// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // CPU specific code for arm independent of OS goes here. #include "v8.h" #if V8_TARGET_ARCH_ARM64 #include "cpu.h" #include "arm64/utils-arm64.h" namespace v8 { namespace internal { class CacheLineSizes { public: CacheLineSizes() { #ifdef USE_SIMULATOR cache_type_register_ = 0; #else // Copy the content of the cache type register to a core register. __asm__ __volatile__ ("mrs %[ctr], ctr_el0" // NOLINT : [ctr] "=r" (cache_type_register_)); #endif } uint32_t icache_line_size() const { return ExtractCacheLineSize(0); } uint32_t dcache_line_size() const { return ExtractCacheLineSize(16); } private: uint32_t ExtractCacheLineSize(int cache_line_size_shift) const { // The cache type register holds the size of cache lines in words as a // power of two. return 4 << ((cache_type_register_ >> cache_line_size_shift) & 0xf); } uint32_t cache_type_register_; }; void CPU::FlushICache(void* address, size_t length) { if (length == 0) return; #ifdef USE_SIMULATOR // TODO(all): consider doing some cache simulation to ensure every address // run has been synced. USE(address); USE(length); #else // The code below assumes user space cache operations are allowed. The goal // of this routine is to make sure the code generated is visible to the I // side of the CPU. uintptr_t start = reinterpret_cast(address); // Sizes will be used to generate a mask big enough to cover a pointer. CacheLineSizes sizes; uintptr_t dsize = sizes.dcache_line_size(); uintptr_t isize = sizes.icache_line_size(); // Cache line sizes are always a power of 2. ASSERT(CountSetBits(dsize, 64) == 1); ASSERT(CountSetBits(isize, 64) == 1); uintptr_t dstart = start & ~(dsize - 1); uintptr_t istart = start & ~(isize - 1); uintptr_t end = start + length; __asm__ __volatile__ ( // NOLINT // Clean every line of the D cache containing the target data. "0: \n\t" // dc : Data Cache maintenance // c : Clean // va : by (Virtual) Address // u : to the point of Unification // The point of unification for a processor is the point by which the // instruction and data caches are guaranteed to see the same copy of a // memory location. See ARM DDI 0406B page B2-12 for more information. "dc cvau, %[dline] \n\t" "add %[dline], %[dline], %[dsize] \n\t" "cmp %[dline], %[end] \n\t" "b.lt 0b \n\t" // Barrier to make sure the effect of the code above is visible to the rest // of the world. // dsb : Data Synchronisation Barrier // ish : Inner SHareable domain // The point of unification for an Inner Shareable shareability domain is // the point by which the instruction and data caches of all the processors // in that Inner Shareable shareability domain are guaranteed to see the // same copy of a memory location. See ARM DDI 0406B page B2-12 for more // information. "dsb ish \n\t" // Invalidate every line of the I cache containing the target data. "1: \n\t" // ic : instruction cache maintenance // i : invalidate // va : by address // u : to the point of unification "ic ivau, %[iline] \n\t" "add %[iline], %[iline], %[isize] \n\t" "cmp %[iline], %[end] \n\t" "b.lt 1b \n\t" // Barrier to make sure the effect of the code above is visible to the rest // of the world. "dsb ish \n\t" // Barrier to ensure any prefetching which happened before this code is // discarded. // isb : Instruction Synchronisation Barrier "isb \n\t" : [dline] "+r" (dstart), [iline] "+r" (istart) : [dsize] "r" (dsize), [isize] "r" (isize), [end] "r" (end) // This code does not write to memory but without the dependency gcc might // move this code before the code is generated. : "cc", "memory" ); // NOLINT #endif } } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM64