// Copyright 2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen.h" #include "codegen-inl.h" #include "virtual-frame.h" namespace v8 { namespace internal { #define __ masm_-> // ------------------------------------------------------------------------- // VirtualFrame implementation. // On entry to a function, the virtual frame already contains the receiver, // the parameters, and a return address. All frame elements are in memory. VirtualFrame::VirtualFrame(CodeGenerator* cgen) : cgen_(cgen), masm_(cgen->masm()), elements_(0), parameter_count_(cgen->scope()->num_parameters()), local_count_(0), stack_pointer_(parameter_count_ + 1), // 0-based index of TOS. frame_pointer_(kIllegalIndex) { for (int i = 0; i < parameter_count_ + 2; i++) { elements_.Add(FrameElement::MemoryElement()); } } // Clear the dirty bit for the element at a given index if it is a // valid element. The stack address corresponding to the element must // be allocated on the physical stack, or the first element above the // stack pointer so it can be allocated by a single push instruction. void VirtualFrame::RawSyncElementAt(int index) { FrameElement element = elements_[index]; if (!element.is_valid() || element.is_synced()) return; if (index <= stack_pointer_) { // Emit code to write elements below the stack pointer to their // (already allocated) stack address. switch (element.type()) { case FrameElement::INVALID: // Fall through. case FrameElement::MEMORY: // There was an early bailout for invalid and synced elements // (memory elements are always synced). UNREACHABLE(); break; case FrameElement::REGISTER: __ mov(Operand(ebp, fp_relative(index)), element.reg()); break; case FrameElement::CONSTANT: if (cgen_->IsUnsafeSmi(element.handle())) { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); cgen_->LoadUnsafeSmi(temp.reg(), element.handle()); __ mov(Operand(ebp, fp_relative(index)), temp.reg()); } else { __ Set(Operand(ebp, fp_relative(index)), Immediate(element.handle())); } break; case FrameElement::COPY: { int backing_index = element.index(); FrameElement backing_element = elements_[backing_index]; if (backing_element.is_memory()) { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), Operand(ebp, fp_relative(backing_index))); __ mov(Operand(ebp, fp_relative(index)), temp.reg()); } else { ASSERT(backing_element.is_register()); __ mov(Operand(ebp, fp_relative(index)), backing_element.reg()); } break; } } } else { // Push elements above the stack pointer to allocate space and // sync them. Space should have already been allocated in the // actual frame for all the elements below this one. ASSERT(index == stack_pointer_ + 1); stack_pointer_++; switch (element.type()) { case FrameElement::INVALID: // Fall through. case FrameElement::MEMORY: // There was an early bailout for invalid and synced elements // (memory elements are always synced). UNREACHABLE(); break; case FrameElement::REGISTER: __ push(element.reg()); break; case FrameElement::CONSTANT: if (cgen_->IsUnsafeSmi(element.handle())) { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); cgen_->LoadUnsafeSmi(temp.reg(), element.handle()); __ push(temp.reg()); } else { __ push(Immediate(element.handle())); } break; case FrameElement::COPY: { int backing_index = element.index(); FrameElement backing = elements_[backing_index]; ASSERT(backing.is_memory() || backing.is_register()); if (backing.is_memory()) { __ push(Operand(ebp, fp_relative(backing_index))); } else { __ push(backing.reg()); } break; } } } elements_[index].set_sync(); } void VirtualFrame::MergeTo(VirtualFrame* expected) { Comment cmnt(masm_, "[ Merge frame"); // We should always be merging the code generator's current frame to an // expected frame. ASSERT(cgen_->frame() == this); // Adjust the stack pointer upward (toward the top of the virtual // frame) if necessary. if (stack_pointer_ < expected->stack_pointer_) { int difference = expected->stack_pointer_ - stack_pointer_; stack_pointer_ = expected->stack_pointer_; __ sub(Operand(esp), Immediate(difference * kPointerSize)); } MergeMoveRegistersToMemory(expected); MergeMoveRegistersToRegisters(expected); MergeMoveMemoryToRegisters(expected); // Fix any sync bit problems from the bottom-up, stopping when we // hit the stack pointer or the top of the frame if the stack // pointer is floating above the frame. int limit = Min(stack_pointer_, elements_.length() - 1); for (int i = 0; i <= limit; i++) { FrameElement source = elements_[i]; FrameElement target = expected->elements_[i]; if (source.is_synced() && !target.is_synced()) { elements_[i].clear_sync(); } else if (!source.is_synced() && target.is_synced()) { SyncElementAt(i); } } // Adjust the stack point downard if