// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/factory.h" #include "src/accessors.h" #include "src/allocation-site-scopes.h" #include "src/ast/ast-source-ranges.h" #include "src/ast/ast.h" #include "src/base/bits.h" #include "src/bootstrapper.h" #include "src/compiler.h" #include "src/conversions.h" #include "src/isolate-inl.h" #include "src/macro-assembler.h" #include "src/objects/bigint-inl.h" #include "src/objects/debug-objects-inl.h" #include "src/objects/frame-array-inl.h" #include "src/objects/module.h" #include "src/objects/scope-info.h" #include "src/unicode-cache.h" #include "src/unicode-decoder.h" namespace v8 { namespace internal { // Calls the FUNCTION_CALL function and retries it up to three times // to guarantee that any allocations performed during the call will // succeed if there's enough memory. // // Warning: Do not use the identifiers __object__, __maybe_object__, // __allocation__ or __scope__ in a call to this macro. #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ if (__allocation__.To(&__object__)) { \ DCHECK(__object__ != (ISOLATE)->heap()->exception()); \ return Handle(TYPE::cast(__object__), ISOLATE); \ } #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \ do { \ AllocationResult __allocation__ = FUNCTION_CALL; \ Object* __object__ = nullptr; \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ /* Two GCs before panicking. In newspace will almost always succeed. */ \ for (int __i__ = 0; __i__ < 2; __i__++) { \ (ISOLATE)->heap()->CollectGarbage( \ __allocation__.RetrySpace(), \ GarbageCollectionReason::kAllocationFailure); \ __allocation__ = FUNCTION_CALL; \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ } \ (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \ (ISOLATE)->heap()->CollectAllAvailableGarbage( \ GarbageCollectionReason::kLastResort); \ { \ AlwaysAllocateScope __scope__(ISOLATE); \ __allocation__ = FUNCTION_CALL; \ } \ RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE) \ /* TODO(1181417): Fix this. */ \ v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \ return Handle(); \ } while (false) template Handle Factory::New(Handle map, AllocationSpace space) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->Allocate(*map, space), T); } template Handle Factory::New(Handle map, AllocationSpace space, Handle allocation_site) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->Allocate(*map, space, *allocation_site), T); } Handle Factory::NewFillerObject(int size, bool double_align, AllocationSpace space) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFillerObject(size, double_align, space), HeapObject); } Handle Factory::NewPrototypeInfo() { Handle result = Handle::cast(NewStruct(PROTOTYPE_INFO_TYPE, TENURED)); result->set_prototype_users(WeakFixedArray::Empty()); result->set_registry_slot(PrototypeInfo::UNREGISTERED); result->set_validity_cell(Smi::kZero); result->set_bit_field(0); return result; } Handle Factory::NewEnumCache(Handle keys, Handle indices) { return Handle::cast(NewTuple2(keys, indices, TENURED)); } Handle Factory::NewTuple2(Handle value1, Handle value2, PretenureFlag pretenure) { Handle result = Handle::cast(NewStruct(TUPLE2_TYPE, pretenure)); result->set_value1(*value1); result->set_value2(*value2); return result; } Handle Factory::NewTuple3(Handle value1, Handle value2, Handle value3, PretenureFlag pretenure) { Handle result = Handle::cast(NewStruct(TUPLE3_TYPE, pretenure)); result->set_value1(*value1); result->set_value2(*value2); result->set_value3(*value3); return result; } Handle Factory::NewContextExtension( Handle scope_info, Handle extension) { Handle result = Handle::cast( NewStruct(CONTEXT_EXTENSION_TYPE, TENURED)); result->set_scope_info(*scope_info); result->set_extension(*extension); return result; } Handle Factory::NewConstantElementsPair( ElementsKind elements_kind, Handle constant_values) { Handle result = Handle::cast(NewStruct(TUPLE2_TYPE, TENURED)); result->set_elements_kind(elements_kind); result->set_constant_values(*constant_values); return result; } Handle