// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import { CodeMap, CodeEntry } from "./codemap.mjs"; import { ConsArray } from "./consarray.mjs"; // TODO: move to separate modules export class SourcePosition { constructor(script, line, column) { this.script = script; this.line = line; this.column = column; this.entries = []; } addEntry(entry) { this.entries.push(entry); } } export class Script { constructor(id, name, source) { this.id = id; this.name = name; this.source = source; this.sourcePositions = []; // Map> this.lineToColumn = new Map(); } get length() { return this.source.length; } addSourcePosition(line, column, entry) { let sourcePosition = this.lineToColumn.get(line)?.get(column); if (sourcePosition === undefined) { sourcePosition = new SourcePosition(this, line, column, ) this._addSourcePosition(line, column, sourcePosition); } sourcePosition.addEntry(entry); return sourcePosition; } _addSourcePosition(line, column, sourcePosition) { let columnToSourcePosition; if (this.lineToColumn.has(line)) { columnToSourcePosition = this.lineToColumn.get(line); } else { columnToSourcePosition = new Map(); this.lineToColumn.set(line, columnToSourcePosition); } this.sourcePositions.push(sourcePosition); columnToSourcePosition.set(column, sourcePosition); } } /** * Creates a profile object for processing profiling-related events * and calculating function execution times. * * @constructor */ export class Profile { codeMap_ = new CodeMap(); topDownTree_ = new CallTree(); bottomUpTree_ = new CallTree(); c_entries_ = {}; ticks_ = []; scripts_ = []; urlToScript_ = new Map(); /** * Returns whether a function with the specified name must be skipped. * Should be overriden by subclasses. * * @param {string} name Function name. */ skipThisFunction(name) { return false; } /** * Enum for profiler operations that involve looking up existing * code entries. * * @enum {number} */ static Operation = { MOVE: 0, DELETE: 1, TICK: 2 } /** * Enum for code state regarding its dynamic optimization. * * @enum {number} */ static CodeState = { COMPILED: 0, OPTIMIZABLE: 1, OPTIMIZED: 2 } /** * Called whenever the specified operation has failed finding a function * containing the specified address. Should be overriden by subclasses. * See the Profile.Operation enum for the list of * possible operations. * * @param {number} operation Operation. * @param {number} addr Address of the unknown code. * @param {number} opt_stackPos If an unknown address is encountered * during stack strace processing, specifies a position of the frame * containing the address. */ handleUnknownCode(operation, addr, opt_stackPos) {} /** * Registers a library. * * @param {string} name Code entry name. * @param {number} startAddr Starting address. * @param {number} endAddr Ending address. */ addLibrary(name, startAddr, endAddr) { const entry = new CodeEntry(endAddr - startAddr, name, 'SHARED_LIB'); this.codeMap_.addLibrary(startAddr, entry); return entry; } /** * Registers statically compiled code entry. * * @param {string} name Code entry name. * @param {number} startAddr Starting address. * @param {number} endAddr Ending address. */ addStaticCode(name, startAddr, endAddr) { const entry = new CodeEntry(endAddr - startAddr, name, 'CPP'); this.codeMap_.addStaticCode(startAddr, entry); return entry; } /** * Registers dynamic (JIT-compiled) code entry. * * @param {string} type Code entry type. * @param {string} name Code entry name. * @param {number} start Starting address. * @param {number} size Code entry size. */ addCode(type, name, timestamp, start, size) { const entry = new DynamicCodeEntry(size, type, name); this.codeMap_.addCode(start, entry); return entry; } /** * Registers dynamic (JIT-compiled) code entry. * * @param {string} type Code entry type. * @param {string} name Code entry name. * @param {number} start Starting address. * @param {number} size Code entry size. * @param {number} funcAddr Shared function object address. * @param {Profile.CodeState} state Optimization state. */ addFuncCode(type, name, timestamp, start, size, funcAddr, state) { // As code and functions are in the same address space, // it is safe to put them in a single code map. let func = this.codeMap_.findDynamicEntryByStartAddress(funcAddr); if (!func) { func = new FunctionEntry(name); this.codeMap_.addCode(funcAddr, func); } else if (func.name !