// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "code-stubs.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "parser.h" #include "scopes.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o edi: the JS function object being called (ie, ourselves) // o esi: our context // o ebp: our caller's frame pointer // o esp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-ia32.h for its layout. void FullCodeGenerator::Generate(CompilationInfo* info) { ASSERT(info_ == NULL); info_ = info; SetFunctionPosition(function()); Comment cmnt(masm_, "[ function compiled by full code generator"); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif __ push(ebp); // Caller's frame pointer. __ mov(ebp, esp); __ push(esi); // Callee's context. __ push(edi); // Callee's JS Function. { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = scope()->num_stack_slots(); if (locals_count == 1) { __ push(Immediate(Factory::undefined_value())); } else if (locals_count > 1) { __ mov(eax, Immediate(Factory::undefined_value())); for (int i = 0; i < locals_count; i++) { __ push(eax); } } } bool function_in_register = true; // Possibly allocate a local context. int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ Allocate local context"); // Argument to NewContext is the function, which is still in edi. __ push(edi); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewContext, 1); } function_in_register = false; // Context is returned in both eax and esi. It replaces the context // passed to us. It's saved in the stack and kept live in esi. __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); // Copy parameters into context if necessary. int num_parameters = scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Slot* slot = scope()->parameter(i)->AsSlot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ mov(eax, Operand(ebp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(slot->index()); __ mov(Operand(esi, context_offset), eax); // Update the write barrier. This clobbers all involved // registers, so we have use a third register to avoid // clobbering esi. __ mov(ecx, esi); __ RecordWrite(ecx, context_offset, eax, ebx); } } } Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); if (function_in_register) { __ push(edi); } else { __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } // Receiver is just before the parameters on the caller's stack. int offset = scope()->num_parameters() * kPointerSize; __ lea(edx, Operand(ebp, StandardFrameConstants::kCallerSPOffset + offset)); __ push(edx); __ push(Immediate(Smi::FromInt(scope()->num_parameters()))); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiver and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); __ CallStub(&stub); __ mov(ecx, eax); // Duplicate result. Move(arguments->AsSlot(), eax, ebx, edx); Slot* dot_arguments_slot = scope()->arguments_shadow()->AsSlot(); Move(dot_arguments_slot, ecx, ebx, edx); } { Comment cmnt(masm_, "[ Declarations"); // For named function expressions, declare the function name as a // constant. if (scope()->is_function_scope() && scope()->function() != NULL) { EmitDeclaration(scope()->function(), Variable::CONST, NULL); } // Visit all the explicit declarations unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { scope()->VisitIllegalRedeclaration(this); } else { VisitDeclarations(scope()->declarations()); } } { Comment cmnt(masm_, "[ Stack check"); NearLabel ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, taken); StackCheckStub stub; __ CallStub(&stub); __ bind(&ok); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(function()->body()); ASSERT(loop_depth() == 0); } { Comment cmnt(masm_, "[ return ;"); // Emit a 'return undefined' in case control fell off the end of the body. __ mov(eax, Factory::undefined_value()); EmitReturnSequence(); } } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ jmp(&return_label_); } else { // Common return label __ bind(&return_label_); if (FLAG_trace) { __ push(eax); __ CallRuntime(Runtime::kTraceExit, 1); } #ifdef DEBUG // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); __ RecordJSReturn(); // Do not use the leave instruction here because it is too short to // patch with the code required by the debugger. __ mov(esp, ebp); __ pop(ebp); __ ret((scope()->num_parameters() + 1) * kPointerSize); #ifdef ENABLE_DEBUGGER_SUPPORT // Check that the size of the code used for returning matches what is // expected by the debugger. ASSERT_EQ(Assembler::kJSReturnSequenceLength, masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif } } FullCodeGenerator::ConstantOperand FullCodeGenerator::GetConstantOperand( Token::Value op, Expression* left, Expression* right) { ASSERT(ShouldInlineSmiCase(op)); if (op == Token::DIV || op == Token::MOD || op == Token::MUL) { // We never generate inlined constant smi operations for these. return kNoConstants; } else if (right->IsSmiLiteral()) { return kRightConstant; } else if (left->IsSmiLiteral() && !Token::IsShiftOp(op)) { return kLeftConstant; } else { return kNoConstants; } } void FullCodeGenerator::EffectContext::Plug(Slot* slot) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(Slot* slot) const { MemOperand slot_operand = codegen()->EmitSlotSearch(slot, result_register()); __ mov(result_register(), slot_operand); } void FullCodeGenerator::StackValueContext::Plug(Slot* slot) const { MemOperand slot_operand = codegen()->EmitSlotSearch(slot, result_register()); // Memory operands can be pushed directly. __ push(slot_operand); } void FullCodeGenerator::TestContext::Plug(Slot* slot) const { // For simplicity we always test the accumulator register. codegen()->Move(result_register(), slot); codegen()->DoTest(true_label_, false_label_, fall_through_); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::EffectContext::Plug(Handle lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle lit) const { __ mov(result_register(), lit); } void FullCodeGenerator::StackValueContext::Plug(Handle lit) const { // Immediates can be pushed directly. __ push(Immediate(lit)); } void FullCodeGenerator::TestContext::Plug(Handle lit) const { ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { __ jmp(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { __ jmp(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { __ jmp(false_label_); } else { __ jmp(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { __ jmp(false_label_); } else { __ jmp(true_label_); } } else { // For simplicity we always test the accumulator register. __ mov(result_register(), lit); codegen()->DoTest(true_label_, false_label_, fall_through_); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { ASSERT(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); if (count > 1) __ Drop(count - 1); __ mov(Operand(esp, 0), reg); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Move(result_register(), reg); codegen()->DoTest(true_label_, false_label_, fall_through_); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT_EQ(materialize_true, materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { NearLabel done; __ bind(materialize_true); __ mov(result_register(), Factory::true_value()); __ jmp(&done); __ bind(materialize_false); __ mov(result_register(), Factory::false_value()); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { NearLabel done; __ bind(materialize_true); __ push(Immediate(Factory::true_value())); __ jmp(&done); __ bind(materialize_false); __ push(Immediate(Factory::false_value())); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT(materialize_false == false_label_); ASSERT(materialize_true == true_label_); } void FullCodeGenerator::EffectContext::Plug(bool flag) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Handle value = flag ? Factory::true_value() : Factory::false_value(); __ mov(result_register(), value); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Handle value = flag ? Factory::true_value() : Factory::false_value(); __ push(Immediate(value)); } void FullCodeGenerator::TestContext::Plug(bool flag) const { if (flag) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { if (false_label_ != fall_through_) __ jmp(false_label_); } } void FullCodeGenerator::DoTest(Label* if_true, Label* if_false, Label* fall_through) { // Emit the inlined tests assumed by the stub. __ cmp(result_register(), Factory::undefined_value()); __ j(equal, if_false); __ cmp(result_register(), Factory::true_value()); __ j(equal, if_true); __ cmp(result_register(), Factory::false_value()); __ j(equal, if_false); ASSERT_EQ(0, kSmiTag); __ test(result_register(), Operand(result_register())); __ j(zero, if_false); __ test(result_register(), Immediate(kSmiTagMask)); __ j(zero, if_true); // Call the ToBoolean stub for all other cases. ToBooleanStub stub; __ push(result_register()); __ CallStub(&stub); __ test(eax, Operand(eax)); // The stub returns nonzero for true. Split(not_zero, if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ j(cc, if_true); } else if (if_true == fall_through) { __ j(NegateCondition(cc), if_false); } else { __ j(cc, if_true); __ jmp(if_false); } } MemOperand FullCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: return Operand(ebp, SlotOffset(slot)); case Slot::CONTEXT: { int context_chain_length = scope()->ContextChainLength(slot->var()->scope()); __ LoadContext(scratch, context_chain_length); return ContextOperand(scratch, slot->index()); } case Slot::LOOKUP: UNREACHABLE(); } UNREACHABLE(); return Operand(eax, 0); } void FullCodeGenerator::Move(Register destination, Slot* source) { MemOperand location = EmitSlotSearch(source, destination); __ mov(destination, location); } void FullCodeGenerator::Move(Slot* dst, Register src, Register scratch1, Register scratch2) { ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented. ASSERT(!scratch1.is(src) && !scratch2.is(src)); MemOperand location = EmitSlotSearch(dst, scratch1); __ mov(location, src); // Emit the write barrier code if the location is in the heap. if (dst->type() == Slot::CONTEXT) { int offset = FixedArray::kHeaderSize + dst->index() * kPointerSize; __ RecordWrite(scratch1, offset, src, scratch2); } } void FullCodeGenerator::EmitDeclaration(Variable* variable, Variable::Mode mode, FunctionLiteral* function) { Comment cmnt(masm_, "[ Declaration"); ASSERT(variable != NULL); // Must have been resolved. Slot* slot = variable->AsSlot(); Property* prop = variable->AsProperty(); if (slot != NULL) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (mode == Variable::CONST) { __ mov(Operand(ebp, SlotOffset(slot)), Immediate(Factory::the_hole_value())); } else if (function != NULL) { VisitForAccumulatorValue(function); __ mov(Operand(ebp, SlotOffset(slot)), result_register()); } break; case Slot::CONTEXT: // We bypass the general EmitSlotSearch because we know more about // this specific context. // The variable in the decl always resides in the current context. ASSERT_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check if we have the correct context pointer. __ mov(ebx, ContextOperand(esi, Context::FCONTEXT_INDEX)); __ cmp(ebx, Operand(esi)); __ Check(equal, "Unexpected declaration in current context."); } if (mode == Variable::CONST) { __ mov(ContextOperand(esi, slot->index()), Immediate(Factory::the_hole_value())); // No write barrier since the hole value is in old space. } else if (function != NULL) { VisitForAccumulatorValue(function); __ mov(ContextOperand(esi, slot->index()), result_register()); int offset = Context::SlotOffset(slot->index()); __ mov(ebx, esi); __ RecordWrite(ebx, offset, result_register(), ecx); } break; case Slot::LOOKUP: { __ push(esi); __ push(Immediate(variable->name())); // Declaration nodes are always introduced in one of two modes. ASSERT(mode == Variable::VAR || mode == Variable::CONST); PropertyAttributes attr = (mode == Variable::VAR) ? NONE : READ_ONLY; __ push(Immediate(Smi::FromInt(attr))); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (mode == Variable::CONST) { __ push(Immediate(Factory::the_hole_value())); } else if (function != NULL) { VisitForStackValue(function); } else { __ push(Immediate(Smi::FromInt(0))); // No initial value! } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } } } else if (prop != NULL) { if (function != NULL || mode == Variable::CONST) { // We are declaring a function or constant that rewrites to a // property. Use (keyed) IC to set the initial value. VisitForStackValue(prop->obj()); if (function != NULL) { VisitForStackValue(prop->key()); VisitForAccumulatorValue(function); __ pop(ecx); } else { VisitForAccumulatorValue(prop->key()); __ mov(ecx, result_register()); __ mov(result_register(), Factory::the_hole_value()); } __ pop(edx); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } } } void FullCodeGenerator::VisitDeclaration(Declaration* decl) { EmitDeclaration(decl->proxy()->var(), decl->mode(), decl->fun()); } void FullCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. __ push(esi); // The context is the first argument. __ push(Immediate(pairs)); __ push(Immediate(Smi::FromInt(is_eval() ? 1 : 0))); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); ZoneList* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ mov(edx, Operand(esp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); if (inline_smi_code) { NearLabel slow_case; __ mov(ecx, edx); __ or_(ecx, Operand(eax)); __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, &slow_case, not_taken); __ cmp(edx, Operand(eax)); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()->entry_label()); __ bind(&slow_case); } CompareFlags flags = inline_smi_code ? NO_SMI_COMPARE_IN_STUB : NO_COMPARE_FLAGS; CompareStub stub(equal, true, flags); __ CallStub(&stub); __ test(eax, Operand(eax)); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()->entry_label()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ jmp(nested_statement.break_target()); } else { __ jmp(default_clause->body_target()->entry_label()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()->entry_label()); VisitStatements(clause->statements()); } __ bind(nested_statement.break_target()); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. Both SpiderMonkey and JSC // ignore null and undefined in contrast to the specification; see // ECMA-262 section 12.6.4. VisitForAccumulatorValue(stmt->enumerable()); __ cmp(eax, Factory::undefined_value()); __ j(equal, &exit); __ cmp(eax, Factory::null_value()); __ j(equal, &exit); // Convert the object to a JS object. NearLabel convert, done_convert; __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &convert); __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx); __ j(above_equal, &done_convert); __ bind(&convert); __ push(eax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ bind(&done_convert); __ push(eax); // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. Label next, call_runtime; __ mov(ecx, eax); __ bind(&next); // Check that there are no elements. Register ecx contains the // current JS object we've reached through the prototype chain. __ cmp(FieldOperand(ecx, JSObject::kElementsOffset), Factory::empty_fixed_array()); __ j(not_equal, &call_runtime); // Check that instance descriptors are not empty so that we can // check for an enum cache. Leave the map in ebx for the subsequent // prototype load. __ mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset)); __ mov(edx, FieldOperand(ebx, Map::kInstanceDescriptorsOffset)); __ cmp(edx, Factory::empty_descriptor_array()); __ j(equal, &call_runtime); // Check that there in an enum cache in the non-empty instance // descriptors (edx). This is the case if the next enumeration // index field does not contain a smi. __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumerationIndexOffset)); __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &call_runtime); // For all objects but the receiver, check that the cache is empty. NearLabel check_prototype; __ cmp(ecx, Operand(eax)); __ j(equal, &check_prototype); __ mov(edx, FieldOperand(edx, DescriptorArray::kEnumCacheBridgeCacheOffset)); __ cmp(edx, Factory::empty_fixed_array()); __ j(not_equal, &call_runtime); // Load the prototype from the map and loop if non-null. __ bind(&check_prototype); __ mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset)); __ cmp(ecx, Factory::null_value()); __ j(not_equal, &next); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. NearLabel use_cache; __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); __ jmp(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(eax); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. NearLabel fixed_array; __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::meta_map()); __ j(not_equal, &fixed_array); // We got a map in register eax. Get the enumeration cache from it. __ bind(&use_cache); __ mov(ecx, FieldOperand(eax, Map::kInstanceDescriptorsOffset)); __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset)); __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Setup the four remaining stack slots. __ push(eax); // Map. __ push(edx); // Enumeration cache. __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset)); __ push(eax); // Enumeration cache length (as smi). __ push(Immediate(Smi::FromInt(0))); // Initial index. __ jmp(&loop); // We got a fixed array in register eax. Iterate through that. __ bind(&fixed_array); __ push(Immediate(Smi::FromInt(0))); // Map (0) - force slow check. __ push(eax); __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); __ push(eax); // Fixed array length (as smi). __ push(Immediate(Smi::FromInt(0))); // Initial index. // Generate code for doing the condition check. __ bind(&loop); __ mov(eax, Operand(esp, 0 * kPointerSize)); // Get the current index. __ cmp(eax, Operand(esp, 1 * kPointerSize)); // Compare to the array length. __ j(above_equal, loop_statement.break_target()); // Get the current entry of the array into register ebx. __ mov(ebx, Operand(esp, 2 * kPointerSize)); __ mov(ebx, FieldOperand(ebx, eax, times_2, FixedArray::kHeaderSize)); // Get the expected map from the stack or a zero map in the // permanent slow case into register edx. __ mov(edx, Operand(esp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we have to filter the key. NearLabel update_each; __ mov(ecx, Operand(esp, 4 * kPointerSize)); __ cmp(edx, FieldOperand(ecx, HeapObject::kMapOffset)); __ j(equal, &update_each); // Convert the entry to a string or null if it isn't a property // anymore. If the property has been removed while iterating, we // just skip it. __ push(ecx); // Enumerable. __ push(ebx); // Current entry. __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); __ test(eax, Operand(eax)); __ j(equal, loop_statement.continue_target()); __ mov(ebx, Operand(eax)); // Update the 'each' property or variable from the possibly filtered // entry in register ebx. __ bind(&update_each); __ mov(result_register(), ebx); // Perform the assignment as if via '='. EmitAssignment(stmt->each()); // Generate code for the body of the loop. Label stack_limit_hit; NearLabel stack_check_done; Visit(stmt->body()); __ StackLimitCheck(&stack_limit_hit); __ bind(&stack_check_done); // Generate code for going to the next element by incrementing the // index (smi) stored on top of the stack. __ bind(loop_statement.continue_target()); __ add(Operand(esp, 0 * kPointerSize), Immediate(Smi::FromInt(1))); __ jmp(&loop); // Slow case for the stack limit check. StackCheckStub stack_check_stub; __ bind(&stack_limit_hit); __ CallStub(&stack_check_stub); __ jmp(&stack_check_done); // Remove the pointers stored on the stack. __ bind(loop_statement.break_target()); __ add(Operand(esp), Immediate(5 * kPointerSize)); // Exit and decrement the loop depth. __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle info) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. if (scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub; __ push(Immediate(info)); __ CallStub(&stub); } else { __ push(esi); __ push(Immediate(info)); __ CallRuntime(Runtime::kNewClosure, 2); } context()->Plug(eax); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr->var()); } void FullCodeGenerator::EmitLoadGlobalSlotCheckExtensions( Slot* slot, TypeofState typeof_state, Label* slow) { Register context = esi; Register temp = edx; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } // Load next context in chain. __ mov(temp, ContextOperand(context, Context::CLOSURE_INDEX)); __ mov(temp, FieldOperand(temp, JSFunction::kContextOffset)); // Walk the rest of the chain without clobbering esi. context = temp; } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s != NULL && s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. NearLabel next, fast; if (!context.is(temp)) { __ mov(temp, context); } __ bind(&next); // Terminate at global context. __ cmp(FieldOperand(temp, HeapObject::kMapOffset), Immediate(Factory::global_context_map())); __ j(equal, &fast); // Check that extension is NULL. __ cmp(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); // Load next context in chain. __ mov(temp, ContextOperand(temp, Context::CLOSURE_INDEX)); __ mov(temp, FieldOperand(temp, JSFunction::kContextOffset)); __ jmp(&next); __ bind(&fast); } // All extension objects were empty and it is safe to use a global // load IC call. __ mov(eax, CodeGenerator::GlobalObject()); __ mov(ecx, slot->var()->name()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; EmitCallIC(ic, mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions( Slot* slot, Label* slow) { ASSERT(slot->type() == Slot::CONTEXT); Register context = esi; Register temp = ebx; for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } __ mov(temp, ContextOperand(context, Context::CLOSURE_INDEX)); __ mov(temp, FieldOperand(temp, JSFunction::kContextOffset)); // Walk the rest of the chain without clobbering esi. context = temp; } } // Check that last extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); __ mov(temp, ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(temp, slot->index()); } void FullCodeGenerator::EmitDynamicLoadFromSlotFastCase( Slot* slot, TypeofState typeof_state, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { EmitLoadGlobalSlotCheckExtensions(slot, typeof_state, slow); __ jmp(done); } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); if (potential_slot != NULL) { // Generate fast case for locals that rewrite to slots. __ mov(eax, ContextSlotOperandCheckExtensions(potential_slot, slow)); if (potential_slot->var()->mode() == Variable::CONST) { __ cmp(eax, Factory::the_hole_value()); __ j(not_equal, done); __ mov(eax, Factory::undefined_value()); } __ jmp(done); } else if (rewrite != NULL) { // Generate fast case for calls of an argument function. Property* property = rewrite->AsProperty(); if (property != NULL) { VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); Literal* key_literal = property->key()->AsLiteral(); if (obj_proxy != NULL && key_literal != NULL && obj_proxy->IsArguments() && key_literal->handle()->IsSmi()) { // Load arguments object if there are no eval-introduced // variables. Then load the argument from the arguments // object using keyed load. __ mov(edx, ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), slow)); __ mov(eax, Immediate(key_literal->handle())); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); __ jmp(done); } } } } } void FullCodeGenerator::EmitVariableLoad(Variable* var) { // Four cases: non-this global variables, lookup slots, all other // types of slots, and parameters that rewrite to explicit property // accesses on the arguments object. Slot* slot = var->AsSlot(); Property* property = var->AsProperty(); if (var->is_global() && !var->is_this()) { Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in ecx and the global // object on the stack. __ mov(eax, CodeGenerator::GlobalObject()); __ mov(ecx, var->name()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET_CONTEXT); context()->Plug(eax); } else if (slot != NULL && slot->type() == Slot::LOOKUP) { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLoadFromSlotFastCase(slot, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); Comment cmnt(masm_, "Lookup slot"); __ push(esi); // Context. __ push(Immediate(var->name())); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ bind(&done); context()->Plug(eax); } else if (slot != NULL) { Comment cmnt(masm_, (slot->type() == Slot::CONTEXT) ? "Context slot" : "Stack slot"); if (var->mode() == Variable::CONST) { // Constants may be the hole value if they have not been initialized. // Unhole them. NearLabel done; MemOperand slot_operand = EmitSlotSearch(slot, eax); __ mov(eax, slot_operand); __ cmp(eax, Factory::the_hole_value()); __ j(not_equal, &done); __ mov(eax, Factory::undefined_value()); __ bind(&done); context()->Plug(eax); } else { context()->Plug(slot); } } else { Comment cmnt(masm_, "Rewritten parameter"); ASSERT_NOT_NULL(property); // Rewritten parameter accesses are of the form "slot[literal]". // Assert that the object is in a slot. Variable* object_var = property->obj()->AsVariableProxy()->AsVariable(); ASSERT_NOT_NULL(object_var); Slot* object_slot = object_var->AsSlot(); ASSERT_NOT_NULL(object_slot); // Load the object. MemOperand object_loc = EmitSlotSearch(object_slot, eax); __ mov(edx, object_loc); // Assert that the key is a smi. Literal* key_literal = property->key()->AsLiteral(); ASSERT_NOT_NULL(key_literal); ASSERT(key_literal->handle()->IsSmi()); // Load the key. __ mov(eax, Immediate(key_literal->handle())); // Do a keyed property load. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); // Drop key and object left on the stack by IC. context()->Plug(eax); } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); NearLabel materialized; // Registers will be used as follows: // edi = JS function. // ecx = literals array. // ebx = regexp literal. // eax = regexp literal clone. __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ mov(ebx, FieldOperand(ecx, literal_offset)); __ cmp(ebx, Factory::undefined_value()); __ j(not_equal, &materialized); // Create regexp literal using runtime function // Result will be in eax. __ push(ecx); __ push(Immediate(Smi::FromInt(expr->literal_index()))); __ push(Immediate(expr->pattern())); __ push(Immediate(expr->flags())); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ mov(ebx, eax); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(ebx); __ push(Immediate(Smi::FromInt(size))); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ pop(ebx); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ mov(edx, FieldOperand(ebx, i)); __ mov(ecx, FieldOperand(ebx, i + kPointerSize)); __ mov(FieldOperand(eax, i), edx); __ mov(FieldOperand(eax, i + kPointerSize), ecx); } if ((size % (2 * kPointerSize)) != 0) { __ mov(edx, FieldOperand(ebx, size - kPointerSize)); __ mov(FieldOperand(eax, size - kPointerSize), edx); } context()->Plug(eax); } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(edi, JSFunction::kLiteralsOffset)); __ push(Immediate(Smi::FromInt(expr->literal_index()))); __ push(Immediate(expr->constant_properties())); __ push(Immediate(Smi::FromInt(expr->fast_elements() ? 1 : 0))); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateObjectLiteral, 4); } else { __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in eax. bool result_saved = false; // Mark all computed expressions that are bound to a key that // is shadowed by a later occurrence of the same key. For the // marked expressions, no store code is emitted. expr->CalculateEmitStore(); for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(eax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { VisitForAccumulatorValue(value); __ mov(ecx, Immediate(key->handle())); __ mov(edx, Operand(esp, 0)); if (property->emit_store()) { Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: __ push(Operand(esp, 0)); // Duplicate receiver. VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { __ CallRuntime(Runtime::kSetProperty, 3); } else { __ Drop(3); } break; case ObjectLiteral::Property::SETTER: case ObjectLiteral::Property::GETTER: __ push(Operand(esp, 0)); // Duplicate receiver. VisitForStackValue(key); __ push(Immediate(property->kind() == ObjectLiteral::Property::SETTER ? Smi::FromInt(1) : Smi::FromInt(0))); VisitForStackValue(value); __ CallRuntime(Runtime::kDefineAccessor, 4); break; default: UNREACHABLE(); } } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(eax); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); ZoneList* subexprs = expr->values(); int length = subexprs->length(); __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset)); __ push(Immediate(Smi::FromInt(expr->literal_index()))); __ push(Immediate(expr->constant_elements())); if (expr->constant_elements()->map() == Heap::fixed_cow_array_map()) { FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); __ CallStub(&stub); __ IncrementCounter(&Counters::cow_arrays_created_stub, 1); } else if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::CLONE_ELEMENTS, length); __ CallStub(&stub); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(eax); result_saved = true; } VisitForAccumulatorValue(subexpr); // Store the subexpression value in the array's elements. __ mov(ebx, Operand(esp, 0)); // Copy of array literal. __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset)); int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ mov(FieldOperand(ebx, offset), result_register()); // Update the write barrier for the array store. __ RecordWrite(ebx, offset, result_register(), ecx); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(eax); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { Comment cmnt(masm_, "[ Assignment"); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // on the left-hand side. if (!expr->target()->IsValidLeftHandSide()) { VisitForEffect(expr->target()); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* property = expr->target()->AsProperty(); if (property != NULL) { assign_type = (property->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the accumulator. VisitForAccumulatorValue(property->obj()); __ push(result_register()); } else { VisitForStackValue(property->obj()); } break; case KEYED_PROPERTY: if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForAccumulatorValue(property->key()); __ mov(edx, Operand(esp, 0)); __ push(eax); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()->var()); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); break; } } Token::Value op = expr->binary_op(); ConstantOperand constant = ShouldInlineSmiCase(op) ? GetConstantOperand(op, expr->target(), expr->value()) : kNoConstants; ASSERT(constant == kRightConstant || constant == kNoConstants); if (constant == kNoConstants) { __ push(eax); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); } OverwriteMode mode = expr->value()->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE; SetSourcePosition(expr->position() + 1); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr, op, mode, expr->target(), expr->value(), constant); } else { EmitBinaryOp(op, mode); } } else { VisitForAccumulatorValue(expr->value()); } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op()); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ mov(ecx, Immediate(key->handle())); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } void FullCodeGenerator::EmitConstantSmiAdd(Expression* expr, OverwriteMode mode, bool left_is_constant_smi, Smi* value) { NearLabel call_stub; Label done; __ add(Operand(eax), Immediate(value)); __ j(overflow, &call_stub); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done); // Undo the optimistic add operation and call the shared stub. __ bind(&call_stub); __ sub(Operand(eax), Immediate(value)); Token::Value op = Token::ADD; GenericBinaryOpStub stub(op, mode, NO_SMI_CODE_IN_STUB, TypeInfo::Unknown()); if (left_is_constant_smi) { __ push(Immediate(value)); __ push(eax); } else { __ push(eax); __ push(Immediate(value)); } __ CallStub(&stub); __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitConstantSmiSub(Expression* expr, OverwriteMode mode, bool left_is_constant_smi, Smi* value) { Label call_stub, done; if (left_is_constant_smi) { __ mov(ecx, eax); __ mov(eax, Immediate(value)); __ sub(Operand(eax), ecx); } else { __ sub(Operand(eax), Immediate(value)); } __ j(overflow, &call_stub); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done); __ bind(&call_stub); if (left_is_constant_smi) { __ push(Immediate(value)); __ push(ecx); } else { // Undo the optimistic sub operation. __ add(Operand(eax), Immediate(value)); __ push(eax); __ push(Immediate(value)); } Token::Value op = Token::SUB; GenericBinaryOpStub stub(op, mode, NO_SMI_CODE_IN_STUB, TypeInfo::Unknown()); __ CallStub(&stub); __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitConstantSmiShiftOp(Expression* expr, Token::Value op, OverwriteMode mode, Smi* value) { Label call_stub, smi_case, done; int shift_value = value->value() & 0x1f; __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &smi_case); __ bind(&call_stub); GenericBinaryOpStub stub(op, mode, NO_SMI_CODE_IN_STUB, TypeInfo::Unknown()); __ push(eax); __ push(Immediate(value)); __ CallStub(&stub); __ jmp(&done); __ bind(&smi_case); switch (op) { case Token::SHL: if (shift_value != 0) { __ mov(edx, eax); if (shift_value > 1) { __ shl(edx, shift_value - 1); } // Convert int result to smi, checking that it is in int range. ASSERT(kSmiTagSize == 1); // Adjust code if not the case. __ add(edx, Operand(edx)); __ j(overflow, &call_stub); __ mov(eax, edx); // Put result back into eax. } break; case Token::SAR: if (shift_value != 0) { __ sar(eax, shift_value); __ and_(eax, ~kSmiTagMask); } break; case Token::SHR: if (shift_value < 2) { __ mov(edx, eax); __ SmiUntag(edx); __ shr(edx, shift_value); __ test(edx, Immediate(0xc0000000)); __ j(not_zero, &call_stub); __ SmiTag(edx); __ mov(eax, edx); // Put result back into eax. } else { __ SmiUntag(eax); __ shr(eax, shift_value); __ SmiTag(eax); } break; default: UNREACHABLE(); } __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitConstantSmiBitOp(Expression* expr, Token::Value op, OverwriteMode mode, Smi* value) { Label smi_case, done; __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &smi_case); GenericBinaryOpStub stub(op, mode, NO_SMI_CODE_IN_STUB, TypeInfo::Unknown()); // The order of the arguments does not matter for bit-ops with a // constant operand. __ push(Immediate(value)); __ push(eax); __ CallStub(&stub); __ jmp(&done); __ bind(&smi_case); switch (op) { case Token::BIT_OR: __ or_(Operand(eax), Immediate(value)); break; case Token::BIT_XOR: __ xor_(Operand(eax), Immediate(value)); break; case Token::BIT_AND: __ and_(Operand(eax), Immediate(value)); break; default: UNREACHABLE(); } __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitConstantSmiBinaryOp(Expression* expr, Token::Value op, OverwriteMode mode, bool left_is_constant_smi, Smi* value) { switch (op) { case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: EmitConstantSmiBitOp(expr, op, mode, value); break; case Token::SHL: case Token::SAR: case Token::SHR: ASSERT(!left_is_constant_smi); EmitConstantSmiShiftOp(expr, op, mode, value); break; case Token::ADD: EmitConstantSmiAdd(expr, mode, left_is_constant_smi, value); break; case Token::SUB: EmitConstantSmiSub(expr, mode, left_is_constant_smi, value); break; default: UNREACHABLE(); } } void FullCodeGenerator::EmitInlineSmiBinaryOp(Expression* expr, Token::Value op, OverwriteMode mode, Expression* left, Expression* right, ConstantOperand constant) { if (constant == kRightConstant) { Smi* value = Smi::cast(*right->AsLiteral()->handle()); EmitConstantSmiBinaryOp(expr, op, mode, false, value); return; } else if (constant == kLeftConstant) { Smi* value = Smi::cast(*left->AsLiteral()->handle()); EmitConstantSmiBinaryOp(expr, op, mode, true, value); return; } // Do combined smi check of the operands. Left operand is on the // stack. Right operand is in eax. Label done, stub_call, smi_case; __ pop(edx); __ mov(ecx, eax); __ or_(eax, Operand(edx)); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &smi_case); __ bind(&stub_call); GenericBinaryOpStub stub(op, mode, NO_SMI_CODE_IN_STUB, TypeInfo::Unknown()); if (stub.ArgsInRegistersSupported()) { stub.GenerateCall(masm_, edx, ecx); } else { __ push(edx); __ push(ecx); __ CallStub(&stub); } __ jmp(&done); __ bind(&smi_case); __ mov(eax, edx); // Copy left operand in case of a stub call. switch (op) { case Token::SAR: __ SmiUntag(eax); __ SmiUntag(ecx); __ sar_cl(eax); // No checks of result necessary __ SmiTag(eax); break; case Token::SHL: { Label result_ok; __ SmiUntag(eax); __ SmiUntag(ecx); __ shl_cl(eax); // Check that the *signed* result fits in a smi. __ cmp(eax, 0xc0000000); __ j(positive, &result_ok); __ SmiTag(ecx); __ jmp(&stub_call); __ bind(&result_ok); __ SmiTag(eax); break; } case Token::SHR: { Label result_ok; __ SmiUntag(eax); __ SmiUntag(ecx); __ shr_cl(eax); __ test(eax, Immediate(0xc0000000)); __ j(zero, &result_ok); __ SmiTag(ecx); __ jmp(&stub_call); __ bind(&result_ok); __ SmiTag(eax); break; } case Token::ADD: __ add(eax, Operand(ecx)); __ j(overflow, &stub_call); break; case Token::SUB: __ sub(eax, Operand(ecx)); __ j(overflow, &stub_call); break; case Token::MUL: { __ SmiUntag(eax); __ imul(eax, Operand(ecx)); __ j(overflow, &stub_call); __ test(eax, Operand(eax)); __ j(not_zero, &done, taken); __ mov(ebx, edx); __ or_(ebx, Operand(ecx)); __ j(negative, &stub_call); break; } case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; default: UNREACHABLE(); } __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitBinaryOp(Token::Value op, OverwriteMode mode) { TypeInfo type = TypeInfo::Unknown(); GenericBinaryOpStub stub(op, mode, NO_GENERIC_BINARY_FLAGS, type); if (stub.ArgsInRegistersSupported()) { __ pop(edx); stub.GenerateCall(masm_, edx, eax); } else { __ push(result_register()); __ CallStub(&stub); } context()->Plug(eax); } void FullCodeGenerator::EmitAssignment(Expression* expr) { // Invalid left-hand sides are rewritten to have a 'throw // ReferenceError' on the left-hand side. if (!expr->IsValidLeftHandSide()) { VisitForEffect(expr); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN); break; } case NAMED_PROPERTY: { __ push(eax); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ mov(edx, eax); __ pop(eax); // Restore value. __ mov(ecx, prop->key()->AsLiteral()->handle()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); break; } case KEYED_PROPERTY: { __ push(eax); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ mov(ecx, eax); __ pop(edx); __ pop(eax); // Restore value. Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); break; } } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { // Left-hand sides that rewrite to explicit property accesses do not reach // here. ASSERT(var != NULL); ASSERT(var->is_global() || var->AsSlot() != NULL); if (var->is_global()) { ASSERT(!var->is_this()); // Assignment to a global variable. Use inline caching for the // assignment. Right-hand-side value is passed in eax, variable name in // ecx, and the global object on the stack. __ mov(ecx, var->name()); __ mov(edx, CodeGenerator::GlobalObject()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); } else if (var->mode() != Variable::CONST || op == Token::INIT_CONST) { // Perform the assignment for non-const variables and for initialization // of const variables. Const assignments are simply skipped. Label done; Slot* slot = var->AsSlot(); switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (op == Token::INIT_CONST) { // Detect const reinitialization by checking for the hole value. __ mov(edx, Operand(ebp, SlotOffset(slot))); __ cmp(edx, Factory::the_hole_value()); __ j(not_equal, &done); } // Perform the assignment. __ mov(Operand(ebp, SlotOffset(slot)), eax); break; case Slot::CONTEXT: { MemOperand target = EmitSlotSearch(slot, ecx); if (op == Token::INIT_CONST) { // Detect const reinitialization by checking for the hole value. __ mov(edx, target); __ cmp(edx, Factory::the_hole_value()); __ j(not_equal, &done); } // Perform the assignment and issue the write barrier. __ mov(target, eax); // The value of the assignment is in eax. RecordWrite clobbers its // register arguments. __ mov(edx, eax); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; __ RecordWrite(ecx, offset, edx, ebx); break; } case Slot::LOOKUP: // Call the runtime for the assignment. The runtime will ignore // const reinitialization. __ push(eax); // Value. __ push(esi); // Context. __ push(Immediate(var->name())); if (op == Token::INIT_CONST) { // The runtime will ignore const redeclaration. __ CallRuntime(Runtime::kInitializeConstContextSlot, 3); } else { __ CallRuntime(Runtime::kStoreContextSlot, 3); } break; } __ bind(&done); } context()->Plug(eax); } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); __ push(Operand(esp, kPointerSize)); // Receiver is now under value. __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ mov(ecx, prop->key()->AsLiteral()->handle()); if (expr->ends_initialization_block()) { __ mov(edx, Operand(esp, 0)); } else { __ pop(edx); } Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(eax); // Result of assignment, saved even if not needed. __ push(Operand(esp, kPointerSize)); // Receiver is under value. __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(eax); context()->DropAndPlug(1, eax); } else { context()->Plug(eax); } } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); // Receiver is now under the key and value. __ push(Operand(esp, 2 * kPointerSize)); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } __ pop(ecx); if (expr->ends_initialization_block()) { __ mov(edx, Operand(esp, 0)); // Leave receiver on the stack for later. } else { __ pop(edx); } // Record source code position before IC call. SetSourcePosition(expr->position()); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ pop(edx); __ push(eax); // Result of assignment, saved even if not needed. __ push(edx); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(eax); } context()->Plug(eax); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); if (key->IsPropertyName()) { VisitForAccumulatorValue(expr->obj()); EmitNamedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ pop(edx); EmitKeyedPropertyLoad(expr); } context()->Plug(eax); } void FullCodeGenerator::EmitCallWithIC(Call* expr, Handle name, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); { PreserveStatementPositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } __ Set(ecx, Immediate(name)); } // Record source position of the IC call. SetSourcePosition(expr->position(), FORCED_POSITION); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop); EmitCallIC(ic, mode); // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); context()->Plug(eax); } void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr, Expression* key, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); { PreserveStatementPositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } VisitForAccumulatorValue(key); __ mov(ecx, eax); } // Record source position of the IC call. SetSourcePosition(expr->position(), FORCED_POSITION); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeKeyedCallInitialize( arg_count, in_loop); EmitCallIC(ic, mode); // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); context()->Plug(eax); } void FullCodeGenerator::EmitCallWithStub(Call* expr) { // Code common for calls using the call stub. ZoneList* args = expr->arguments(); int arg_count = args->length(); { PreserveStatementPositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } } // Record source position for debugger. SetSourcePosition(expr->position(), FORCED_POSITION); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, eax); } void FullCodeGenerator::VisitCall(Call* expr) { Comment cmnt(masm_, "[ Call"); Expression* fun = expr->expression(); Variable* var = fun->AsVariableProxy()->AsVariable(); if (var != NULL && var->is_possibly_eval()) { // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); { PreserveStatementPositionScope pos_scope(masm()->positions_recorder()); VisitForStackValue(fun); // Reserved receiver slot. __ push(Immediate(Factory::undefined_value())); // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push copy of the function - found below the arguments. __ push(Operand(esp, (arg_count + 1) * kPointerSize)); // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ push(Operand(esp, arg_count * kPointerSize)); } else { __ push(Immediate(Factory::undefined_value())); } // Push the receiver of the enclosing function and do runtime call. __ push(Operand(ebp, (2 + scope()->num_parameters()) * kPointerSize)); __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 3); // The runtime call returns a pair of values in eax (function) and // edx (receiver). Touch up the stack with the right values. __ mov(Operand(esp, (arg_count + 0) * kPointerSize), edx); __ mov(Operand(esp, (arg_count + 1) * kPointerSize), eax); } // Record source position for debugger. SetSourcePosition(expr->position(), FORCED_POSITION); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub stub(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, eax); } else if (var != NULL && !var->is_this() && var->is_global()) { // Push global object as receiver for the call IC. __ push(CodeGenerator::GlobalObject()); EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT); } else if (var != NULL && var->AsSlot() != NULL && var->AsSlot()->type() == Slot::LOOKUP) { // Call to a lookup slot (dynamically introduced variable). Label slow, done; { PreserveStatementPositionScope scope(masm()->positions_recorder()); // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLoadFromSlotFastCase(var->AsSlot(), NOT_INSIDE_TYPEOF, &slow, &done); } __ bind(&slow); // Call the runtime to find the function to call (returned in eax) // and the object holding it (returned in edx). __ push(context_register()); __ push(Immediate(var->name())); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ push(eax); // Function. __ push(edx); // Receiver. // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { Label call; __ jmp(&call); __ bind(&done); // Push function. __ push(eax); // Push global receiver. __ mov(ebx, CodeGenerator::GlobalObject()); __ push(FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); __ bind(&call); } EmitCallWithStub(expr); } else if (fun->AsProperty() != NULL) { // Call to an object property. Property* prop = fun->AsProperty(); Literal* key = prop->key()->AsLiteral(); if (key != NULL && key->handle()->IsSymbol()) { // Call to a named property, use call IC. VisitForStackValue(prop->obj()); EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET); } else { // Call to a keyed property. // For a synthetic property use keyed load IC followed by function call, // for a regular property use keyed EmitCallIC. { PreserveStatementPositionScope scope(masm()->positions_recorder()); VisitForStackValue(prop->obj()); } if (prop->is_synthetic()) { { PreserveStatementPositionScope scope(masm()->positions_recorder()); VisitForAccumulatorValue(prop->key()); } // Record source code position for IC call. SetSourcePosition(prop->position(), FORCED_POSITION); __ pop(edx); // We do not need to keep the receiver. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); // Push result (function). __ push(eax); // Push Global receiver. __ mov(ecx, CodeGenerator::GlobalObject()); __ push(FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset)); EmitCallWithStub(expr); } else { EmitKeyedCallWithIC(expr, prop->key(), RelocInfo::CODE_TARGET); } } } else { // Call to some other expression. If the expression is an anonymous // function literal not called in a loop, mark it as one that should // also use the full code generator. FunctionLiteral* lit = fun->AsFunctionLiteral(); if (lit != NULL && lit->name()->Equals(Heap::empty_string()) && loop_depth() == 0) { lit->set_try_full_codegen(true); } { PreserveStatementPositionScope scope(masm()->positions_recorder()); VisitForStackValue(fun); } // Load global receiver object. __ mov(ebx, CodeGenerator::GlobalObject()); __ push(FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset)); // Emit function call. EmitCallWithStub(expr); } } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function and argument count into edi and eax. __ Set(eax, Immediate(arg_count)); __ mov(edi, Operand(esp, arg_count * kPointerSize)); Handle construct_builtin(Builtins::builtin(Builtins::JSConstructCall)); __ call(construct_builtin, RelocInfo::CONSTRUCT_CALL); context()->Plug(eax); } void FullCodeGenerator::EmitIsSmi(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask)); Split(zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsNonNegativeSmi(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask | 0x80000000)); Split(zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); __ cmp(eax, Factory::null_value()); __ j(equal, if_true); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ movzx_b(ecx, FieldOperand(ebx, Map::kBitFieldOffset)); __ test(ecx, Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); __ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(below, if_false); __ cmp(ecx, LAST_JS_OBJECT_TYPE); Split(below_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSpecObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask)); __ j(equal, if_false); __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ebx); Split(above_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsUndetectableObject(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset)); __ test(ebx, Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Just indicate false, as %_IsStringWrapperSafeForDefaultValueOf() is only // used in a few functions in runtime.js which should not normally be hit by // this compiler. __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask)); __ j(equal, if_false); __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(eax, Immediate(kSmiTagMask)); __ j(equal, if_false); __ CmpObjectType(eax, JS_REGEXP_TYPE, ebx); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsConstructCall(ZoneList* args) { ASSERT(args->length() == 0); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Get the frame pointer for the calling frame. __ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ cmp(Operand(eax, StandardFrameConstants::kContextOffset), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &check_frame_marker); __ mov(eax, Operand(eax, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ cmp(Operand(eax, StandardFrameConstants::kMarkerOffset), Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(ZoneList* args) { ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ pop(ebx); __ cmp(eax, Operand(ebx)); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(ZoneList* args) { ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in edx and the formal // parameter count in eax. VisitForAccumulatorValue(args->at(0)); __ mov(edx, eax); __ mov(eax, Immediate(Smi::FromInt(scope()->num_parameters()))); ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitArgumentsLength(ZoneList* args) { ASSERT(args->length() == 0); Label exit; // Get the number of formal parameters. __ Set(eax, Immediate(Smi::FromInt(scope()->num_parameters()))); // Check if the calling frame is an arguments adaptor frame. __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ cmp(Operand(ebx, StandardFrameConstants::kContextOffset), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &exit); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ mov(eax, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); if (FLAG_debug_code) __ AbortIfNotSmi(eax); context()->Plug(eax); } void FullCodeGenerator::EmitClassOf(ZoneList* args) { ASSERT(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is a smi, we return null. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &null); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, eax); // Map is now in eax. __ j(below, &null); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpInstanceType(eax, JS_FUNCTION_TYPE); __ j(equal, &function); // Check if the constructor in the map is a function. __ mov(eax, FieldOperand(eax, Map::kConstructorOffset)); __ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx); __ j(not_equal, &non_function_constructor); // eax now contains the constructor function. Grab the // instance class name from there. __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset)); __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kInstanceClassNameOffset)); __ jmp(&done); // Functions have class 'Function'. __ bind(&function); __ mov(eax, Factory::function_class_symbol()); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ mov(eax, Factory::Object_symbol()); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ mov(eax, Factory::null_value()); // All done. __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitLog(ZoneList* args) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ASSERT_EQ(args->length(), 3); #ifdef ENABLE_LOGGING_AND_PROFILING if (CodeGenerator::ShouldGenerateLog(args->at(0))) { VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kLog, 2); } #endif // Finally, we're expected to leave a value on the top of the stack. __ mov(eax, Factory::undefined_value()); context()->Plug(eax); } void FullCodeGenerator::EmitRandomHeapNumber(ZoneList* args) { ASSERT(args->length() == 0); Label slow_allocate_heapnumber; Label heapnumber_allocated; __ AllocateHeapNumber(edi, ebx, ecx, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); // Allocate a heap number. __ CallRuntime(Runtime::kNumberAlloc, 0); __ mov(edi, eax); __ bind(&heapnumber_allocated); __ PrepareCallCFunction(0, ebx); __ CallCFunction(ExternalReference::random_uint32_function(), 0); // Convert 32 random bits in eax to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). // This is implemented on both SSE2 and FPU. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope fscope(SSE2); __ mov(ebx, Immediate(0x49800000)); // 1.0 x 2^20 as single. __ movd(xmm1, Operand(ebx)); __ movd(xmm0, Operand(eax)); __ cvtss2sd(xmm1, xmm1); __ pxor(xmm0, xmm1); __ subsd(xmm0, xmm1); __ movdbl(FieldOperand(edi, HeapNumber::kValueOffset), xmm0); } else { // 0x4130000000000000 is 1.0 x 2^20 as a double. __ mov(FieldOperand(edi, HeapNumber::kExponentOffset), Immediate(0x41300000)); __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), eax); __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); __ mov(FieldOperand(edi, HeapNumber::kMantissaOffset), Immediate(0)); __ fld_d(FieldOperand(edi, HeapNumber::kValueOffset)); __ fsubp(1); __ fstp_d(FieldOperand(edi, HeapNumber::kValueOffset)); } __ mov(eax, edi); context()->Plug(eax); } void FullCodeGenerator::EmitSubString(ZoneList* args) { // Load the arguments on the stack and call the stub. SubStringStub stub; ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitRegExpExec(ZoneList* args) { // Load the arguments on the stack and call the stub. RegExpExecStub stub; ASSERT(args->length() == 4); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); VisitForStackValue(args->at(3)); __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitValueOf(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. NearLabel done; // If the object is a smi return the object. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done); // If the object is not a value type, return the object. __ CmpObjectType(eax, JS_VALUE_TYPE, ebx); __ j(not_equal, &done); __ mov(eax, FieldOperand(eax, JSValue::kValueOffset)); __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitMathPow(ZoneList* args) { // Load the arguments on the stack and call the runtime function. ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); __ CallRuntime(Runtime::kMath_pow, 2); context()->Plug(eax); } void FullCodeGenerator::EmitSetValueOf(ZoneList* args) { ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ pop(ebx); // eax = value. ebx = object. NearLabel done; // If the object is a smi, return the value. __ test(ebx, Immediate(kSmiTagMask)); __ j(zero, &done); // If the object is not a value type, return the value. __ CmpObjectType(ebx, JS_VALUE_TYPE, ecx); __ j(not_equal, &done); // Store the value. __ mov(FieldOperand(ebx, JSValue::kValueOffset), eax); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ mov(edx, eax); __ RecordWrite(ebx, JSValue::kValueOffset, edx, ecx); __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitNumberToString(ZoneList* args) { ASSERT_EQ(args->length(), 1); // Load the argument on the stack and call the stub. VisitForStackValue(args->at(0)); NumberToStringStub stub; __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitStringCharFromCode(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; StringCharFromCodeGenerator generator(eax, ebx); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(ebx); } void FullCodeGenerator::EmitStringCharCodeAt(ZoneList* args) { ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = ebx; Register index = eax; Register scratch = ecx; Register result = edx; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ Set(result, Immediate(Factory::nan_value())); __ jmp(&done); __ bind(&need_conversion); // Move the undefined value into the result register, which will // trigger conversion. __ Set(result, Immediate(Factory::undefined_value())); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(ZoneList* args) { ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = ebx; Register index = eax; Register scratch1 = ecx; Register scratch2 = edx; Register result = eax; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch1, scratch2, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ Set(result, Immediate(Factory::empty_string())); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ Set(result, Immediate(Smi::FromInt(0))); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringAdd(ZoneList* args) { ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringAddStub stub(NO_STRING_ADD_FLAGS); __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitStringCompare(ZoneList* args) { ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringCompareStub stub; __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitMathSin(ZoneList* args) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::SIN); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitMathCos(ZoneList* args) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::COS); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(eax); } void FullCodeGenerator::EmitMathSqrt(ZoneList* args) { // Load the argument on the stack and call the runtime function. ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallRuntime(Runtime::kMath_sqrt, 1); context()->Plug(eax); } void FullCodeGenerator::EmitCallFunction(ZoneList* args) { ASSERT(args->length() >= 2); int arg_count = args->length() - 2; // For receiver and function. VisitForStackValue(args->at(0)); // Receiver. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i + 1)); } VisitForAccumulatorValue(args->at(arg_count + 1)); // Function. // InvokeFunction requires function in edi. Move it in there. if (!result_register().is(edi)) __ mov(edi, result_register()); ParameterCount count(arg_count); __ InvokeFunction(edi, count, CALL_FUNCTION); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); context()->Plug(eax); } void FullCodeGenerator::EmitRegExpConstructResult(ZoneList* args) { ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kRegExpConstructResult, 3); context()->Plug(eax); } void FullCodeGenerator::EmitSwapElements(ZoneList* args) { ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kSwapElements, 3); context()->Plug(eax); } void FullCodeGenerator::EmitGetFromCache(ZoneList* args) { ASSERT_EQ(2, args->length()); ASSERT_NE(NULL, args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); Handle jsfunction_result_caches( Top::global_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort("Attempt to use undefined cache."); __ mov(eax, Factory::undefined_value()); context()->Plug(eax); return; } VisitForAccumulatorValue(args->at(1)); Register key = eax; Register cache = ebx; Register tmp = ecx; __ mov(cache, ContextOperand(esi, Context::GLOBAL_INDEX)); __ mov(cache, FieldOperand(cache, GlobalObject::kGlobalContextOffset)); __ mov(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ mov(cache, FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); Label done, not_found; // tmp now holds finger offset as a smi. ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ mov(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset)); __ cmp(key, CodeGenerator::FixedArrayElementOperand(cache, tmp)); __ j(not_equal, ¬_found); __ mov(eax, CodeGenerator::FixedArrayElementOperand(cache, tmp, 1)); __ jmp(&done); __ bind(¬_found); // Call runtime to perform the lookup. __ push(cache); __ push(key); __ CallRuntime(Runtime::kGetFromCache, 2); __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitIsRegExpEquivalent(ZoneList* args) { ASSERT_EQ(2, args->length()); Register right = eax; Register left = ebx; Register tmp = ecx; VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ pop(left); Label done, fail, ok; __ cmp(left, Operand(right)); __ j(equal, &ok); // Fail if either is a non-HeapObject. __ mov(tmp, left); __ and_(Operand(tmp), right); __ test(Operand(tmp), Immediate(kSmiTagMask)); __ j(zero, &fail); __ CmpObjectType(left, JS_REGEXP_TYPE, tmp); __ j(not_equal, &fail); __ cmp(tmp, FieldOperand(right, HeapObject::kMapOffset)); __ j(not_equal, &fail); __ mov(tmp, FieldOperand(left, JSRegExp::kDataOffset)); __ cmp(tmp, FieldOperand(right, JSRegExp::kDataOffset)); __ j(equal, &ok); __ bind(&fail); __ mov(eax, Immediate(Factory::false_value())); __ jmp(&done); __ bind(&ok); __ mov(eax, Immediate(Factory::true_value())); __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitHasCachedArrayIndex(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); if (FLAG_debug_code) { __ AbortIfNotString(eax); } Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ test(FieldOperand(eax, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); Split(zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(ZoneList* args) { ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); if (FLAG_debug_code) { __ AbortIfNotString(eax); } __ mov(eax, FieldOperand(eax, String::kHashFieldOffset)); __ IndexFromHash(eax, eax); context()->Plug(eax); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Handle name = expr->name(); if (name->length() > 0 && name->Get(0) == '_') { Comment cmnt(masm_, "[ InlineRuntimeCall"); EmitInlineRuntimeCall(expr); return; } Comment cmnt(masm_, "[ CallRuntime"); ZoneList* args = expr->arguments(); if (expr->is_jsruntime()) { // Prepare for calling JS runtime function. __ mov(eax, CodeGenerator::GlobalObject()); __ push(FieldOperand(eax, GlobalObject::kBuiltinsOffset)); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } if (expr->is_jsruntime()) { // Call the JS runtime function via a call IC. __ Set(ecx, Immediate(expr->name())); InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop); EmitCallIC(ic, RelocInfo::CODE_TARGET); // Restore context register. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); } else { // Call the C runtime function. __ CallRuntime(expr->function(), arg_count); } context()->Plug(eax); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* prop = expr->expression()->AsProperty(); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (prop == NULL && var == NULL) { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } else if (var != NULL && !var->is_global() && var->AsSlot() != NULL && var->AsSlot()->type() != Slot::LOOKUP) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. context()->Plug(false); } else { // Property or variable reference. Call the delete builtin with // object and property name as arguments. if (prop != NULL) { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); } else if (var->is_global()) { __ push(CodeGenerator::GlobalObject()); __ push(Immediate(var->name())); } else { // Non-global variable. Call the runtime to look up the context // where the variable was introduced. __ push(context_register()); __ push(Immediate(var->name())); __ CallRuntime(Runtime::kLookupContext, 2); __ push(eax); __ push(Immediate(var->name())); } __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(eax); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Factory::undefined_value()); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; // Notice that the labels are swapped. context()->PrepareTest(&materialize_true, &materialize_false, &if_false, &if_true, &fall_through); VisitForControl(expr->expression(), if_true, if_false, fall_through); context()->Plug(if_false, if_true); // Labels swapped. break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { StackValueContext context(this); VisitForTypeofValue(expr->expression()); } __ CallRuntime(Runtime::kTypeof, 1); context()->Plug(eax); break; } case Token::ADD: { Comment cmt(masm_, "[ UnaryOperation (ADD)"); VisitForAccumulatorValue(expr->expression()); Label no_conversion; __ test(result_register(), Immediate(kSmiTagMask)); __ j(zero, &no_conversion); __ push(result_register()); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ bind(&no_conversion); context()->Plug(result_register()); break; } case Token::SUB: { Comment cmt(masm_, "[ UnaryOperation (SUB)"); bool can_overwrite = expr->expression()->ResultOverwriteAllowed(); UnaryOverwriteMode overwrite = can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; GenericUnaryOpStub stub(Token::SUB, overwrite, NO_UNARY_FLAGS); // GenericUnaryOpStub expects the argument to be in the // accumulator register eax. VisitForAccumulatorValue(expr->expression()); __ CallStub(&stub); context()->Plug(eax); break; } case Token::BIT_NOT: { Comment cmt(masm_, "[ UnaryOperation (BIT_NOT)"); // The generic unary operation stub expects the argument to be // in the accumulator register eax. VisitForAccumulatorValue(expr->expression()); Label done; bool inline_smi_case = ShouldInlineSmiCase(expr->op()); if (inline_smi_case) { NearLabel call_stub; __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &call_stub); __ lea(eax, Operand(eax, kSmiTagMask)); __ not_(eax); __ jmp(&done); __ bind(&call_stub); } bool overwrite = expr->expression()->ResultOverwriteAllowed(); UnaryOverwriteMode mode = overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; UnaryOpFlags flags = inline_smi_case ? NO_UNARY_SMI_CODE_IN_STUB : NO_UNARY_FLAGS; GenericUnaryOpStub stub(Token::BIT_NOT, mode, flags); __ CallStub(&stub); __ bind(&done); context()->Plug(eax); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); SetSourcePosition(expr->position()); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // as the left-hand side. if (!expr->expression()->IsValidLeftHandSide()) { VisitForEffect(expr->expression()); return; } // Expression can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()->var()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ push(Immediate(Smi::FromInt(0))); } if (assign_type == NAMED_PROPERTY) { // Put the object both on the stack and in the accumulator. VisitForAccumulatorValue(prop->obj()); __ push(eax); EmitNamedPropertyLoad(prop); } else { VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ mov(edx, Operand(esp, 0)); __ push(eax); EmitKeyedPropertyLoad(prop); } } // Call ToNumber only if operand is not a smi. NearLabel no_conversion; if (ShouldInlineSmiCase(expr->op())) { __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &no_conversion); } __ push(eax); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ bind(&no_conversion); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(eax); break; case NAMED_PROPERTY: __ mov(Operand(esp, kPointerSize), eax); break; case KEYED_PROPERTY: __ mov(Operand(esp, 2 * kPointerSize), eax); break; } } } // Inline smi case if we are in a loop. NearLabel stub_call; Label done; if (ShouldInlineSmiCase(expr->op())) { if (expr->op() == Token::INC) { __ add(Operand(eax), Immediate(Smi::FromInt(1))); } else { __ sub(Operand(eax), Immediate(Smi::FromInt(1))); } __ j(overflow, &stub_call); // We could eliminate this smi check if we split the code at // the first smi check before calling ToNumber. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done); __ bind(&stub_call); // Call stub. Undo operation first. if (expr->op() == Token::INC) { __ sub(Operand(eax), Immediate(Smi::FromInt(1))); } else { __ add(Operand(eax), Immediate(Smi::FromInt(1))); } } // Call stub for +1/-1. GenericBinaryOpStub stub(expr->binary_op(), NO_OVERWRITE, NO_GENERIC_BINARY_FLAGS, TypeInfo::Unknown()); stub.GenerateCall(masm(), eax, Smi::FromInt(1)); __ bind(&done); // Store the value returned in eax. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { // Perform the assignment as if via '='. { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); } // For all contexts except EffectContext We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { // Perform the assignment as if via '='. EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); } break; case NAMED_PROPERTY: { __ mov(ecx, prop->key()->AsLiteral()->handle()); __ pop(edx); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(eax); } break; } case KEYED_PROPERTY: { __ pop(ecx); __ pop(edx); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); EmitCallIC(ic, RelocInfo::CODE_TARGET); if (expr->is_postfix()) { // Result is on the stack if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(eax); } break; } } } void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { VariableProxy* proxy = expr->AsVariableProxy(); ASSERT(!context()->IsEffect()); ASSERT(!context()->IsTest()); if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) { Comment cmnt(masm_, "Global variable"); __ mov(eax, CodeGenerator::GlobalObject()); __ mov(ecx, Immediate(proxy->name())); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); // Use a regular load, not a contextual load, to avoid a reference // error. EmitCallIC(ic, RelocInfo::CODE_TARGET); context()->Plug(eax); } else if (proxy != NULL && proxy->var()->AsSlot() != NULL && proxy->var()->AsSlot()->type() == Slot::LOOKUP) { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. Slot* slot = proxy->var()->AsSlot(); EmitDynamicLoadFromSlotFastCase(slot, INSIDE_TYPEOF, &slow, &done); __ bind(&slow); __ push(esi); __ push(Immediate(proxy->name())); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); __ bind(&done); context()->Plug(eax); } else { // This expression cannot throw a reference error at the top level. Visit(expr); } } bool FullCodeGenerator::TryLiteralCompare(Token::Value op, Expression* left, Expression* right, Label* if_true, Label* if_false, Label* fall_through) { if (op != Token::EQ && op != Token::EQ_STRICT) return false; // Check for the pattern: typeof == . Literal* right_literal = right->AsLiteral(); if (right_literal == NULL) return false; Handle right_literal_value = right_literal->handle(); if (!right_literal_value->IsString()) return false; UnaryOperation* left_unary = left->AsUnaryOperation(); if (left_unary == NULL || left_unary->op() != Token::TYPEOF) return false; Handle check = Handle::cast(right_literal_value); { AccumulatorValueContext context(this); VisitForTypeofValue(left_unary->expression()); } if (check->Equals(Heap::number_symbol())) { __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_true); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(Heap::string_symbol())) { __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); // Check for undetectable objects => false. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset)); __ test(ecx, Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE); Split(below, if_true, if_false, fall_through); } else if (check->Equals(Heap::boolean_symbol())) { __ cmp(eax, Factory::true_value()); __ j(equal, if_true); __ cmp(eax, Factory::false_value()); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(Heap::undefined_symbol())) { __ cmp(eax, Factory::undefined_value()); __ j(equal, if_true); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); // Check for undetectable objects => true. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset)); __ test(ecx, Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } else if (check->Equals(Heap::function_symbol())) { __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); __ CmpObjectType(eax, JS_FUNCTION_TYPE, edx); __ j(equal, if_true); // Regular expressions => 'function' (they are callable). __ CmpInstanceType(edx, JS_REGEXP_TYPE); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(Heap::object_symbol())) { __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); __ cmp(eax, Factory::null_value()); __ j(equal, if_true); // Regular expressions => 'function', not 'object'. __ CmpObjectType(eax, JS_REGEXP_TYPE, edx); __ j(equal, if_false); // Check for undetectable objects => false. __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset)); __ test(ecx, Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); // Check for JS objects => true. __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, if_false); __ cmp(ecx, LAST_JS_OBJECT_TYPE); Split(less_equal, if_true, if_false, fall_through); } else { if (if_false != fall_through) __ jmp(if_false); } return true; } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetSourcePosition(expr->position()); // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // First we try a fast inlined version of the compare when one of // the operands is a literal. Token::Value op = expr->op(); Expression* left = expr->left(); Expression* right = expr->right(); if (TryLiteralCompare(op, left, right, if_true, if_false, fall_through)) { context()->Plug(if_true, if_false); return; } VisitForStackValue(expr->left()); switch (expr->op()) { case Token::IN: VisitForStackValue(expr->right()); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); __ cmp(eax, Factory::true_value()); Split(equal, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForStackValue(expr->right()); InstanceofStub stub; __ CallStub(&stub); __ test(eax, Operand(eax)); // The stub returns 0 for true. Split(zero, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cc = no_condition; bool strict = false; switch (op) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: cc = equal; __ pop(edx); break; case Token::LT: cc = less; __ pop(edx); break; case Token::GT: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = less; __ mov(edx, result_register()); __ pop(eax); break; case Token::LTE: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = greater_equal; __ mov(edx, result_register()); __ pop(eax); break; case Token::GTE: cc = greater_equal; __ pop(edx); break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } bool inline_smi_code = ShouldInlineSmiCase(op); if (inline_smi_code) { NearLabel slow_case; __ mov(ecx, Operand(edx)); __ or_(ecx, Operand(eax)); __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, &slow_case, not_taken); __ cmp(edx, Operand(eax)); Split(cc, if_true, if_false, NULL); __ bind(&slow_case); } CompareFlags flags = inline_smi_code ? NO_SMI_COMPARE_IN_STUB : NO_COMPARE_FLAGS; CompareStub stub(cc, strict, flags); __ CallStub(&stub); __ test(eax, Operand(eax)); Split(cc, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareToNull(CompareToNull* expr) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(expr->expression()); __ cmp(eax, Factory::null_value()); if (expr->is_strict()) { Split(equal, if_true, if_false, fall_through); } else { __ j(equal, if_true); __ cmp(eax, Factory::undefined_value()); __ j(equal, if_true); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, if_false); // It can be an undetectable object. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(edx, FieldOperand(edx, Map::kBitFieldOffset)); __ test(edx, Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(eax); } Register FullCodeGenerator::result_register() { return eax; } Register FullCodeGenerator::context_register() { return esi; } void FullCodeGenerator::EmitCallIC(Handle ic, RelocInfo::Mode mode) { ASSERT(mode == RelocInfo::CODE_TARGET || mode == RelocInfo::CODE_TARGET_CONTEXT); __ call(ic, mode); // If we're calling a (keyed) load or store stub, we have to mark // the call as containing no inlined code so we will not attempt to // patch it. switch (ic->kind()) { case Code::LOAD_IC: case Code::KEYED_LOAD_IC: case Code::STORE_IC: case Code::KEYED_STORE_IC: __ nop(); // Signals no inlined code. break; default: // Do nothing. break; } } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ mov(Operand(ebp, frame_offset), value); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ mov(dst, ContextOperand(esi, context_index)); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { // Cook return address on top of stack (smi encoded Code* delta) ASSERT(!result_register().is(edx)); __ mov(edx, Operand(esp, 0)); __ sub(Operand(edx), Immediate(masm_->CodeObject())); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); ASSERT_EQ(0, kSmiTag); __ add(edx, Operand(edx)); // Convert to smi. __ mov(Operand(esp, 0), edx); // Store result register while executing finally block. __ push(result_register()); } void FullCodeGenerator::ExitFinallyBlock() { ASSERT(!result_register().is(edx)); // Restore result register from stack. __ pop(result_register()); // Uncook return address. __ mov(edx, Operand(esp, 0)); __ sar(edx, 1); // Convert smi to int. __ add(Operand(edx), Immediate(masm_->CodeObject())); __ mov(Operand(esp, 0), edx); // And return. __ ret(0); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32