Factory::NewTemplateObjectDescription( int hash, Handle raw_strings, Handle cooked_strings) { DCHECK_EQ(raw_strings->length(), cooked_strings->length()); DCHECK_LT(0, raw_strings->length()); Handle result = Handle::cast(NewStruct(TUPLE3_TYPE, TENURED)); result->set_hash(hash); result->set_raw_strings(*raw_strings); result->set_cooked_strings(*cooked_strings); return result; } Handle Factory::NewOddball(Handle map, const char* to_string, Handle to_number, const char* type_of, byte kind) { Handle oddball = New(map, OLD_SPACE); Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind); return oddball; } Handle Factory::NewFixedArray(int size, PretenureFlag pretenure) { DCHECK_LE(0, size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFixedArray(size, pretenure), FixedArray); } Handle Factory::NewPropertyArray(int size, PretenureFlag pretenure) { DCHECK_LE(0, size); CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocatePropertyArray(size, pretenure), PropertyArray); } MaybeHandle Factory::TryNewFixedArray(int size, PretenureFlag pretenure) { DCHECK_LE(0, size); AllocationResult allocation = isolate()->heap()->AllocateFixedArray(size, pretenure); Object* array = nullptr; if (!allocation.To(&array)) return MaybeHandle(); return Handle(FixedArray::cast(array), isolate()); } Handle Factory::NewFixedArrayWithHoles(int size, PretenureFlag pretenure) { DCHECK_LE(0, size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFixedArrayWithFiller(size, pretenure, *the_hole_value()), FixedArray); } Handle Factory::NewUninitializedFixedArray(int size) { // TODO(ulan): As an experiment this temporarily returns an initialized fixed // array. After getting canary/performance coverage, either remove the // function or revert to returning uninitilized array. CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedArray(size, NOT_TENURED), FixedArray); } Handle Factory::NewFeedbackVector( Handle shared, PretenureFlag pretenure) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateFeedbackVector(*shared, pretenure), FeedbackVector); } Handle Factory::NewBoilerplateDescription( int boilerplate, int all_properties, int index_keys, bool has_seen_proto) { DCHECK_GE(boilerplate, 0); DCHECK_GE(all_properties, index_keys); DCHECK_GE(index_keys, 0); int backing_store_size = all_properties - index_keys - (has_seen_proto ? 1 : 0); DCHECK_GE(backing_store_size, 0); bool has_different_size_backing_store = boilerplate != backing_store_size; // Space for name and value for every boilerplate property. int size = 2 * boilerplate; if (has_different_size_backing_store) { // An extra entry for the backing store size. size++; } Handle description = Handle::cast(NewFixedArray(size, TENURED)); if (has_different_size_backing_store) { DCHECK((boilerplate != (all_properties - index_keys)) || has_seen_proto); description->set_backing_store_size(isolate(), backing_store_size); } return description; } Handle Factory::NewFixedDoubleArray(int size, PretenureFlag pretenure) { DCHECK_LE(0, size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure), FixedArrayBase); } Handle Factory::NewFixedDoubleArrayWithHoles( int size, PretenureFlag pretenure) { DCHECK_LE(0, size); Handle array = NewFixedDoubleArray(size, pretenure); if (size > 0) { Handle::cast(array)->FillWithHoles(0, size); } return array; } Handle Factory::NewFrameArray(int number_of_frames, PretenureFlag pretenure) { DCHECK_LE(0, number_of_frames); Handle result = NewFixedArrayWithHoles(FrameArray::LengthFor(number_of_frames)); result->set(FrameArray::kFrameCountIndex, Smi::kZero); return Handle::cast(result); } Handle Factory::NewSmallOrderedHashSet( int size, PretenureFlag pretenure) { DCHECK_LE(0, size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateSmallOrderedHashSet(size, pretenure), SmallOrderedHashSet); } Handle Factory::NewSmallOrderedHashMap( int size, PretenureFlag pretenure) { DCHECK_LE(0, size); CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateSmallOrderedHashMap(size, pretenure), SmallOrderedHashMap); } Handle Factory::NewOrderedHashSet() { return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity); } Handle Factory::NewOrderedHashMap() { return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity); } Handle Factory::NewAccessorPair() { Handle accessors = Handle::cast(NewStruct(ACCESSOR_PAIR_TYPE, TENURED)); accessors->set_getter(*null_value(), SKIP_WRITE_BARRIER); accessors->set_setter(*null_value(), SKIP_WRITE_BARRIER); return accessors; } Handle Factory::NewTypeFeedbackInfo() { Handle info = Handle::cast(NewStruct(TUPLE3_TYPE, TENURED)); info->initialize_storage(); return info; } // Internalized strings are created in the old generation (data space). Handle Factory::InternalizeUtf8String(Vector string) { Utf8StringKey key(string, isolate()->heap()->HashSeed()); return InternalizeStringWithKey(&key); } Handle Factory::InternalizeOneByteString(Vector string) { OneByteStringKey key(string, isolate()->heap()->HashSeed()); return InternalizeStringWithKey(&key); } Handle Factory::InternalizeOneByteString( Handle string, int from, int length) { SeqOneByteSubStringKey key(string, from, length); return InternalizeStringWithKey(&key); } Handle Factory::InternalizeTwoByteString(Vector string) { TwoByteStringKey key(string, isolate()->heap()->HashSeed()); return InternalizeStringWithKey(&key); } template Handle Factory::InternalizeStringWithKey(StringTableKey* key) { return StringTable::LookupKey(isolate(), key); } MaybeHandle Factory::NewStringFromOneByte(Vector string, PretenureFlag pretenure) { int length = string.length(); if (length == 0) return empty_string(); if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawOneByteString(string.length(), pretenure), String); DisallowHeapAllocation no_gc; // Copy the characters into the new object. CopyChars(SeqOneByteString::cast(*result)->GetChars(), string.start(), length); return result; } MaybeHandle Factory::NewStringFromUtf8(Vector string, PretenureFlag pretenure) { // Check for ASCII first since this is the common case. const char* start = string.start(); int length = string.length(); int non_ascii_start = String::NonAsciiStart(start, length); if (non_ascii_start >= length) { // If the string is ASCII, we do not need to convert the characters // since UTF8 is backwards compatible with ASCII. return NewStringFromOneByte(Vector::cast(string), pretenure); } // Non-ASCII and we need to decode. Access decoder(isolate()->unicode_cache()->utf8_decoder()); decoder->Reset(string.start() + non_ascii_start, length - non_ascii_start); int utf16_length = static_cast(decoder->Utf16Length()); DCHECK_GT(utf16_length, 0); // Allocate string. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String); // Copy ASCII portion. uint16_t* data = result->GetChars(); const char* ascii_data = string.start(); for (int i = 0; i < non_ascii_start; i++) { *data++ = *ascii_data++; } // Now write the remainder. decoder->WriteUtf16(data, utf16_length); return result; } MaybeHandle Factory::NewStringFromUtf8SubString( Handle str, int begin, int length, PretenureFlag pretenure) { // Check for ASCII first since this is the common case. const char* start = reinterpret_cast(str->GetChars() + begin); int non_ascii_start = String::NonAsciiStart(start, length); if (non_ascii_start >= length) { // If the string is ASCII, we can just make a substring. // TODO(v8): the pretenure flag is ignored in this case. return NewSubString(str, begin, begin + length); } // Non-ASCII and we need to decode. Access decoder( isolate()->unicode_cache()->utf8_decoder()); decoder->Reset(start + non_ascii_start, length - non_ascii_start); int utf16_length = static_cast(decoder->Utf16Length()); DCHECK_GT(utf16_length, 0); // Allocate string. Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawTwoByteString(non_ascii_start + utf16_length, pretenure), String); // Reset the decoder, because the original {str} may have moved. const char* ascii_data = reinterpret_cast(str->GetChars() + begin); decoder->Reset(ascii_data + non_ascii_start, length - non_ascii_start); // Copy ASCII portion. uint16_t* data = result->GetChars(); for (int i = 0; i < non_ascii_start; i++) { *data++ = *ascii_data++; } // Now write the remainder. decoder->WriteUtf16(data, utf16_length); return result; } MaybeHandle Factory::NewStringFromTwoByte(const uc16* string, int length, PretenureFlag pretenure) { if (length == 0) return empty_string(); if (String::IsOneByte(string, length)) { if (length == 1) return LookupSingleCharacterStringFromCode(string[0]); Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawOneByteString(length, pretenure), String); CopyChars(result->GetChars(), string, length); return result; } else { Handle result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, NewRawTwoByteString(length, pretenure), String); CopyChars(result->GetChars(), string, length); return result; } } MaybeHandle Factory::NewStringFromTwoByte(Vector string, PretenureFlag pretenure) { return NewStringFromTwoByte(string.start(), string.length(), pretenure); } MaybeHandle Factory::NewStringFromTwoByte( const ZoneVector* string, PretenureFlag pretenure) { return NewStringFromTwoByte(string->data(), static_cast(string->size()), pretenure); } Handle Factory::NewInternalizedStringFromUtf8(Vector str, int chars, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateInternalizedStringFromUtf8( str, chars, hash_field), String); } MUST_USE_RESULT Handle Factory::NewOneByteInternalizedString( Vector str, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field), String); } MUST_USE_RESULT Handle Factory::NewOneByteInternalizedSubString( Handle string, int offset, int length, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateOneByteInternalizedString( Vector(string->GetChars() + offset, length), hash_field), String); } MUST_USE_RESULT Handle Factory::NewTwoByteInternalizedString( Vector str, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field), String); } Handle Factory::NewInternalizedStringImpl( Handle string, int chars, uint32_t hash_field) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateInternalizedStringImpl( *string, chars, hash_field), String); } namespace { MaybeHandle GetInternalizedStringMap(Factory* f, Handle string) { switch (string->map()->instance_type()) { case STRING_TYPE: return f->internalized_string_map(); case ONE_BYTE_STRING_TYPE: return f->one_byte_internalized_string_map(); case EXTERNAL_STRING_TYPE: return f->external_internalized_string_map(); case EXTERNAL_ONE_BYTE_STRING_TYPE: return f->external_one_byte_internalized_string_map(); case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return f->external_internalized_string_with_one_byte_data_map(); case SHORT_EXTERNAL_STRING_TYPE: return f->short_external_internalized_string_map(); case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE: return f->short_external_one_byte_internalized_string_map(); case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: return f->short_external_internalized_string_with_one_byte_data_map(); default: return MaybeHandle(); // No match found. } } } // namespace MaybeHandle Factory::InternalizedStringMapForString( Handle string) { // If the string is in new space it cannot be used as internalized. if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle(); return GetInternalizedStringMap(this, string); } template Handle Factory::InternalizeExternalString(Handle string) { Handle cast_string = Handle::cast(string); Handle map = GetInternalizedStringMap(this, string).ToHandleChecked(); Handle external_string = New(map, OLD_SPACE); external_string->set_length(cast_string->length()); external_string->set_hash_field(cast_string->hash_field()); external_string->set_resource(nullptr); isolate()->heap()->RegisterExternalString(*external_string); return external_string; } template Handle Factory::InternalizeExternalString(Handle); template Handle Factory::InternalizeExternalString(Handle); MaybeHandle Factory::NewRawOneByteString( int length, PretenureFlag pretenure) { if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString); } DCHECK_GT(length, 0); // Use Factory::empty_string() instead. CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateRawOneByteString(length, pretenure), SeqOneByteString); } MaybeHandle Factory::NewRawTwoByteString( int length, PretenureFlag pretenure) { if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString); } DCHECK_GT(length, 0); // Use Factory::empty_string() instead. CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateRawTwoByteString(length, pretenure), SeqTwoByteString); } Handle Factory::LookupSingleCharacterStringFromCode(uint32_t code) { if (code <= String::kMaxOneByteCharCodeU) { { DisallowHeapAllocation no_allocation; Object* value = single_character_string_cache()->get(code); if (value != *undefined_value()) { return handle(String::cast(value), isolate()); } } uint8_t buffer[1]; buffer[0] = static_cast(code); Handle result = InternalizeOneByteString(Vector(buffer, 1)); single_character_string_cache()->set(code, *result); return result; } DCHECK_LE(code, String::kMaxUtf16CodeUnitU); Handle result = NewRawTwoByteString(1).ToHandleChecked(); result->SeqTwoByteStringSet(0, static_cast(code)); return result; } // Returns true for a character in a range. Both limits are inclusive. static inline bool Between(uint32_t character, uint32_t from, uint32_t to) { // This makes uses of the the unsigned wraparound. return character - from <= to - from; } static inline Handle MakeOrFindTwoCharacterString(Isolate* isolate, uint16_t c1, uint16_t c2) { // Numeric strings have a different hash algorithm not known by // LookupTwoCharsStringIfExists, so we skip this step for such strings. if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) { Handle result; if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2). ToHandle(&result)) { return result; } } // Now we know the length is 2, we might as well make use of that fact // when building the new string. if (static_cast(c1 | c2) <= String::kMaxOneByteCharCodeU) { // We can do this. DCHECK(base::bits::IsPowerOfTwo(String::kMaxOneByteCharCodeU + 1)); // because of this. Handle str = isolate->factory()->NewRawOneByteString(2).ToHandleChecked(); uint8_t* dest = str->GetChars(); dest[0] = static_cast(c1); dest[1] = static_cast(c2); return str; } else { Handle str = isolate->factory()->NewRawTwoByteString(2).ToHandleChecked(); uc16* dest = str->GetChars(); dest[0] = c1; dest[1] = c2; return str; } } template Handle ConcatStringContent(Handle result, Handle first, Handle second) { DisallowHeapAllocation pointer_stays_valid; SinkChar* sink = result->GetChars(); String::WriteToFlat(*first, sink, 0, first->length()); String::WriteToFlat(*second, sink + first->length(), 0, second->length()); return result; } MaybeHandle Factory::NewConsString(Handle left, Handle right) { if (left->IsThinString()) { left = handle(Handle::cast(left)->actual(), isolate()); } if (right->IsThinString()) { right = handle(Handle::cast(right)->actual(), isolate()); } int left_length = left->length(); if (left_length == 0) return right; int right_length = right->length(); if (right_length == 0) return left; int length = left_length + right_length; if (length == 2) { uint16_t c1 = left->Get(0); uint16_t c2 = right->Get(0); return MakeOrFindTwoCharacterString(isolate(), c1, c2); } // Make sure that an out of memory exception is thrown if the length // of the new cons string is too large. if (length > String::kMaxLength || length < 0) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } bool left_is_one_byte = left->IsOneByteRepresentation(); bool right_is_one_byte = right->IsOneByteRepresentation(); bool is_one_byte = left_is_one_byte && right_is_one_byte; bool is_one_byte_data_in_two_byte_string = false; if (!is_one_byte) { // At least one of the strings uses two-byte representation so we // can't use the fast case code for short one-byte strings below, but // we can try to save memory if all chars actually fit in one-byte. is_one_byte_data_in_two_byte_string = left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars(); if (is_one_byte_data_in_two_byte_string) { isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment(); } } // If the resulting string is small make a flat string. if (length < ConsString::kMinLength) { // Note that neither of the two inputs can be a slice because: STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength); DCHECK(left->IsFlat()); DCHECK(right->IsFlat()); STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength); if (is_one_byte) { Handle result = NewRawOneByteString(length).ToHandleChecked(); DisallowHeapAllocation no_gc; uint8_t* dest = result->GetChars(); // Copy left part. const uint8_t* src = left->IsExternalString() ? Handle::cast(left)->GetChars() : Handle::cast(left)->GetChars(); for (int i = 0; i < left_length; i++) *dest++ = src[i]; // Copy right part. src = right->IsExternalString() ? Handle::cast(right)->GetChars() : Handle::cast(right)->GetChars(); for (int i = 0; i < right_length; i++) *dest++ = src[i]; return result; } return (is_one_byte_data_in_two_byte_string) ? ConcatStringContent( NewRawOneByteString(length).ToHandleChecked(), left, right) : ConcatStringContent( NewRawTwoByteString(length).ToHandleChecked(), left, right); } bool one_byte = (is_one_byte || is_one_byte_data_in_two_byte_string); return NewConsString(left, right, length, one_byte); } Handle Factory::NewConsString(Handle left, Handle right, int length, bool one_byte) { DCHECK(!left->IsThinString()); DCHECK(!right->IsThinString()); DCHECK_GE(length, ConsString::kMinLength); DCHECK_LE(length, String::kMaxLength); Handle result = one_byte ? New(cons_one_byte_string_map(), NEW_SPACE) : New(cons_string_map(), NEW_SPACE); DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); result->set_hash_field(String::kEmptyHashField); result->set_length(length); result->set_first(*left, mode); result->set_second(*right, mode); return result; } Handle Factory::NewSurrogatePairString(uint16_t lead, uint16_t trail) { DCHECK_GE(lead, 0xD800); DCHECK_LE(lead, 0xDBFF); DCHECK_GE(trail, 0xDC00); DCHECK_LE(trail, 0xDFFF); Handle str = isolate()->factory()->NewRawTwoByteString(2).ToHandleChecked(); uc16* dest = str->GetChars(); dest[0] = lead; dest[1] = trail; return str; } Handle Factory::NewProperSubString(Handle str, int begin, int end) { #if VERIFY_HEAP if (FLAG_verify_heap) str->StringVerify(); #endif DCHECK(begin > 0 || end < str->length()); str = String::Flatten(str); int length = end - begin; if (length <= 0) return empty_string(); if (length == 1) { return LookupSingleCharacterStringFromCode(str->Get(begin)); } if (length == 2) { // Optimization for 2-byte strings often used as keys in a decompression // dictionary. Check whether we already have the string in the string // table to prevent creation of many unnecessary strings. uint16_t c1 = str->Get(begin); uint16_t c2 = str->Get(begin + 1); return MakeOrFindTwoCharacterString(isolate(), c1, c2); } if (!FLAG_string_slices || length < SlicedString::kMinLength) { if (str->IsOneByteRepresentation()) { Handle result = NewRawOneByteString(length).ToHandleChecked(); uint8_t* dest = result->GetChars(); DisallowHeapAllocation no_gc; String::WriteToFlat(*str, dest, begin, end); return result; } else { Handle result = NewRawTwoByteString(length).ToHandleChecked(); uc16* dest = result->GetChars(); DisallowHeapAllocation no_gc; String::WriteToFlat(*str, dest, begin, end); return result; } } int offset = begin; if (str->IsSlicedString()) { Handle slice = Handle::cast(str); str = Handle(slice->parent(), isolate()); offset += slice->offset(); } if (str->IsThinString()) { Handle thin = Handle::cast(str); str = handle(thin->actual(), isolate()); } DCHECK(str->IsSeqString() || str->IsExternalString()); Handle map = str->IsOneByteRepresentation() ? sliced_one_byte_string_map() : sliced_string_map(); Handle slice = New(map, NEW_SPACE); slice->set_hash_field(String::kEmptyHashField); slice->set_length(length); slice->set_parent(*str); slice->set_offset(offset); return slice; } MaybeHandle Factory::NewExternalStringFromOneByte( const ExternalOneByteString::Resource* resource) { size_t length = resource->length(); if (length > static_cast(String::kMaxLength)) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } if (length == 0) return empty_string(); Handle map; if (resource->IsCompressible()) { // TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map' map = short_external_one_byte_string_map(); } else { map = external_one_byte_string_map(); } Handle external_string = New(map, NEW_SPACE); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return external_string; } MaybeHandle Factory::NewExternalStringFromTwoByte( const ExternalTwoByteString::Resource* resource) { size_t length = resource->length(); if (length > static_cast(String::kMaxLength)) { THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String); } if (length == 0) return empty_string(); // For small strings we check whether the resource contains only // one byte characters. If yes, we use a different string map. static const size_t kOneByteCheckLengthLimit = 32; bool is_one_byte = length <= kOneByteCheckLengthLimit && String::IsOneByte(resource->data(), static_cast(length)); Handle map; if (resource->IsCompressible()) { // TODO(hajimehoshi): Rename these to 'uncached_external_string_...'. map = is_one_byte ? short_external_string_with_one_byte_data_map() : short_external_string_map(); } else { map = is_one_byte ? external_string_with_one_byte_data_map() : external_string_map(); } Handle external_string = New(map, NEW_SPACE); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return external_string; } Handle Factory::NewNativeSourceString( const ExternalOneByteString::Resource* resource) { size_t length = resource->length(); DCHECK_LE(length, static_cast(String::kMaxLength)); Handle map = native_source_string_map(); Handle external_string = New(map, OLD_SPACE); external_string->set_length(static_cast(length)); external_string->set_hash_field(String::kEmptyHashField); external_string->set_resource(resource); return external_string; } Handle Factory::NewJSStringIterator(Handle string) { Handle map(isolate()->native_context()->string_iterator_map(), isolate()); Handle flat_string = String::Flatten(string); Handle iterator = Handle::cast(NewJSObjectFromMap(map)); iterator->set_string(*flat_string); iterator->set_index(0); return iterator; } Handle Factory::NewSymbol() { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateSymbol(), Symbol); } Handle Factory::NewPrivateSymbol() { Handle symbol = NewSymbol(); symbol->set_is_private(true); return symbol; } Handle Factory::NewNativeContext() { Handle array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED); array->set_map_no_write_barrier(*native_context_map()); Handle context = Handle::cast(array); context->set_native_context(*context); context->set_errors_thrown(Smi::kZero); context->set_math_random_index(Smi::kZero); Handle weak_cell = NewWeakCell(context); context->set_self_weak_cell(*weak_cell); DCHECK(context->IsNativeContext()); return context; } Handle Factory::NewScriptContext(Handle function, Handle scope_info) { DCHECK_EQ(scope_info->scope_type(), SCRIPT_SCOPE); Handle array = NewFixedArray(scope_info->ContextLength(), TENURED); array->set_map_no_write_barrier(*script_context_map()); Handle context = Handle::cast(array); context->set_closure(*function); context->set_previous(function->context()); context->set_extension(*scope_info); context->set_native_context(function->native_context()); DCHECK(context->IsScriptContext()); return context; } Handle Factory::NewScriptContextTable() { Handle array = NewFixedArray(1); array->set_map_no_write_barrier(*script_context_table_map()); Handle context_table = Handle::cast(array); context_table->set_used(0); return context_table; } Handle Factory::NewModuleContext(Handle module, Handle function, Handle scope_info) { DCHECK_EQ(scope_info->scope_type(), MODULE_SCOPE); Handle array = NewFixedArray(scope_info->ContextLength(), TENURED); array->set_map_no_write_barrier(*module_context_map()); Handle context = Handle::cast(array); context->set_closure(*function); context->set_previous(function->context()); context->set_extension(*module); context->set_native_context(function->native_context()); DCHECK(context->IsModuleContext()); return context; } Handle Factory::NewFunctionContext(int length, Handle function, ScopeType scope_type) { DCHECK(function->shared()->scope_info()->scope_type() == scope_type); DCHECK(length >= Context::MIN_CONTEXT_SLOTS); Handle array = NewFixedArray(length); Handle map; switch (scope_type) { case EVAL_SCOPE: map = eval_context_map(); break; case FUNCTION_SCOPE: map = function_context_map(); break; default: UNREACHABLE(); } array->set_map_no_write_barrier(*map); Handle context = Handle::cast(array); context->set_closure(*function); context->set_previous(function->context()); context->set_extension(*the_hole_value()); context->set_native_context(function->native_context()); return context; } Handle Factory::NewCatchContext(Handle function, Handle previous, Handle scope_info, Handle name, Handle thrown_object) { STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX); Handle extension = NewContextExtension(scope_info, name); Handle array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1); array->set_map_no_write_barrier(*catch_context_map()); Handle context = Handle::cast(array); context->set_closure(*function); context->set_previous(*previous); context->set_extension(*extension); context->set_native_context(previous->native_context()); context->set(Context::THROWN_OBJECT_INDEX, *thrown_object); return context; } Handle Factory::NewDebugEvaluateContext(Handle previous, Handle scope_info, Handle extension, Handle wrapped, Handle whitelist) { STATIC_ASSERT(Context::WHITE_LIST_INDEX == Context::MIN_CONTEXT_SLOTS + 1); DCHECK(scope_info->IsDebugEvaluateScope()); Handle context_extension = NewContextExtension( scope_info, extension.is_null() ? Handle::cast(undefined_value()) : Handle::cast(extension)); Handle array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 2); array->set_map_no_write_barrier(*debug_evaluate_context_map()); Handle c = Handle::cast(array); c->set_closure(wrapped.is_null() ? previous->closure() : wrapped->closure()); c->set_previous(*previous); c->set_native_context(previous->native_context()); c->set_extension(*context_extension); if (!wrapped.is_null()) c->set(Context::WRAPPED_CONTEXT_INDEX, *wrapped); if (!whitelist.is_null()) c->set(Context::WHITE_LIST_INDEX, *whitelist); return c; } Handle Factory::NewWithContext(Handle function, Handle previous, Handle scope_info, Handle extension) { Handle context_extension = NewContextExtension(scope_info, extension); Handle array = NewFixedArray(Context::MIN_CONTEXT_SLOTS); array->set_map_no_write_barrier(*with_context_map()); Handle context = Handle::cast(array); context->set_closure(*function); context->set_previous(*previous); context->set_extension(*context_extension); context->set_native_context(previous->native_context()); return context; } Handle Factory::NewBlockContext(Handle function, Handle previous, Handle scope_info) { DCHECK_EQ(scope_info->scope_type(), BLOCK_SCOPE); Handle array = NewFixedArray(scope_info->ContextLength()); array->set_map_no_write_barrier(*block_context_map()); Handle context = Handle::cast(array); context->set_closure(*function); context->set_previous(*previous); context->set_extension(*scope_info); context->set_native_context(previous->native_context()); return context; } Handle Factory::NewStruct(InstanceType type, PretenureFlag pretenure) { CALL_HEAP_FUNCTION( isolate(), isolate()->heap()->AllocateStruct(type, pretenure), Struct); } Handle Factory::NewAliasedArgumentsEntry( int aliased_context_slot) { Handle entry = Handle::cast( NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE, NOT_TENURED)); entry->set_aliased_context_slot(aliased_context_slot); return entry; } Handle Factory::NewAccessorInfo() { Handle info = Handle::cast(NewStruct(ACCESSOR_INFO_TYPE, TENURED)); info->set_name(*empty_string()); info->set_flags(0); // Must clear the flags, it was initialized as undefined. info->set_is_sloppy(true); info->set_initial_property_attributes(NONE); return info; } Handle