necessary. if (stack_pointer_ > expected->stack_pointer_) { int difference = stack_pointer_ - expected->stack_pointer_; stack_pointer_ = expected->stack_pointer_; __ add(Operand(esp), Immediate(difference * kPointerSize)); } // At this point, the frames should be identical. ASSERT(Equals(expected)); } void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) { ASSERT(stack_pointer_ >= expected->stack_pointer_); // Move registers, constants, and copies to memory. Perform moves // from the top downward in the frame in order to leave the backing // stores of copies in registers. // // Moving memory-backed copies to memory requires a spare register // for the memory-to-memory moves. Since we are performing a merge, // we use esi (which is already saved in the frame). We keep track // of the index of the frame element esi is caching or kIllegalIndex // if esi has not been disturbed. int esi_caches = kIllegalIndex; // A "singleton" memory element. FrameElement memory_element = FrameElement::MemoryElement(); // Loop downward from the stack pointer or the top of the frame if // the stack pointer is floating above the frame. int start = Min(stack_pointer_, elements_.length() - 1); for (int i = start; i >= 0; i--) { FrameElement target = expected->elements_[i]; if (target.is_memory()) { FrameElement source = elements_[i]; switch (source.type()) { case FrameElement::INVALID: // Not a legal merge move. UNREACHABLE(); break; case FrameElement::MEMORY: // Already in place. break; case FrameElement::REGISTER: Unuse(source.reg()); if (!source.is_synced()) { __ mov(Operand(ebp, fp_relative(i)), source.reg()); } break; case FrameElement::CONSTANT: if (!source.is_synced()) { if (cgen_->IsUnsafeSmi(source.handle())) { esi_caches = i; cgen_->LoadUnsafeSmi(esi, source.handle()); __ mov(Operand(ebp, fp_relative(i)), esi); } else { __ Set(Operand(ebp, fp_relative(i)), Immediate(source.handle())); } } break; case FrameElement::COPY: if (!source.is_synced()) { int backing_index = source.index(); FrameElement backing_element = elements_[backing_index]; if (backing_element.is_memory()) { // If we have to spill a register, we spill esi. if (esi_caches != backing_index) { esi_caches = backing_index; __ mov(esi, Operand(ebp, fp_relative(backing_index))); } __ mov(Operand(ebp, fp_relative(i)), esi); } else { ASSERT(backing_element.is_register()); __ mov(Operand(ebp, fp_relative(i)), backing_element.reg()); } } break; } elements_[i] = memory_element; } } if (esi_caches != kIllegalIndex) { __ mov(esi, Operand(ebp, fp_relative(context_index()))); } } void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) { // We have already done X-to-memory moves. ASSERT(stack_pointer_ >= expected->stack_pointer_); // Perform register-to-register moves. int start = 0; int end = elements_.length() - 1; bool any_moves_blocked; // Did we fail to make some moves this iteration? bool should_break_cycles = false; bool any_moves_made; // Did we make any progress this iteration? do { any_moves_blocked = false; any_moves_made = false; int first_move_blocked = kIllegalIndex; int last_move_blocked = kIllegalIndex; for (int i = start; i <= end; i++) { FrameElement source = elements_[i]; FrameElement target = expected->elements_[i]; if (source.is_register() && target.is_register()) { if (target.reg().is(source.reg())) { if (target.is_synced() && !source.is_synced()) { __ mov(Operand(ebp, fp_relative(i)), source.reg()); } elements_[i] = target; } else { // We need to move source to target. if (frame_registers_.is_used(target.reg())) { // The move is blocked because the target contains valid data. // If we are stuck with only cycles remaining, then we spill source. // Otherwise, we just need more iterations. if (should_break_cycles) { SpillElementAt(i); should_break_cycles = false; } else { // Record a blocked move. if (!any_moves_blocked) { first_move_blocked = i; } last_move_blocked = i; any_moves_blocked = true; } } else { // The move is not blocked. This frame element can be moved from // its source register to its target register. if (target.is_synced() && !source.is_synced()) { SyncElementAt(i); } Use(target.reg()); Unuse(source.reg()); elements_[i] = target; __ mov(target.reg(), source.reg()); any_moves_made = true; } } } } // Update control flags for next iteration. should_break_cycles = (any_moves_blocked && !any_moves_made); if (any_moves_blocked) { start = first_move_blocked; end = last_move_blocked; } } while (any_moves_blocked); } void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame *expected) { // Move memory, constants, and copies to registers. This is the // final step and is done from the bottom up so that the backing // elements of copies are in their