== name) { // Function object has been overwritten with a new one. func.name = name; } let entry = this.codeMap_.findDynamicEntryByStartAddress(start); if (entry) { if (entry.size === size && entry.func === func) { // Entry state has changed. entry.state = state; } else { this.codeMap_.deleteCode(start); entry = null; } } if (!entry) { entry = new DynamicFuncCodeEntry(size, type, func, state); this.codeMap_.addCode(start, entry); } return entry; } /** * Reports about moving of a dynamic code entry. * * @param {number} from Current code entry address. * @param {number} to New code entry address. */ moveCode(from, to) { try { this.codeMap_.moveCode(from, to); } catch (e) { this.handleUnknownCode(Profile.Operation.MOVE, from); } } deoptCode( timestamp, code, inliningId, scriptOffset, bailoutType, sourcePositionText, deoptReasonText) { } /** * Reports about deletion of a dynamic code entry. * * @param {number} start Starting address. */ deleteCode(start) { try { this.codeMap_.deleteCode(start); } catch (e) { this.handleUnknownCode(Profile.Operation.DELETE, start); } } /** * Adds source positions for given code. */ addSourcePositions(start, script, startPos, endPos, sourcePositions, inliningPositions, inlinedFunctions) { // CLI does not need source code => ignore. } /** * Adds script source code. */ addScriptSource(id, url, source) { const script = new Script(id, url, source); this.scripts_[id] = script; this.urlToScript_.set(url, script); } /** * Adds script source code. */ getScript(url) { return this.urlToScript_.get(url); } /** * Reports about moving of a dynamic code entry. * * @param {number} from Current code entry address. * @param {number} to New code entry address. */ moveFunc(from, to) { if (this.codeMap_.findDynamicEntryByStartAddress(from)) { this.codeMap_.moveCode(from, to); } } /** * Retrieves a code entry by an address. * * @param {number} addr Entry address. */ findEntry(addr) { return this.codeMap_.findEntry(addr); } /** * Records a tick event. Stack must contain a sequence of * addresses starting with the program counter value. * * @param {Array} stack Stack sample. */ recordTick(time_ns, vmState, stack) { const processedStack = this.resolveAndFilterFuncs_(stack); this.bottomUpTree_.addPath(processedStack); processedStack.reverse(); this.topDownTree_.addPath(processedStack); } /** * Translates addresses into function names and filters unneeded * functions. * * @param {Array} stack Stack sample. */ resolveAndFilterFuncs_(stack) { const result = []; let last_seen_c_function = ''; let look_for_first_c_function = false; for (let i = 0; i < stack.length; ++i) { const entry = this.codeMap_.findEntry(stack[i]); if (entry) { const name = entry.getName(); if (i === 0 && (entry.type === 'CPP' || entry.type === 'SHARED_LIB')) { look_for_first_c_function = true; } if (look_for_first_c_function && entry.type === 'CPP') { last_seen_c_function = name; } if (!this.skipThisFunction(name)) { result.push(name); } } else { this.handleUnknownCode(Profile.Operation.TICK, stack[i], i); if (i === 0) result.push("UNKNOWN"); } if (look_for_first_c_function && i > 0 && (!entry || entry.type !== 'CPP') && last_seen_c_function !== '') { if (this.c_entries_[last_seen_c_function] === undefined) { this.c_entries_[last_seen_c_function] = 0; } this.c_entries_[last_seen_c_function]++; look_for_first_c_function = false; // Found it, we're done. } } return result; } /** * Performs a BF traversal of the top down call graph. * * @param {function(CallTreeNode)} f Visitor function. */ traverseTopDownTree(f) { this.topDownTree_.traverse(f); } /** * Performs a BF traversal of the bottom up call graph. * * @param {function(CallTreeNode)} f Visitor function. */ traverseBottomUpTree(f) { this.bottomUpTree_.traverse(f); } /** * Calculates a top down profile for a node with the specified label. * If no name specified, returns the whole top down calls tree. * * @param {string} opt_label Node label. */ getTopDownProfile(opt_label) { return this.getTreeProfile_(this.topDownTree_, opt_label); } /** * Calculates a bottom up profile for a node with the specified label. * If no name specified, returns the whole bottom up calls tree. * * @param {string} opt_label Node label. */ getBottomUpProfile(opt_label) { return this.getTreeProfile_(this.bottomUpTree_, opt_label); } /** * Helper function for calculating a tree profile. * * @param {Profile.CallTree} tree Call tree. * @param {string} opt_label Node label. */ getTreeProfile_(tree, opt_label) { if (!opt_label) { tree.computeTotalWeights(); return tree; } else { const subTree = tree.cloneSubtree(opt_label); subTree.computeTotalWeights(); return subTree; } } /** * Calculates a flat profile of callees starting from a node with * the specified label. If no name specified, starts from the root. * * @param {string} opt_label Starting node label. */ getFlatProfile(opt_label) { const counters = new CallTree(); const rootLabel = opt_label || CallTree.ROOT_NODE_LABEL; const precs = {}; precs[rootLabel] = 0; const root = counters.findOrAddChild(rootLabel); this.topDownTree_.computeTotalWeights(); this.topDownTree_.traverseInDepth( function onEnter(node) { if (!(node.label in precs)) { precs[node.label] = 0; } const nodeLabelIsRootLabel = node.label == rootLabel; if (nodeLabelIsRootLabel || precs[rootLabel] > 0) { if (precs[rootLabel] == 0) { root.selfWeight += node.selfWeight; root.totalWeight += node.totalWeight; } else { const rec = root.findOrAddChild(node.label); rec.selfWeight += node.selfWeight; if (nodeLabelIsRootLabel || precs[node.label] == 0) { rec.totalWeight += node.totalWeight; } } precs[node.label]++; } }, function onExit(node) { if (node.label == rootLabel || precs[rootLabel] > 0) { precs[node.label]--; } }, null); if (!opt_label) { // If we have created a flat profile for the whole program, we don't // need an explicit root in it. Thus, replace the counters tree // root with the node corresponding to the whole program. counters.root_ = root; } else { // Propagate weights so percents can be calculated correctly. counters.getRoot().selfWeight = root.selfWeight; counters.getRoot().totalWeight = root.totalWeight; } return counters; } getCEntryProfile() { const result = [new CEntryNode("TOTAL", 0)]; let total_ticks = 0; for (let f in this.c_entries_) { const ticks = this.c_entries_[f]; total_ticks += ticks; result.push(new CEntryNode(f, ticks)); } result[0].ticks = total_ticks; // Sorting will keep this at index 0. result.sort((n1, n2) => n2.ticks - n1.ticks || (n2.name < n1.name ? -1 : 1)); return result; } /** * Cleans up function entries that are not referenced by code entries. */ cleanUpFuncEntries() { const referencedFuncEntries = []; const entries = this.codeMap_.getAllDynamicEntriesWithAddresses(); for (let i = 0, l = entries.length; i < l; ++i) { if (entries[i][1].constructor === FunctionEntry) { entries[i][1].used = false; } } for (let i = 0, l = entries.length; i < l; ++i) { if ("func" in entries[i][1]) { entries[i][1].func.used = true; } } for (let i = 0, l = entries.length; i < l; ++i) { if (entries[i][1].constructor === FunctionEntry && !entries[i][1].used) { this.codeMap_.deleteCode(entries[i][0]); } } } } class CEntryNode { constructor(name, ticks) { this.name = name; this.ticks = ticks; } } /** * Creates a dynamic code entry. * * @param {number} size Code size. * @param {string} type Code type. * @param {string} name Function name. * @constructor */ class DynamicCodeEntry extends CodeEntry { constructor(size, type, name) { super(size, name, type); } getName() { return this.type + ': ' + this.name; } /** * Returns raw node name (without type decoration). */ getRawName() { return this.name; } isJSFunction() { return false; } toString() { return this.getName() + ': ' + this.size.toString(16); } } /** * Creates a dynamic code entry. * * @param {number} size Code size. * @param {string} type Code type. * @param {FunctionEntry} func Shared function entry. * @param {Profile.CodeState} state Code optimization state. * @constructor */ class DynamicFuncCodeEntry extends CodeEntry { constructor(size, type, func, state) { super(size, '', type); this.func = func; this.state = state; } static STATE_PREFIX = ["", "~", "*"]; getState() { return DynamicFuncCodeEntry.STATE_PREFIX[this.state]; } getName() { const name = this.func.getName(); return this.type + ': ' + this.getState() + name; } /** * Returns raw node name (without type decoration). */ getRawName() { return this.func.getName(); } isJSFunction() { return true; } toString() { return this.getName() + ': ' + this.size.toString(16); } } /** * Creates a shared function object entry. * * @param {string} name Function name. * @constructor */ class FunctionEntry extends CodeEntry { constructor(name) { super(0, name); } /** * Returns node name. */ getName() { let name = this.name; if (name.length == 0) { name = ''; } else if (name.charAt(0) == ' ') { // An anonymous function with location: " aaa.js:10". name = `${name}`; } return name; } } /** * Constructs a call graph. * * @constructor */ class CallTree { root_ = new CallTreeNode(CallTree.ROOT_NODE_LABEL); totalsComputed_ = false; /** * The label of the root node. */ static ROOT_NODE_LABEL = ''; /** * Returns the tree root. */ getRoot() { return this.root_; } /** * Adds the specified call path, constructing nodes as necessary. * * @param {Array} path Call path. */ addPath(path) { if (path.length == 0) { return; } let curr = this.root_; for (let i = 0; i < path.length; ++i) { curr = curr.findOrAddChild(path[i]); } curr.selfWeight++; this.totalsComputed_ = false; } /** * Finds an immediate child of the specified parent with the specified * label, creates a child node if necessary. If a parent node isn't * specified, uses tree root. * * @param {string} label Child node label. */ findOrAddChild(label) { return this.root_.findOrAddChild(label); } /** * Creates a subtree by cloning and merging all subtrees rooted at nodes * with a given label. E.g. cloning the following call tree on label 'A' * will give the following result: * * -- * / / * == clone on 'A' ==> -- * \ \ * ---- * * And 's selfWeight will be the sum of selfWeights of 's from the * source call tree. * * @param {string} label The label of the new root node. */ cloneSubtree(label) { const subTree = new CallTree(); this.traverse((node, parent) => { if (!parent && node.label != label) { return null; } const child = (parent ? parent : subTree).findOrAddChild(node.label); child.selfWeight += node.selfWeight; return child; }); return subTree; } /** * Computes total weights in the call graph. */ computeTotalWeights() { if (this.totalsComputed_) return; this.root_.computeTotalWeight(); this.totalsComputed_ = true; } /** * Traverses the call graph in preorder. This function can be used for * building optionally modified tree clones. This is the boilerplate code * for this scenario: * * callTree.traverse(function(node, parentClone) { * var nodeClone = cloneNode(node); * if (parentClone) * parentClone.addChild(nodeClone); * return nodeClone; * }); * * @param {function(CallTreeNode, *)} f Visitor function. * The second parameter is the result of calling 'f' on the parent node. */ traverse(f) { const pairsToProcess = new ConsArray(); pairsToProcess.concat([{ node: this.root_, param: null }]); while (!pairsToProcess.atEnd()) { const pair = pairsToProcess.next(); const node = pair.node; const newParam = f(node, pair.param); const morePairsToProcess = []; node.forEachChild((child) => { morePairsToProcess.push({ node: child, param: newParam }); }); pairsToProcess.concat(morePairsToProcess); } } /** * Performs an indepth call graph traversal. * * @param {function(CallTreeNode)} enter A function called * prior to visiting node's children. * @param {function(CallTreeNode)} exit A function called * after visiting node's children. */ traverseInDepth(enter, exit) { function traverse(node) { enter(node); node.forEachChild(traverse); exit(node); } traverse(this.root_); } } /** * Constructs a call graph node. * * @param {string} label Node label. * @param {CallTreeNode} opt_parent Node parent. */ class CallTreeNode { /** * Node self weight (how many times this node was the last node in * a call path). * @type {number} */ selfWeight = 0; /** * Node total weight (includes weights of all children). * @type {number} */ totalWeight = 0; children = {}; constructor(label, opt_parent) { this.label = label; this.parent = opt_parent; } /** * Adds a child node. * * @param {string} label Child node label. */ addChild(label) { const child = new CallTreeNode(label, this); this.children[label] = child; return child; } /** * Computes node's total weight. */ computeTotalWeight() { let totalWeight = this.selfWeight; this.forEachChild(function (child) { totalWeight += child.computeTotalWeight(); }); return this.totalWeight = totalWeight; } /** * Returns all node's children as an array. */ exportChildren() { const result = []; this.forEachChild(function (node) { result.push(node); }); return result; } /** * Finds an immediate child with the specified label. * * @param {string} label Child node label. */ findChild(label) { return this.children[label] || null; } /** * Finds an immediate child with the specified label, creates a child * node if necessary. * * @param {string} label Child node label. */ findOrAddChild(label) { return this.findChild(label) || this.addChild(label); } /** * Calls the specified function for every child. * * @param {function(CallTreeNode)} f Visitor function. */ forEachChild(f) { for (let c in this.children) { f(this.children[c]); } } /** * Walks up from the current node up to the call tree root. * * @param {function(CallTreeNode)} f Visitor function. */ walkUpToRoot(f) { for (let curr = this; curr != null; curr = curr.parent) { f(curr); } } /** * Tries to find a node with the specified path. * * @param {Array} labels The path. * @param {function(CallTreeNode)} opt_f Visitor function. */ descendToChild(labels, opt_f) { let curr = this; for (let pos = 0; pos < labels.length && curr != null; pos++) { const child = curr.findChild(labels[pos]); if (opt_f) { opt_f(child, pos); } curr = child; } return curr; } } export function JsonProfile() { this.codeMap_ = new CodeMap(); this.codeEntries_ = []; this.functionEntries_ = []; this.ticks_ = []; this.scripts_ = []; } JsonProfile.prototype.addLibrary = function ( name, startAddr, endAddr) { const entry = new CodeEntry( endAddr - startAddr, name, 'SHARED_LIB'); this.codeMap_.addLibrary(startAddr, entry); entry.codeId = this.codeEntries_.length; this.codeEntries_.push({ name: entry.name, type: entry.type }); return entry; }; JsonProfile.prototype.addStaticCode = function ( name, startAddr, endAddr) { const entry = new CodeEntry( endAddr - startAddr, name, 'CPP'); this.codeMap_.addStaticCode(startAddr, entry); entry.codeId = this.codeEntries_.length; this.codeEntries_.push({ name: entry.name, type: entry.type }); return entry; }; JsonProfile.prototype.addCode = function ( kind, name, timestamp, start, size) { let codeId = this.codeEntries_.length; // Find out if we have a static code entry for the code. If yes, we will // make sure it is written to the JSON file just once. let staticEntry = this.codeMap_.findAddress(start); if (staticEntry && staticEntry.entry.type === 'CPP') { codeId = staticEntry.entry.codeId; } const entry = new CodeEntry(size, name, 'CODE'); this.codeMap_.addCode(start, entry); entry.codeId = codeId; this.codeEntries_[codeId] = { name: entry.name, timestamp: timestamp, type: entry.type, kind: kind, }; return entry; }; JsonProfile.prototype.addFuncCode = function ( kind, name, timestamp, start, size, funcAddr, state) { // As code and functions are in the same address space, // it is safe to put them in a single code map. let func = this.codeMap_.findDynamicEntryByStartAddress(funcAddr); if (!func) { func = new CodeEntry(0, name, 'SFI'); this.codeMap_.addCode(funcAddr, func); func.funcId = this.functionEntries_.length; this.functionEntries_.push({ name, codes: [] }); } else if (func.name !== name) { // Function object has been overwritten with a new one. func.name = name; func.funcId = this.functionEntries_.length; this.functionEntries_.push({ name, codes: [] }); } // TODO(jarin): Insert the code object into the SFI's code list. let entry = this.codeMap_.findDynamicEntryByStartAddress(start); if (entry) { if (entry.size === size && entry.func === func) { // Entry state has changed. entry.state = state; } else { this.codeMap_.deleteCode(start); entry = null; } } if (!entry) { entry = new CodeEntry(size, name, 'JS'); this.codeMap_.addCode(start, entry); entry.codeId = this.codeEntries_.length; this.functionEntries_[func.funcId].codes.push(entry.codeId); if (state === 0) { kind = "Builtin"; } else if (state === 1) { kind = "Unopt"; } else if (state === 2) { kind = "Opt"; } this.codeEntries_.push({ name: entry.name, type: entry.type, kind: kind, func: func.funcId, tm: timestamp, }); } return entry; }; JsonProfile.prototype.moveCode = function (from, to) { try { this.codeMap_.moveCode(from, to); } catch (e) { printErr(`Move: unknown source ${from}`); } }; JsonProfile.prototype.addSourcePositions = function ( start, script, startPos, endPos, sourcePositions, inliningPositions, inlinedFunctions) { const entry = this.codeMap_.findDynamicEntryByStartAddress(start); if (!entry) return; const codeId = entry.codeId; // Resolve the inlined functions list. if (inlinedFunctions.length > 0) { inlinedFunctions = inlinedFunctions.substring(1).split("S"); for (let i = 0; i < inlinedFunctions.length; i++) { const funcAddr = parseInt(inlinedFunctions[i]); const func = this.codeMap_.findDynamicEntryByStartAddress(funcAddr); if (!func || func.funcId === undefined) { printErr(`Could not find function ${inlinedFunctions[i]}`); inlinedFunctions[i] = null; } else { inlinedFunctions[i] = func.funcId; } } } else { inlinedFunctions = []; } this.codeEntries_[entry.codeId].source = { script: script, start: startPos, end: endPos, positions: sourcePositions, inlined: inliningPositions, fns: inlinedFunctions }; }; JsonProfile.prototype.addScriptSource = function (id, url, source) { this.scripts_[id] = new Script(id, url, source); }; JsonProfile.prototype.deoptCode = function ( timestamp, code, inliningId, scriptOffset, bailoutType, sourcePositionText, deoptReasonText) { let entry = this.codeMap_.findDynamicEntryByStartAddress(code); if (entry) { let codeId = entry.codeId; if (!this.codeEntries_[codeId].deopt) { // Only add the deopt if there was no deopt before. // The subsequent deoptimizations should be lazy deopts for // other on-stack activations. this.codeEntries_[codeId].deopt = { tm: timestamp, inliningId: inliningId, scriptOffset: scriptOffset, posText: sourcePositionText, reason: deoptReasonText, bailoutType: bailoutType, }; } } }; JsonProfile.prototype.deleteCode = function (start) { try { this.codeMap_.deleteCode(start); } catch (e) { printErr(`Delete: unknown address ${start}`); } }; JsonProfile.prototype.moveFunc = function (from, to) { if (this.codeMap_.findDynamicEntryByStartAddress(from)) { this.codeMap_.moveCode(from, to); } }; JsonProfile.prototype.findEntry = function (addr) { return this.codeMap_.findEntry(addr); }; JsonProfile.prototype.recordTick = function (time_ns, vmState, stack) { // TODO(jarin) Resolve the frame-less case (when top of stack is // known code). const processedStack = []; for (let i = 0; i < stack.length; i++) { const resolved = this.codeMap_.findAddress(stack[i]); if (resolved) { processedStack.push(resolved.entry.codeId, resolved.offset); } else { processedStack.push(-1, stack[i]); } } this.ticks_.push({ tm: time_ns, vm: vmState, s: processedStack }); }; function writeJson(s) { write(JSON.stringify(s, null, 2)); } JsonProfile.prototype.writeJson = function () { // Write out the JSON in a partially manual way to avoid creating too-large // strings in one JSON.stringify call when there are a lot of ticks. write('{\n') write(' "code": '); writeJson(this.codeEntries_); write(',\n'); write(' "functions": '); writeJson(this.functionEntries_); write(',\n'); write(' "ticks": [\n'); for (let i = 0; i < this.ticks_.length; i++) { write(' '); writeJson(this.ticks_[i]); if (i < this.ticks_.length - 1) { write(',\n'); } else { write('\n'); } } write(' ],\n'); write(' "scripts": '); writeJson(this.scripts_); write('}\n'); };