// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "accessors.h" #include "api.h" #include "arguments.h" #include "execution.h" #include "ic-inl.h" #include "runtime.h" #include "stub-cache.h" namespace v8 { namespace internal { #ifdef DEBUG static char TransitionMarkFromState(IC::State state) { switch (state) { case UNINITIALIZED: return '0'; case PREMONOMORPHIC: return 'P'; case MONOMORPHIC: return '1'; case MONOMORPHIC_PROTOTYPE_FAILURE: return '^'; case MEGAMORPHIC: return 'N'; // We never see the debugger states here, because the state is // computed from the original code - not the patched code. Let // these cases fall through to the unreachable code below. case DEBUG_BREAK: break; case DEBUG_PREPARE_STEP_IN: break; } UNREACHABLE(); return 0; } void IC::TraceIC(const char* type, Handle name, State old_state, Code* new_target, const char* extra_info) { if (FLAG_trace_ic) { State new_state = StateFrom(new_target, Heap::undefined_value(), Heap::undefined_value()); PrintF("[%s (%c->%c)%s", type, TransitionMarkFromState(old_state), TransitionMarkFromState(new_state), extra_info); name->Print(); PrintF("]\n"); } } #endif IC::IC(FrameDepth depth) { // To improve the performance of the (much used) IC code, we unfold // a few levels of the stack frame iteration code. This yields a // ~35% speedup when running DeltaBlue with the '--nouse-ic' flag. const Address entry = Top::c_entry_fp(Top::GetCurrentThread()); Address* pc_address = reinterpret_cast(entry + ExitFrameConstants::kCallerPCOffset); Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); // If there's another JavaScript frame on the stack, we need to look // one frame further down the stack to find the frame pointer and // the return address stack slot. if (depth == EXTRA_CALL_FRAME) { const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; pc_address = reinterpret_cast(fp + kCallerPCOffset); fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } #ifdef DEBUG StackFrameIterator it; for (int i = 0; i < depth + 1; i++) it.Advance(); StackFrame* frame = it.frame(); ASSERT(fp == frame->fp() && pc_address == frame->pc_address()); #endif fp_ = fp; pc_address_ = pc_address; } #ifdef ENABLE_DEBUGGER_SUPPORT Address IC::OriginalCodeAddress() { HandleScope scope; // Compute the JavaScript frame for the frame pointer of this IC // structure. We need this to be able to find the function // corresponding to the frame. StackFrameIterator it; while (it.frame()->fp() != this->fp()) it.Advance(); JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); // Find the function on the stack and both the active code for the // function and the original code. JSFunction* function = JSFunction::cast(frame->function()); Handle shared(function->shared()); Code* code = shared->code(); ASSERT(Debug::HasDebugInfo(shared)); Code* original_code = Debug::GetDebugInfo(shared)->original_code(); ASSERT(original_code->IsCode()); // Get the address of the call site in the active code. This is the // place where the call to DebugBreakXXX is and where the IC // normally would be. Address addr = pc() - Assembler::kCallTargetAddressOffset; // Return the address in the original code. This is the place where // the call which has been overwritten by the DebugBreakXXX resides // and the place where the inline cache system should look. intptr_t delta = original_code->instruction_start() - code->instruction_start(); return addr + delta; } #endif IC::State IC::StateFrom(Code* target, Object* receiver, Object* name) { IC::State state = target->ic_state(); if (state != MONOMORPHIC) return state; if (receiver->IsUndefined() || receiver->IsNull()) return state; Map* map = GetCodeCacheMapForObject(receiver); // Decide whether the inline cache failed because of changes to the // receiver itself or changes to one of its prototypes. // // If there are changes to the receiver itself, the map of the // receiver will have changed and the current target will not be in // the receiver map's code cache. Therefore, if the current target // is in the receiver map's code cache, the inline cache failed due // to prototype check failure. int index = map->IndexInCodeCache(name, target); if (index >= 0) { // For keyed load/store, the most likely cause of cache failure is // that the key has changed. We do not distinguish between // prototype and non-prototype failures for keyed access. Code::Kind kind = target->kind(); if (kind == Code::KEYED_LOAD_IC || kind == Code::KEYED_STORE_IC) { return MONOMORPHIC; } // Remove the target from the code cache to avoid hitting the same // invalid stub again. map->RemoveFromCodeCache(String::cast(name), target, index); return MONOMORPHIC_PROTOTYPE_FAILURE; } // The builtins object is special. It only changes when JavaScript // builtins are loaded lazily. It is important to keep inline // caches for the builtins object monomorphic. Therefore, if we get // an inline cache miss for the builtins object after lazily loading // JavaScript builtins, we return uninitialized as the state to // force the inline cache back to monomorphic state. if (receiver->IsJSBuiltinsObject()) { return UNINITIALIZED; } return MONOMORPHIC; } RelocInfo::Mode IC::ComputeMode() { Address addr = address(); Code* code = Code::cast(Heap::FindCodeObject(addr)); for (RelocIterator