(map))); } LInstruction* LChunkBuilder::DoCheckMapValue(HCheckMapValue* instr) { LOperand* value = UseRegisterAtStart(instr->value()); LOperand* map = UseRegisterAtStart(instr->map()); return AssignEnvironment(new(zone()) LCheckMapValue(value, map)); } LInstruction* LChunkBuilder::DoLoadFieldByIndex(HLoadFieldByIndex* instr) { LOperand* object = UseRegister(instr->object()); LOperand* index = UseRegister(instr->index()); return DefineAsRegister(new(zone()) LLoadFieldByIndex(object, index)); } } } // namespace v8::internal