// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "hydrogen-uint32-analysis.h" namespace v8 { namespace internal { static bool IsUnsignedLoad(HLoadKeyed* instr) { switch (instr->elements_kind()) { case EXTERNAL_UINT8_ELEMENTS: case EXTERNAL_UINT16_ELEMENTS: case EXTERNAL_UINT32_ELEMENTS: case EXTERNAL_UINT8_CLAMPED_ELEMENTS: case UINT8_ELEMENTS: case UINT16_ELEMENTS: case UINT32_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: return true; default: return false; } } static bool IsUint32Operation(HValue* instr) { return instr->IsShr() || (instr->IsLoadKeyed() && IsUnsignedLoad(HLoadKeyed::cast(instr))) || (instr->IsInteger32Constant() && instr->GetInteger32Constant() >= 0); } bool HUint32AnalysisPhase::IsSafeUint32Use(HValue* val, HValue* use) { // Operations that operate on bits are safe. if (use->IsBitwise() || use->IsShl() || use->IsSar() || use->IsShr()) { return true; } else if (use->IsSimulate()) { // Deoptimization has special support for uint32. return true; } else if (use->IsChange()) { // Conversions have special support for uint32. // This ASSERT guards that the conversion in question is actually // implemented. Do not extend the whitelist without adding // support to LChunkBuilder::DoChange(). ASSERT(HChange::cast(use)->to().IsDouble() || HChange::cast(use)->to().IsSmi() || HChange::cast(use)->to().IsTagged()); return true; } else if (use->IsStoreKeyed()) { HStoreKeyed* store = HStoreKeyed::cast(use); if (store->is_external()) { // Storing a value into an external integer array is a bit level // operation. if (store->value() == val) { // Clamping or a conversion to double should have beed inserted. ASSERT(store->elements_kind() != EXTERNAL_UINT8_CLAMPED_ELEMENTS); ASSERT(store->elements_kind() != EXTERNAL_FLOAT32_ELEMENTS); ASSERT(store->elements_kind() != EXTERNAL_FLOAT64_ELEMENTS); return true; } } } else if (use->IsCompareNumericAndBranch()) { HCompareNumericAndBranch* c = HCompareNumericAndBranch::cast(use); return IsUint32Operation(c->left()) && IsUint32Operation(c->right()); } return false; } // Iterate over all uses and verify that they are uint32 safe: either don't // distinguish between int32 and uint32 due to their bitwise nature or // have special support for uint32 values. // Encountered phis are optimistically treated as safe uint32 uses, // marked with kUint32 flag and collected in the phis_ list. A separate // pass will be performed later by UnmarkUnsafePhis to clear kUint32 from // phis that are not actually uint32-safe (it requires fix point iteration). bool HUint32AnalysisPhase::Uint32UsesAreSafe(HValue* uint32val) { bool collect_phi_uses = false; for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) { HValue* use = it.value(); if (use->IsPhi()) { if (!use->CheckFlag(HInstruction::kUint32)) { // There is a phi use of this value from a phi that is not yet // collected in phis_ array. Separate pass is required. collect_phi_uses = true; } // Optimistically treat phis as uint32 safe. continue; } if (!IsSafeUint32Use(uint32val, use)) { return false; } } if (collect_phi_uses) { for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) { HValue* use = it.value(); // There is a phi use of this value from a phi that is not yet // collected in phis_ array. Separate pass is required. if (use->IsPhi() && !use->CheckFlag(HInstruction::kUint32)) { use->SetFlag(HInstruction::kUint32); phis_.Add(HPhi::cast(use), zone()); } } } return true; } // Check if all operands to the given phi are marked with kUint32 flag. bool HUint32AnalysisPhase::CheckPhiOperands(HPhi* phi) { if (!phi->CheckFlag(HInstruction::kUint32)) { // This phi is not uint32 safe. No need to check operands. return false; } for (int j = 0; j < phi->OperandCount(); j++) { HValue* operand = phi->OperandAt(j); if (!operand->CheckFlag(HInstruction::kUint32)) { // Lazily mark constants that fit into uint32 range with kUint32 flag. if (operand->IsInteger32Constant() && operand->GetInteger32Constant() >= 0) { operand->SetFlag(HInstruction::kUint32); continue; } // This phi is not safe, some operands are not uint32 values. return false; } } return true; } // Remove kUint32 flag from the phi itself and its operands. If any operand // was a phi marked with kUint32 place it into a worklist for // transitive clearing of kUint32 flag. void HUint32AnalysisPhase::UnmarkPhi(HPhi* phi, ZoneList* worklist) { phi->ClearFlag(HInstruction::kUint32); for (int j = 0; j < phi->OperandCount(); j++) { HValue* operand = phi->OperandAt(j); if (operand->CheckFlag(HInstruction::kUint32)) { operand->ClearFlag(HInstruction::kUint32); if (operand->IsPhi()) { worklist->Add(HPhi::cast(operand), zone()); } } } } void HUint32AnalysisPhase::UnmarkUnsafePhis() { // No phis were collected. Nothing to do. if (phis_.length() == 0) return; // Worklist used to transitively clear kUint32 from phis that // are used as arguments to other phis. ZoneList worklist(phis_.length(), zone()); // Phi can be used as a uint32 value if and only if // all its operands are uint32 values and all its // uses are uint32 safe. // Iterate over collected phis and unmark those that // are unsafe. When unmarking phi unmark its operands // and add it to the worklist if it is a phi as well. // Phis that are still marked as safe are shifted down // so that all safe phis form a prefix of the phis_ array. int phi_count = 0; for (int i = 0; i < phis_.length(); i++) { HPhi* phi = phis_[i]; if (CheckPhiOperands(phi) && Uint32UsesAreSafe(phi)) { phis_[phi_count++] = phi; } else { UnmarkPhi(phi, &worklist); } } // Now phis array contains only those phis that have safe // non-phi uses. Start transitively clearing kUint32 flag // from phi operands of discovered non-safe phis until // only safe phis are left. while (!worklist.is_empty()) { while (!worklist.is_empty()) { HPhi* phi = worklist.RemoveLast(); UnmarkPhi(phi, &worklist); } // Check if any operands to safe phis were unmarked // turning a safe phi into unsafe. The same value // can flow into several phis. int new_phi_count = 0; for (int i = 0; i < phi_count; i++) { HPhi* phi = phis_[i]; if (CheckPhiOperands(phi)) { phis_[new_phi_count++] = phi; } else { UnmarkPhi(phi, &worklist); } } phi_count = new_phi_count; } } void HUint32AnalysisPhase::Run() { if (!graph()->has_uint32_instructions()) return; ZoneList* uint32_instructions = graph()->uint32_instructions(); for (int i = 0; i < uint32_instructions->length(); ++i) { // Analyze instruction and mark it with kUint32 if all // its uses are uint32 safe. HInstruction* current = uint32_instructions->at(i); if (current->IsLinked() && current->representation().IsInteger32() && Uint32UsesAreSafe(current)) { current->SetFlag(HInstruction::kUint32); } } // Some phis might have been optimistically marked with kUint32 flag. // Remove this flag from those phis that are unsafe and propagate // this information transitively potentially clearing kUint32 flag // from some non-phi operations that are used as operands to unsafe phis. UnmarkUnsafePhis(); } } } // namespace v8::internal