it(code, RelocInfo::kCodeTargetMask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (info->pc() == addr) return info->rmode(); } UNREACHABLE(); return RelocInfo::NONE; } Failure* IC::TypeError(const char* type, Handle object, Handle name) { HandleScope scope; Handle args[2] = { name, object }; Handle error = Factory::NewTypeError(type, HandleVector(args, 2)); return Top::Throw(*error); } Failure* IC::ReferenceError(const char* type, Handle name) { HandleScope scope; Handle error = Factory::NewReferenceError(type, HandleVector(&name, 1)); return Top::Throw(*error); } void IC::Clear(Address address) { Code* target = GetTargetAtAddress(address); // Don't clear debug break inline cache as it will remove the break point. if (target->ic_state() == DEBUG_BREAK) return; switch (target->kind()) { case Code::LOAD_IC: return LoadIC::Clear(address, target); case Code::KEYED_LOAD_IC: return KeyedLoadIC::Clear(address, target); case Code::STORE_IC: return StoreIC::Clear(address, target); case Code::KEYED_STORE_IC: return KeyedStoreIC::Clear(address, target); case Code::CALL_IC: return CallIC::Clear(address, target); case Code::BINARY_OP_IC: return; // Clearing these is tricky and does not // make any performance difference. default: UNREACHABLE(); } } void CallIC::Clear(Address address, Code* target) { State state = target->ic_state(); InLoopFlag in_loop = target->ic_in_loop(); if (state == UNINITIALIZED) return; Code* code = StubCache::FindCallInitialize(target->arguments_count(), in_loop); SetTargetAtAddress(address, code); } void KeyedLoadIC::Clear(Address address, Code* target) { if (target->ic_state() == UNINITIALIZED) return; // Make sure to also clear the map used in inline fast cases. If we // do not clear these maps, cached code can keep objects alive // through the embedded maps. ClearInlinedVersion(address); SetTargetAtAddress(address, initialize_stub()); } void LoadIC::Clear(Address address, Code* target) { if (target->ic_state() == UNINITIALIZED) return; ClearInlinedVersion(address); SetTargetAtAddress(address, initialize_stub()); } void StoreIC::Clear(Address address, Code* target) { if (target->ic_state() == UNINITIALIZED) return; SetTargetAtAddress(address, initialize_stub()); } void KeyedStoreIC::Clear(Address address, Code* target) { if (target->ic_state() == UNINITIALIZED) return; SetTargetAtAddress(address, initialize_stub()); } Code* KeyedLoadIC::external_array_stub(JSObject::ElementsKind elements_kind) { switch (elements_kind) { case JSObject::EXTERNAL_BYTE_ELEMENTS: return Builtins::builtin(Builtins::KeyedLoadIC_ExternalByteArray); case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: return Builtins::builtin(Builtins::KeyedLoadIC_ExternalUnsignedByteArray); case JSObject::EXTERNAL_SHORT_ELEMENTS: return Builtins::builtin(Builtins::KeyedLoadIC_ExternalShortArray); case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: return Builtins::builtin( Builtins::KeyedLoadIC_ExternalUnsignedShortArray); case JSObject::EXTERNAL_INT_ELEMENTS: return Builtins::builtin(Builtins::KeyedLoadIC_ExternalIntArray); case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: return Builtins::builtin(Builtins::KeyedLoadIC_ExternalUnsignedIntArray); case JSObject::EXTERNAL_FLOAT_ELEMENTS: return Builtins::builtin(Builtins::KeyedLoadIC_ExternalFloatArray); default: UNREACHABLE(); return NULL; } } Code* KeyedStoreIC::external_array_stub(JSObject::ElementsKind elements_kind) { switch (elements_kind) { case JSObject::EXTERNAL_BYTE_ELEMENTS: return Builtins::builtin(Builtins::KeyedStoreIC_ExternalByteArray); case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: return Builtins::builtin( Builtins::KeyedStoreIC_ExternalUnsignedByteArray); case JSObject::EXTERNAL_SHORT_ELEMENTS: return Builtins::builtin(Builtins::KeyedStoreIC_ExternalShortArray); case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: return Builtins::builtin( Builtins::KeyedStoreIC_ExternalUnsignedShortArray); case JSObject::EXTERNAL_INT_ELEMENTS: return Builtins::builtin(Builtins::KeyedStoreIC_ExternalIntArray); case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: return Builtins::builtin(Builtins::KeyedStoreIC_ExternalUnsignedIntArray); case JSObject::EXTERNAL_FLOAT_ELEMENTS: return Builtins::builtin(Builtins::KeyedStoreIC_ExternalFloatArray); default: UNREACHABLE(); return NULL; } } static bool HasInterceptorGetter(JSObject* object) { return !object->GetNamedInterceptor()->getter()->IsUndefined(); } static void LookupForRead(Object* object, String* name, LookupResult* lookup) { AssertNoAllocation no_gc; // pointers must stay valid // Skip all the objects with named interceptors, but // without actual getter. while (true) { object->Lookup(name, lookup); // Besides normal conditions (property not found or it's not // an interceptor), bail out if lookup is not cacheable: we won't // be able to IC it anyway and regular lookup should work fine. if (!lookup->IsFound() || (lookup->type() != INTERCEPTOR) || !lookup->IsCacheable()) { return; } JSObject* holder = lookup->holder(); if (HasInterceptorGetter(holder)) { return; } holder->LocalLookupRealNamedProperty(name, lookup); if (lookup->IsProperty()) { ASSERT(lookup->type() != INTERCEPTOR); return; } Object* proto = holder->GetPrototype(); if (proto->IsNull()) { lookup->NotFound(); return; } object = proto; } } Object* CallIC::TryCallAsFunction(Object* object) { HandleScope scope; Handle target(object); Handle delegate = Execution::GetFunctionDelegate(target); if (delegate->IsJSFunction()) { // Patch the receiver and use the delegate as the function to // invoke. This is used for invoking objects as if they were // functions. const int argc = this->target()->arguments_count(); StackFrameLocator locator; JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); int index = frame->ComputeExpressionsCount() - (argc + 1); frame->SetExpression(index, *target); } return *delegate; } void CallIC::ReceiverToObject(Handle object) { HandleScope scope; Handle receiver(object); // Change the receiver to the result of calling ToObject on it. const int argc = this->target()->arguments_count(); StackFrameLocator locator; JavaScriptFrame* frame = locator.FindJavaScriptFrame(0); int index = frame->ComputeExpressionsCount() - (argc + 1); frame->SetExpression(index, *Factory::ToObject(object)); } Object* CallIC::LoadFunction(State state, Handle object, Handle name) { // If the object is undefined or null it's illegal to try to get any // of its properties; throw a TypeError in that case. if (object->IsUndefined() || object->IsNull()) { return TypeError("non_object_property_call", object, name); } if (object->IsString() || object->IsNumber() || object->IsBoolean()) { ReceiverToObject(object); } // Check if the name is trivially convertible to an index and get // the element if so. uint32_t index; if (name->AsArrayIndex(&index)) { Object* result = object->GetElement(index); if (result->IsJSFunction()) return result; // Try to find a suitable function delegate for the object at hand. result = TryCallAsFunction(result); if (result->IsJSFunction()) return result; // Otherwise, it will fail in the lookup step. } // Lookup the property in the object. LookupResult lookup; LookupForRead(*object, *name, &lookup); if (!lookup.IsProperty()) { // If the object does not have the requested property, check which // exception we need to throw. if (IsContextual(object)) { return ReferenceError("not_defined", name); } return TypeError("undefined_method", object, name); } // Lookup is valid: Update inline cache and stub cache. if (FLAG_use_ic) { UpdateCaches(&lookup, state, object, name); } // Get the property. PropertyAttributes attr; Object* result = object->GetProperty(*object, &lookup, *name, &attr); if (result->IsFailure()) return result; if (lookup.type() == INTERCEPTOR) { // If the object does not have the requested property, check which // exception we need to throw. if (attr == ABSENT) { if (IsContextual(object)) { return ReferenceError("not_defined", name); } return TypeError("undefined_method", object, name); } } ASSERT(result != Heap::the_hole_value()); if (result->IsJSFunction()) { #ifdef ENABLE_DEBUGGER_SUPPORT // Handle stepping into a function if step into is active. if (Debug::StepInActive()) { // Protect the result in a handle as the debugger can allocate and might // cause GC. HandleScope scope; Handle function(JSFunction::cast(result)); Debug::HandleStepIn(function, object, fp(), false); return *function; } #endif return result; } // Try to find a suitable function delegate for the object at hand. result = TryCallAsFunction(result); return result->IsJSFunction() ? result : TypeError("property_not_function", object, name); } void CallIC::UpdateCaches(LookupResult* lookup, State state, Handle object, Handle name) { // Bail out if we didn't find a result. if (!lookup->IsProperty() || !lookup->IsCacheable()) return; // Compute the number of arguments. int argc = target()->arguments_count(); InLoopFlag in_loop = target()->ic_in_loop(); Object* code = NULL; if (state == UNINITIALIZED) { // This is the first time we execute this inline cache. // Set the target to the pre monomorphic stub to delay // setting the monomorphic state. code = StubCache::ComputeCallPreMonomorphic(argc, in_loop); } else if (state == MONOMORPHIC) { code = StubCache::ComputeCallMegamorphic(argc, in_loop); } else { // Compute monomorphic stub. switch (lookup->type()) { case FIELD: { int index = lookup->GetFieldIndex(); code = StubCache::ComputeCallField(argc, in_loop, *name, *object, lookup->holder(), index); break; } case CONSTANT_FUNCTION: { // Get the constant function and compute the code stub for this // call; used for rewriting to monomorphic state and making sure // that the code stub is in the stub cache. JSFunction* function = lookup->GetConstantFunction(); code = StubCache::ComputeCallConstant(argc, in_loop, *name, *object, lookup->holder(), function); break; } case NORMAL: { if (!object->IsJSObject()) return; Handle receiver = Handle::cast(object); if (lookup->holder()->IsGlobalObject()) { GlobalObject* global = GlobalObject::cast(lookup->holder()); JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(global->GetPropertyCell(lookup)); if (!cell->value()->IsJSFunction()) return; JSFunction* function = JSFunction::cast(cell->value()); code = StubCache::ComputeCallGlobal(argc, in_loop, *name, *receiver, global, cell, function); } else { // There is only one shared stub for calling normalized // properties. It does not traverse the prototype chain, so the // property must be found in the receiver for the stub to be // applicable. if (lookup->holder() != *receiver) return; code = StubCache::ComputeCallNormal(argc, in_loop, *name, *receiver); } break; } case INTERCEPTOR: { ASSERT(HasInterceptorGetter(lookup->holder())); code = StubCache::ComputeCallInterceptor(argc, *name, *object, lookup->holder()); break; } default: return; } } // If we're unable to compute the stub (not enough memory left), we // simply avoid updating the caches. if (code == NULL || code->IsFailure()) return; // Patch the call site depending on the state of the cache. if (state == UNINITIALIZED || state == PREMONOMORPHIC || state == MONOMORPHIC || state == MONOMORPHIC_PROTOTYPE_FAILURE) { set_target(Code::cast(code)); } #ifdef DEBUG TraceIC("CallIC", name, state, target(), in_loop ? " (in-loop)" : ""); #endif } Object* LoadIC::Load(State state, Handle object, Handle name) { // If the object is undefined or null it's illegal to try to get any // of its properties; throw a TypeError in that case. if (object->IsUndefined() || object->IsNull()) { return TypeError("non_object_property_load", object, name); } if (FLAG_use_ic) { // Use specialized code for getting the length of strings and // string wrapper objects. The length property of string wrapper // objects is read-only and therefore always returns the length of // the underlying string value. See ECMA-262 15.5.5.1. if ((object->IsString() || object->IsStringWrapper()) && name->Equals(Heap::length_symbol())) { HandleScope scope; // Get the string if we have a string wrapper object. if (object->IsJSValue()) { object = Handle(Handle::cast(object)->value()); } #ifdef DEBUG if (FLAG_trace_ic) PrintF("[LoadIC : +#length /string]\n"); #endif Code* target = NULL; target = Builtins::builtin(Builtins::LoadIC_StringLength); set_target(target); StubCache::Set(*name, HeapObject::cast(*object)->map(), target); return Smi::FromInt(String::cast(*object)->length()); } // Use specialized code for getting the length of arrays. if (object->IsJSArray() && name->Equals(Heap::length_symbol())) { #ifdef DEBUG if (FLAG_trace_ic) PrintF("[LoadIC : +#length /array]\n"); #endif Code* target = Builtins::builtin(Builtins::LoadIC_ArrayLength); set_target(target); StubCache::Set(*name, HeapObject::cast(*object)->map(), target); return JSArray::cast(*object)->length(); } // Use specialized code for getting prototype of functions. if (object->IsJSFunction() && name->Equals(Heap::prototype_symbol())) { #ifdef DEBUG if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n"); #endif Code* target = Builtins::builtin(Builtins::LoadIC_FunctionPrototype); set_target(target); StubCache::Set(*name, HeapObject::cast(*object)->map(), target); return Accessors::FunctionGetPrototype(*object, 0); } } // Check if the name is trivially convertible to an index and get // the element if so. uint32_t index; if (name->AsArrayIndex(&index)) return object->GetElement(index); // Named lookup in the object. LookupResult lookup; LookupForRead(*object, *name, &lookup); // If we did not find a property, check if we need to throw an exception. if (!lookup.IsProperty()) { if (FLAG_strict || IsContextual(object)) { return ReferenceError("not_defined", name); } LOG(SuspectReadEvent(*name, *object)); } bool can_be_inlined = FLAG_use_ic && state == PREMONOMORPHIC && lookup.IsProperty() && lookup.IsCacheable() && lookup.holder() == *object && lookup.type() == FIELD && !object->IsAccessCheckNeeded(); if (can_be_inlined) { Map* map = lookup.holder()->map(); // Property's index in the properties array. If negative we have // an inobject property. int index = lookup.GetFieldIndex() - map->inobject_properties(); if (index < 0) { // Index is an offset from the end of the object. int offset = map->instance_size() + (index * kPointerSize); if (PatchInlinedLoad(address(), map, offset)) { set_target(megamorphic_stub()); return lookup.holder()->FastPropertyAt(lookup.GetFieldIndex()); } } } // Update inline cache and stub cache. if (FLAG_use_ic) { UpdateCaches(&lookup, state, object, name); } PropertyAttributes attr; if (lookup.IsProperty() && lookup.type() == INTERCEPTOR) { // Get the property. Object* result = object->GetProperty(*object, &lookup, *name, &attr); if (result->IsFailure()) return result; // If the property is not present, check if we need to throw an // exception. if (attr == ABSENT && IsContextual(object)) { return ReferenceError("not_defined", name); } return result; } // Get the property. return object->GetProperty(*object, &lookup, *name, &attr); } void LoadIC::UpdateCaches(LookupResult* lookup, State state, Handle object, Handle name) { // Bail out if the result is not cacheable. if (!lookup->IsCacheable()) return; // Loading properties from values is not common, so don't try to // deal with non-JS objects here. if (!object->IsJSObject()) return; Handle receiver = Handle::cast(object); // Compute the code stub for this load. Object* code = NULL; if (state == UNINITIALIZED) { // This is the first time we execute this inline cache. // Set the target to the pre monomorphic stub to delay // setting the monomorphic state. code = pre_monomorphic_stub(); } else if (!lookup->IsProperty()) { // Nonexistent property. The result is undefined. code = StubCache::ComputeLoadNonexistent(*name, *receiver); } else { // Compute monomorphic stub. switch (lookup->type()) { case FIELD: { code = StubCache::ComputeLoadField(*name, *receiver, lookup->holder(), lookup->GetFieldIndex()); break; } case CONSTANT_FUNCTION: { Object* constant = lookup->GetConstantFunction(); code = StubCache::ComputeLoadConstant(*name, *receiver, lookup->holder(), constant); break; } case NORMAL: { if (lookup->holder()->IsGlobalObject()) { GlobalObject* global = GlobalObject::cast(lookup->holder()); JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(global->GetPropertyCell(lookup)); code = StubCache::ComputeLoadGlobal(*name, *receiver, global, cell, lookup->IsDontDelete()); } else { // There is only one shared stub for loading normalized // properties. It does not traverse the prototype chain, so the // property must be found in the receiver for the stub to be // applicable. if (lookup->holder() != *receiver) return; code = StubCache::ComputeLoadNormal(*name, *receiver); } break; } case CALLBACKS: { if (!lookup->GetCallbackObject()->IsAccessorInfo()) return; AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject()); if (v8::ToCData
(callback->getter()) == 0) return; code = StubCache::ComputeLoadCallback(*name, *receiver, lookup->holder(), callback); break; } case INTERCEPTOR: { ASSERT(HasInterceptorGetter(lookup->holder())); code = StubCache::ComputeLoadInterceptor(*name, *receiver, lookup->holder()); break; } default: return; } } // If we're unable to compute the stub (not enough memory left), we // simply avoid updating the caches. if (code == NULL || code->IsFailure()) return; // Patch the call site depending on the state of the cache. if (state == UNINITIALIZED || state == PREMONOMORPHIC || state == MONOMORPHIC_PROTOTYPE_FAILURE) { set_target(Code::cast(code)); } else if (state == MONOMORPHIC) { set_target(megamorphic_stub()); } #ifdef DEBUG TraceIC("LoadIC", name, state, target()); #endif } Object* KeyedLoadIC::Load(State state, Handle object, Handle key) { if (key->IsSymbol()) { Handle name = Handle::cast(key); // If the object is undefined or null it's illegal to try to get any // of its properties; throw a TypeError in that case. if (object->IsUndefined() || object->IsNull()) { return TypeError("non_object_property_load", object, name); } if (FLAG_use_ic) { // Use specialized code for getting the length of strings. if (object->IsString() && name->Equals(Heap::length_symbol())) { Handle string = Handle::cast(object); Object* code = NULL; code = StubCache::ComputeKeyedLoadStringLength(*name, *string); if (code->IsFailure()) return code; set_target(Code::cast(code)); #ifdef DEBUG TraceIC("KeyedLoadIC", name, state, target()); #endif // DEBUG return Smi::FromInt(string->length()); } // Use specialized code for getting the length of arrays. if (object->IsJSArray() && name->Equals(Heap::length_symbol())) { Handle array = Handle::cast(object); Object* code = StubCache::ComputeKeyedLoadArrayLength(*name, *array); if (code->IsFailure()) return code; set_target(Code::cast(code)); #ifdef DEBUG TraceIC("KeyedLoadIC", name, state, target()); #endif // DEBUG return JSArray::cast(*object)->length(); } // Use specialized code for getting prototype of functions. if (object->IsJSFunction() && name->Equals(Heap::prototype_symbol())) { Handle function = Handle::cast(object); Object* code = StubCache::ComputeKeyedLoadFunctionPrototype(*name, *function); if (code->IsFailure()) return code; set_target(Code::cast(code)); #ifdef DEBUG TraceIC("KeyedLoadIC", name, state, target()); #endif // DEBUG return Accessors::FunctionGetPrototype(*object, 0); } } // Check if the name is trivially convertible to an index and get // the element or char if so. uint32_t index = 0; if (name->AsArrayIndex(&index)) { HandleScope scope; // Rewrite to the generic keyed load stub. if (FLAG_use_ic) set_target(generic_stub()); return Runtime::GetElementOrCharAt(object, index); } // Named lookup. LookupResult lookup; LookupForRead(*object, *name, &lookup); // If we did not find a property, check if we need to throw an exception. if (!lookup.IsProperty()) { if (FLAG_strict || IsContextual(object)) { return ReferenceError("not_defined", name); } } if (FLAG_use_ic) { UpdateCaches(&lookup, state, object, name); } PropertyAttributes attr; if (lookup.IsProperty() && lookup.type() == INTERCEPTOR) { // Get the property. Object* result = object->GetProperty(*object, &lookup, *name, &attr); if (result->IsFailure()) return result; // If the property is not present, check if we need to throw an // exception. if (attr == ABSENT && IsContextual(object)) { return ReferenceError("not_defined", name); } return result; } return object->GetProperty(*object, &lookup, *name, &attr); } // Do not use ICs for objects that require access checks (including // the global object). bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded(); if (use_ic) { Code* stub = generic_stub(); if (object->IsString() && key->IsNumber()) { stub = string_stub(); } else if (object->IsJSObject()) { Handle receiver = Handle::cast(object); if (receiver->HasExternalArrayElements()) { stub = external_array_stub(receiver->GetElementsKind()); } else if (receiver->HasIndexedInterceptor()) { stub = indexed_interceptor_stub(); } } set_target(stub); // For JSObjects that are not value wrappers and that do not have // indexed interceptors, we initialize the inlined fast case (if // present) by patching the inlined map check. if (object->IsJSObject() && !object->IsJSValue() && !JSObject::cast(*object)->HasIndexedInterceptor()) { Map* map = JSObject::cast(*object)->map(); PatchInlinedLoad(address(), map); } } // Get the property. return Runtime::GetObjectProperty(object, key); } void KeyedLoadIC::UpdateCaches(LookupResult* lookup, State state, Handle object, Handle name) { // Bail out if we didn't find a result. if (!lookup->IsProperty() || !lookup->IsCacheable()) return; if (!object->IsJSObject()) return; Handle receiver = Handle::cast(object); // Compute the code stub for this load. Object* code = NULL; if (state == UNINITIALIZED) { // This is the first time we execute this inline cache. // Set the target to the pre monomorphic stub to delay // setting the monomorphic state. code = pre_monomorphic_stub(); } else { // Compute a monomorphic stub. switch (lookup->type()) { case FIELD: { code = StubCache::ComputeKeyedLoadField(*name, *receiver, lookup->holder(), lookup->GetFieldIndex()); break; } case CONSTANT_FUNCTION: { Object* constant = lookup->GetConstantFunction(); code = StubCache::ComputeKeyedLoadConstant(*name, *receiver, lookup->holder(), constant); break; } case CALLBACKS: { if (!lookup->GetCallbackObject()->IsAccessorInfo()) return; AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject()); if (v8::ToCData
(callback->getter()) == 0) return; code = StubCache::ComputeKeyedLoadCallback(*name, *receiver, lookup->holder(), callback); break; } case INTERCEPTOR: { ASSERT(HasInterceptorGetter(lookup->holder())); code = StubCache::ComputeKeyedLoadInterceptor(*name, *receiver, lookup->holder()); break; } default: { // Always rewrite to the generic case so that we do not // repeatedly try to rewrite. code = generic_stub(); break; } } } // If we're unable to compute the stub (not enough memory left), we // simply avoid updating the caches. if (code == NULL || code->IsFailure()) return; // Patch the call site depending on the state of the cache. Make // sure to always rewrite from monomorphic to megamorphic. ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE); if (state == UNINITIALIZED || state == PREMONOMORPHIC) { set_target(Code::cast(code)); } else if (state == MONOMORPHIC) { set_target(megamorphic_stub()); } #ifdef DEBUG TraceIC("KeyedLoadIC", name, state, target()); #endif } static bool StoreICableLookup(LookupResult* lookup) { // Bail out if we didn't find a result. if (!lookup->IsPropertyOrTransition() || !lookup->IsCacheable()) return false; // If the property is read-only, we leave the IC in its current // state. if (lookup->IsReadOnly()) return false; return true; } static bool LookupForWrite(JSObject* object, String* name, LookupResult* lookup) { object->LocalLookup(name, lookup); if (!StoreICableLookup(lookup)) { return false; } if (lookup->type() == INTERCEPTOR) { if (object->GetNamedInterceptor()->setter()->IsUndefined()) { object->LocalLookupRealNamedProperty(name, lookup); return StoreICableLookup(lookup); } } return true; } Object* StoreIC::Store(State state, Handle object, Handle name, Handle value) { // If the object is undefined or null it's illegal to try to set any // properties on it; throw a TypeError in that case. if (object->IsUndefined() || object->IsNull()) { return TypeError("non_object_property_store", object, name); } // Ignore stores where the receiver is not a JSObject. if (!object->IsJSObject()) return *value; Handle receiver = Handle::cast(object); // Check if the given name is an array index. uint32_t index; if (name->AsArrayIndex(&index)) { HandleScope scope; Handle result = SetElement(receiver, index, value); if (result.is_null()) return Failure::Exception(); return *value; } // Use specialized code for setting the length of arrays. if (receiver->IsJSArray() && name->Equals(Heap::length_symbol()) && receiver->AllowsSetElementsLength()) { #ifdef DEBUG if (FLAG_trace_ic) PrintF("[StoreIC : +#length /array]\n"); #endif Code* target = Builtins::builtin(Builtins::StoreIC_ArrayLength); set_target(target); StubCache::Set(*name, HeapObject::cast(*object)->map(), target); return receiver->SetProperty(*name, *value, NONE); } // Lookup the property locally in the receiver. if (FLAG_use_ic && !receiver->IsJSGlobalProxy()) { LookupResult lookup; if (LookupForWrite(*receiver, *name, &lookup)) { UpdateCaches(&lookup, state, receiver, name, value); } } // Set the property. return receiver->SetProperty(*name, *value, NONE); } void StoreIC::UpdateCaches(LookupResult* lookup, State state, Handle receiver, Handle name, Handle value) { // Skip JSGlobalProxy. ASSERT(!receiver->IsJSGlobalProxy()); ASSERT(StoreICableLookup(lookup)); // If the property has a non-field type allowing map transitions // where there is extra room in the object, we leave the IC in its // current state. PropertyType type = lookup->type(); // Compute the code stub for this store; used for rewriting to // monomorphic state and making sure that the code stub is in the // stub cache. Object* code = NULL; switch (type) { case FIELD: { code = StubCache::ComputeStoreField(*name, *receiver, lookup->GetFieldIndex()); break; } case MAP_TRANSITION: { if (lookup->GetAttributes() != NONE) return; HandleScope scope; ASSERT(type == MAP_TRANSITION); Handle transition(lookup->GetTransitionMap()); int index = transition->PropertyIndexFor(*name); code = StubCache::ComputeStoreField(*name, *receiver, index, *transition); break; } case NORMAL: { if (!receiver->IsGlobalObject()) { return; } // The stub generated for the global object picks the value directly // from the property cell. So the property must be directly on the // global object. Handle global = Handle::cast(receiver); JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(global->GetPropertyCell(lookup)); code = StubCache::ComputeStoreGlobal(*name, *global, cell); break; } case CALLBACKS: { if (!lookup->GetCallbackObject()->IsAccessorInfo()) return; AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject()); if (v8::ToCData
(callback->setter()) == 0) return; code = StubCache::ComputeStoreCallback(*name, *receiver, callback); break; } case INTERCEPTOR: { ASSERT(!receiver->GetNamedInterceptor()->setter()->IsUndefined()); code = StubCache::ComputeStoreInterceptor(*name, *receiver); break; } default: return; } // If we're unable to compute the stub (not enough memory left), we // simply avoid updating the caches. if (code == NULL || code->IsFailure()) return; // Patch the call site depending on the state of the cache. if (state == UNINITIALIZED || state == MONOMORPHIC_PROTOTYPE_FAILURE) { set_target(Code::cast(code)); } else if (state == MONOMORPHIC) { // Only move to mega morphic if the target changes. if (target() != Code::cast(code)) set_target(megamorphic_stub()); } #ifdef DEBUG TraceIC("StoreIC", name, state, target()); #endif } Object* KeyedStoreIC::Store(State state, Handle object, Handle key, Handle value) { if (key->IsSymbol()) { Handle name = Handle::cast(key); // If the object is undefined or null it's illegal to try to set any // properties on it; throw a TypeError in that case. if (object->IsUndefined() || object->IsNull()) { return TypeError("non_object_property_store", object, name); } // Ignore stores where the receiver is not a JSObject. if (!object->IsJSObject()) return *value; Handle receiver = Handle::cast(object); // Check if the given name is an array index. uint32_t index; if (name->AsArrayIndex(&index)) { HandleScope scope; Handle result = SetElement(receiver, index, value); if (result.is_null()) return Failure::Exception(); return *value; } // Lookup the property locally in the receiver. LookupResult lookup; receiver->LocalLookup(*name, &lookup); // Update inline cache and stub cache. if (FLAG_use_ic) { UpdateCaches(&lookup, state, receiver, name, value); } // Set the property. return receiver->SetProperty(*name, *value, NONE); } // Do not use ICs for objects that require access checks (including // the global object). bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded(); ASSERT(!(use_ic && object->IsJSGlobalProxy())); if (use_ic) { Code* stub = generic_stub(); if (object->IsJSObject()) { Handle receiver = Handle::cast(object); if (receiver->HasExternalArrayElements()) { stub = external_array_stub(receiver->GetElementsKind()); } } set_target(stub); } // Set the property. return Runtime::SetObjectProperty(object, key, value, NONE); } void KeyedStoreIC::UpdateCaches(LookupResult* lookup, State state, Handle receiver, Handle name, Handle value) { // Skip JSGlobalProxy. if (receiver->IsJSGlobalProxy()) return; // Bail out if we didn't find a result. if (!lookup->IsPropertyOrTransition() || !lookup->IsCacheable()) return; // If the property is read-only, we leave the IC in its current // state. if (lookup->IsReadOnly()) return; // If the property has a non-field type allowing map transitions // where there is extra room in the object, we leave the IC in its // current state. PropertyType type = lookup->type(); // Compute the code stub for this store; used for rewriting to // monomorphic state and making sure that the code stub is in the // stub cache. Object* code = NULL; switch (type) { case FIELD: { code = StubCache::ComputeKeyedStoreField(*name, *receiver, lookup->GetFieldIndex()); break; } case MAP_TRANSITION: { if (lookup->GetAttributes() == NONE) { HandleScope scope; ASSERT(type == MAP_TRANSITION); Handle transition(lookup->GetTransitionMap()); int index = transition->PropertyIndexFor(*name); code = StubCache::ComputeKeyedStoreField(*name, *receiver, index, *transition); break; } // fall through. } default: { // Always rewrite to the generic case so that we do not // repeatedly try to rewrite. code = generic_stub(); break; } } // If we're unable to compute the stub (not enough memory left), we // simply avoid updating the caches. if (code == NULL || code->IsFailure()) return; // Patch the call site depending on the state of the cache. Make // sure to always rewrite from monomorphic to megamorphic. ASSERT(state != MONOMORPHIC_PROTOTYPE_FAILURE); if (state == UNINITIALIZED || state == PREMONOMORPHIC) { set_target(Code::cast(code)); } else if (state == MONOMORPHIC) { set_target(megamorphic_stub()); } #ifdef DEBUG TraceIC("KeyedStoreIC", name, state, target()); #endif } // ---------------------------------------------------------------------------- // Static IC stub generators. // // Used from ic_.cc. Object* CallIC_Miss(Arguments args) { NoHandleAllocation na; ASSERT(args.length() == 2); CallIC ic; IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); Object* result = ic.LoadFunction(state, args.at(0), args.at(1)); // The first time the inline cache is updated may be the first time the // function it references gets called. If the function was lazily compiled // then the first call will trigger a compilation. We check for this case // and we do the compilation immediately, instead of waiting for the stub // currently attached to the JSFunction object to trigger compilation. We // do this in the case where we know that the inline cache is inside a loop, // because then we know that we want to optimize the function. if (!result->IsJSFunction() || JSFunction::cast(result)->is_compiled()) { return result; } // Compile now with optimization. HandleScope scope; Handle function = Handle(JSFunction::cast(result)); InLoopFlag in_loop = ic.target()->ic_in_loop(); if (in_loop == IN_LOOP) { CompileLazyInLoop(function, args.at(0), CLEAR_EXCEPTION); } else { CompileLazy(function, args.at(0), CLEAR_EXCEPTION); } return *function; } // Used from ic_.cc. Object* LoadIC_Miss(Arguments args) { NoHandleAllocation na; ASSERT(args.length() == 2); LoadIC ic; IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); return ic.Load(state, args.at(0), args.at(1)); } // Used from ic_.cc Object* KeyedLoadIC_Miss(Arguments args) { NoHandleAllocation na; ASSERT(args.length() == 2); KeyedLoadIC ic; IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); return ic.Load(state, args.at(0), args.at(1)); } // Used from ic_.cc. Object* StoreIC_Miss(Arguments args) { NoHandleAllocation na; ASSERT(args.length() == 3); StoreIC ic; IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); return ic.Store(state, args.at(0), args.at(1), args.at(2)); } Object* StoreIC_ArrayLength(Arguments args) { NoHandleAllocation nha; ASSERT(args.length() == 2); JSObject* receiver = JSObject::cast(args[0]); Object* len = args[1]; Object* result = receiver->SetElementsLength(len); if (result->IsFailure()) return result; return len; } // Extend storage is called in a store inline cache when // it is necessary to extend the properties array of a // JSObject. Object* SharedStoreIC_ExtendStorage(Arguments args) { NoHandleAllocation na; ASSERT(args.length() == 3); // Convert the parameters JSObject* object = JSObject::cast(args[0]); Map* transition = Map::cast(args[1]); Object* value = args[2]; // Check the object has run out out property space. ASSERT(object->HasFastProperties()); ASSERT(object->map()->unused_property_fields() == 0); // Expand the properties array. FixedArray* old_storage = object->properties(); int new_unused = transition->unused_property_fields(); int new_size = old_storage->length() + new_unused + 1; Object* result = old_storage->CopySize(new_size); if (result->IsFailure()) return result; FixedArray* new_storage = FixedArray::cast(result); new_storage->set(old_storage->length(), value); // Set the new property value and do the map transition. object->set_properties(new_storage); object->set_map(transition); // Return the stored value. return value; } // Used from ic_.cc. Object* KeyedStoreIC_Miss(Arguments args) { NoHandleAllocation na; ASSERT(args.length() == 3); KeyedStoreIC ic; IC::State state = IC::StateFrom(ic.target(), args[0], args[1]); return ic.Store(state, args.at(0), args.at(1), args.at(2)); } void BinaryOpIC::patch(Code* code) { set_target(code); } const char* BinaryOpIC::GetName(TypeInfo type_info) { switch (type_info) { case DEFAULT: return "Default"; case GENERIC: return "Generic"; case HEAP_NUMBERS: return "HeapNumbers"; case STRINGS: return "Strings"; default: return "Invalid"; } } BinaryOpIC::State BinaryOpIC::ToState(TypeInfo type_info) { switch (type_info) { // DEFAULT is mapped to UNINITIALIZED so that calls to DEFAULT stubs // are not cleared at GC. case DEFAULT: return UNINITIALIZED; // Could have mapped GENERIC to MONOMORPHIC just as well but MEGAMORPHIC is // conceptually closer. case GENERIC: return MEGAMORPHIC; default: return MONOMORPHIC; } } BinaryOpIC::TypeInfo BinaryOpIC::GetTypeInfo(Object* left, Object* right) { if (left->IsSmi() && right->IsSmi()) { return GENERIC; } if (left->IsNumber() && right->IsNumber()) { return HEAP_NUMBERS; } if (left->IsString() || right->IsString()) { // Patching for fast string ADD makes sense even if only one of the // arguments is a string. return STRINGS; } return GENERIC; } // defined in codegen-.cc Handle GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info); Object* BinaryOp_Patch(Arguments args) { ASSERT(args.length() == 6); Handle left = args.at(0); Handle right = args.at(1); Handle result = args.at(2); int key = Smi::cast(args[3])->value(); #ifdef DEBUG Token::Value op = static_cast(Smi::cast(args[4])->value()); BinaryOpIC::TypeInfo prev_type_info = static_cast(Smi::cast(args[5])->value()); #endif // DEBUG { HandleScope scope; BinaryOpIC::TypeInfo type_info = BinaryOpIC::GetTypeInfo(*left, *right); Handle code = GetBinaryOpStub(key, type_info); if (!code.is_null()) { BinaryOpIC ic; ic.patch(*code); #ifdef DEBUG if (FLAG_trace_ic) { PrintF("[BinaryOpIC (%s->%s)#%s]\n", BinaryOpIC::GetName(prev_type_info), BinaryOpIC::GetName(type_info), Token::Name(op)); } #endif // DEBUG } } return *result; } static Address IC_utilities[] = { #define ADDR(name) FUNCTION_ADDR(name), IC_UTIL_LIST(ADDR) NULL #undef ADDR }; Address IC::AddressFromUtilityId(IC::UtilityId id) { return IC_utilities[id]; } } } // namespace v8::internal