correct locations when we // encounter the copies. for (int i = 0; i < elements_.length(); i++) { FrameElement source = elements_[i]; FrameElement target = expected->elements_[i]; if (target.is_register() && !source.is_register()) { switch (source.type()) { case FrameElement::INVALID: // Fall through. case FrameElement::REGISTER: UNREACHABLE(); break; case FrameElement::MEMORY: ASSERT(i <= stack_pointer_); __ mov(target.reg(), Operand(ebp, fp_relative(i))); break; case FrameElement::CONSTANT: if (cgen_->IsUnsafeSmi(source.handle())) { cgen_->LoadUnsafeSmi(target.reg(), source.handle()); } else { __ Set(target.reg(), Immediate(source.handle())); } break; case FrameElement::COPY: { FrameElement backing = elements_[source.index()]; ASSERT(backing.is_memory() || backing.is_register()); if (backing.is_memory()) { ASSERT(source.index() <= stack_pointer_); __ mov(target.reg(), Operand(ebp, fp_relative(source.index()))); } else { __ mov(target.reg(), backing.reg()); } } } // Ensure the proper sync state. If the source was memory no // code needs to be emitted. if (target.is_synced() && !source.is_memory()) { SyncElementAt(i); } Use(target.reg()); elements_[i] = target; } } } void VirtualFrame::Enter() { // Registers live on entry: esp, ebp, esi, edi. Comment cmnt(masm_, "[ Enter JS frame"); #ifdef DEBUG // Verify that edi contains a JS function. The following code // relies on eax being available for use. __ test(edi, Immediate(kSmiTagMask)); __ Check(not_zero, "VirtualFrame::Enter - edi is not a function (smi check)."); __ CmpObjectType(edi, JS_FUNCTION_TYPE, eax); __ Check(equal, "VirtualFrame::Enter - edi is not a function (map check)."); #endif EmitPush(ebp); frame_pointer_ = stack_pointer_; __ mov(ebp, Operand(esp)); // Store the context in the frame. The context is kept in esi and a // copy is stored in the frame. The external reference to esi // remains. EmitPush(esi); // Store the function in the frame. The frame owns the register // reference now (ie, it can keep it in edi or spill it later). Push(edi); SyncElementAt(elements_.length() - 1); cgen_->allocator()->Unuse(edi); } void VirtualFrame::Exit() { Comment cmnt(masm_, "[ Exit JS frame"); // Record the location of the JS exit code for patching when setting // break point. __ RecordJSReturn(); // Avoid using the leave instruction here, because it is too // short. We need the return sequence to be a least the size of a // call instruction to support patching the exit code in the // debugger. See VisitReturnStatement for the full return sequence. __ mov(esp, Operand(ebp)); stack_pointer_ = frame_pointer_; for (int i = elements_.length() - 1; i > stack_pointer_; i--) { FrameElement last = elements_.RemoveLast(); if (last.is_register()) { Unuse(last.reg()); } } frame_pointer_ = kIllegalIndex; EmitPop(ebp); } void VirtualFrame::AllocateStackSlots(int count) { ASSERT(height() == 0); local_count_ = count; if (count > 0) { Comment cmnt(masm_, "[ Allocate space for locals"); // The locals are initialized to a constant (the undefined value), but // we sync them with the actual frame to allocate space for spilling // them later. First sync everything above the stack pointer so we can // use pushes to allocate and initialize the locals. SyncRange(stack_pointer_ + 1, elements_.length()); Handle undefined = Factory::undefined_value(); FrameElement initial_value = FrameElement::ConstantElement(undefined, FrameElement::SYNCED); Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ Set(temp.reg(), Immediate(undefined)); for (int i = 0; i < count; i++) { elements_.Add(initial_value); stack_pointer_++; __ push(temp.reg()); } } } void VirtualFrame::SaveContextRegister() { ASSERT(elements_[context_index()].is_memory()); __ mov(Operand(ebp, fp_relative(context_index())), esi); } void VirtualFrame::RestoreContextRegister() { ASSERT(elements_[context_index()].is_memory()); __ mov(esi, Operand(ebp, fp_relative(context_index()))); } void VirtualFrame::PushReceiverSlotAddress() { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ lea(temp.reg(), ParameterAt(-1)); Push(&temp); } // Before changing an element which is copied, adjust so that the // first copy becomes the new backing store and all the other copies // are updated. If the original was in memory, the new backing store // is allocated to a register. Return a copy of the new backing store // or an invalid element if the original was not a copy. FrameElement VirtualFrame::AdjustCopies(int index) { FrameElement original = elements_[index]; ASSERT(original.is_memory() || original.is_register()); // Go looking for a first copy above index. int i = index + 1; while (i < elements_.length()) { FrameElement elt = elements_[i]; if (elt.is_copy() && elt.index() == index) break; i++; } if (i < elements_.length()) { // There was a first copy. Make it the new backing element. Register backing_reg; if (original.is_memory()) { Result fresh = cgen_->allocator()->Allocate(); ASSERT(fresh.is_valid()); backing_reg = fresh.reg(); __ mov(backing_reg, Operand(ebp, fp_relative(index))); } else { // The original was in a register. backing_reg = original.reg(); } FrameElement new_backing_element = FrameElement::RegisterElement(backing_reg, FrameElement::NOT_SYNCED); if (elements_[i].is_synced()) { new_backing_element.set_sync(); } Use(backing_reg); elements_[i] = new_backing_element; // Update the other copies. FrameElement copy = CopyElementAt(i); for (int j = i; j < elements_.length(); j++) { FrameElement elt = elements_[j]; if (elt.is_copy() && elt.index() == index) { if (elt.is_synced()) { copy.set_sync(); } else { copy.clear_sync(); } elements_[j] = copy; } } copy.clear_sync(); return copy; } return FrameElement::InvalidElement(); } void VirtualFrame::TakeFrameSlotAt(int index) { ASSERT(index >= 0); ASSERT(index <= elements_.length()); FrameElement original = elements_[index]; switch (original.type()) { case FrameElement::INVALID: UNREACHABLE(); break; case FrameElement::MEMORY: { // Allocate the element to a register. If it is not copied, // push that register on top of the frame. If it is copied, // make the first copy the backing store and push a fresh copy // on top of the frame. FrameElement copy = AdjustCopies(index); if (copy.is_valid()) { // The original element was a copy. Push the copy of the new // backing store. elements_.Add(copy); } else { // The element was not a copy. Move it to a register and push // that. Result fresh = cgen_->allocator()->Allocate(); ASSERT(fresh.is_valid()); FrameElement new_element = FrameElement::RegisterElement(fresh.reg(), FrameElement::NOT_SYNCED); Use(fresh.reg()); elements_.Add(new_element); __ mov(fresh.reg(), Operand(ebp, fp_relative(index))); } break; } case FrameElement::REGISTER: { // If the element is not copied, push it on top of the frame. // If it is copied, make the first copy be the new backing store // and push a fresh copy on top of the frame. FrameElement copy = AdjustCopies(index); if (copy.is_valid()) { // The original element was a copy. Push the copy of the new // backing store. elements_.Add(copy); // This is the only case where we have to unuse the original // register. The original is still counted and so is the new // backing store of the copies. Unuse(original.reg()); } else { // The element was not a copy. Push it. original.clear_sync(); elements_.Add(original); } break; } case FrameElement::CONSTANT: original.clear_sync(); elements_.Add(original); break; case FrameElement::COPY: original.clear_sync(); elements_.Add(original); break; } elements_[index] = FrameElement::InvalidElement(); } void VirtualFrame::StoreToFrameSlotAt(int index) { // Store the value on top of the frame to the virtual frame slot at // a given index. The value on top of the frame is left in place. // This is a duplicating operation, so it can create copies. ASSERT(index >= 0); ASSERT(index < elements_.length()); FrameElement original = elements_[index]; // If the stored-to slot may be copied, adjust to preserve the // copy-on-write semantics of copied elements. if (original.is_register() || original.is_memory()) { FrameElement ignored = AdjustCopies(index); } // If the stored-to slot is a register reference, deallocate it. if (original.is_register()) { Unuse(original.reg()); } int top_index = elements_.length() - 1; FrameElement top = elements_[top_index]; ASSERT(top.is_valid()); if (top.is_copy()) { // There are two cases based on the relative positions of the // stored-to slot and the backing slot of the top element. int backing_index = top.index(); ASSERT(backing_index != index); if (backing_index < index) { // 1. The top element is a copy of a slot below the stored-to // slot. The stored-to slot becomes an unsynced copy of that // same backing slot. elements_[index] = CopyElementAt(backing_index); } else { // 2. The top element is a copy of a slot above the stored-to // slot. The stored-to slot becomes the new (unsynced) backing // slot and both the top element and the element at the former // backing slot become copies of it. The sync state of the top // and former backing elements is preserved. FrameElement backing_element = elements_[backing_index]; ASSERT(backing_element.is_memory() || backing_element.is_register()); if (backing_element.is_memory()) { // Because sets of copies are canonicalized to be backed by // their lowest frame element, and because memory frame // elements are backed by the corresponding stack address, we // have to move the actual value down in the stack. // // TODO(209): considering allocating the stored-to slot to the // temp register. Alternatively, allow copies to appear in // any order in the frame and lazily move the value down to // the slot. Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), Operand(ebp, fp_relative(backing_index))); __ mov(Operand(ebp, fp_relative(index)), temp.reg()); } else if (backing_element.is_synced()) { // If the element is a register, we will not actually move // anything on the stack but only update the virtual frame // element. backing_element.clear_sync(); } elements_[index] = backing_element; // The old backing element becomes a copy of the new backing // element. FrameElement new_element = CopyElementAt(index); elements_[backing_index] = new_element; if (backing_element.is_synced()) { elements_[backing_index].set_sync(); } // All the copies of the old backing element (including the top // element) become copies of the new backing element. for (int i = backing_index + 1; i < elements_.length(); i++) { FrameElement current = elements_[i]; if (current.is_copy() && current.index() == backing_index) { elements_[i] = new_element; if (current.is_synced()) { elements_[i].set_sync(); } } } } return; } // Move the top element to the stored-to slot and replace it (the // top element) with a copy. elements_[index] = top; if (top.is_memory()) { // TODO(209): consider allocating the stored-to slot to the temp // register. Alternatively, allow copies to appear in any order // in the frame and lazily move the value down to the slot. FrameElement new_top = CopyElementAt(index); new_top.set_sync(); elements_[top_index] = new_top; // The sync state of the former top element is correct (synced). // Emit code to move the value down in the frame. Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), Operand(esp, 0)); __ mov(Operand(ebp, fp_relative(index)), temp.reg()); } else if (top.is_register()) { // The stored-to slot has the (unsynced) register reference and // the top element becomes a copy. The sync state of the top is // preserved. FrameElement new_top = CopyElementAt(index); if (top.is_synced()) { new_top.set_sync(); elements_[index].clear_sync(); } elements_[top_index] = new_top; } else { // The stored-to slot holds the same value as the top but // unsynced. (We do not have copies of constants yet.) ASSERT(top.is_constant()); elements_[index].clear_sync(); } } void VirtualFrame::PushTryHandler(HandlerType type) { ASSERT(cgen_->HasValidEntryRegisters()); // Grow the expression stack by handler size less two (the return address // is already pushed by a call instruction, and PushTryHandler from the // macro assembler will leave the top of stack in the eax register to be // pushed separately). Adjust(kHandlerSize - 2); __ PushTryHandler(IN_JAVASCRIPT, type); // TODO(1222589): remove the reliance of PushTryHandler on a cached TOS EmitPush(eax); } Result VirtualFrame::RawCallStub(CodeStub* stub, int frame_arg_count) { ASSERT(cgen_->HasValidEntryRegisters()); __ CallStub(stub); Result result = cgen_->allocator()->Allocate(eax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallRuntime(Runtime::Function* f, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); ASSERT(cgen_->HasValidEntryRegisters()); __ CallRuntime(f, frame_arg_count); Result result = cgen_->allocator()->Allocate(eax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); ASSERT(cgen_->HasValidEntryRegisters()); __ CallRuntime(id, frame_arg_count); Result result = cgen_->allocator()->Allocate(eax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, int frame_arg_count) { PrepareForCall(frame_arg_count, frame_arg_count); ASSERT(cgen_->HasValidEntryRegisters()); __ InvokeBuiltin(id, flag); Result result = cgen_->allocator()->Allocate(eax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::RawCallCodeObject(Handle code, RelocInfo::Mode rmode) { ASSERT(cgen_->HasValidEntryRegisters()); __ call(code, rmode); Result result = cgen_->allocator()->Allocate(eax); ASSERT(result.is_valid()); return result; } Result VirtualFrame::CallCodeObject(Handle code, RelocInfo::Mode rmode, Result* arg, int dropped_args) { int spilled_args = 0; switch (code->kind()) { case Code::CALL_IC: ASSERT(arg->reg().is(eax)); spilled_args = dropped_args + 1; break; case Code::LOAD_IC: ASSERT(arg->reg().is(ecx)); ASSERT(dropped_args == 0); spilled_args = 1; break; case Code::KEYED_STORE_IC: ASSERT(arg->reg().is(eax)); ASSERT(dropped_args == 0); spilled_args = 2; break; default: // No other types of code objects are called with values // in exactly one register. UNREACHABLE(); break; } PrepareForCall(spilled_args, dropped_args); arg->Unuse(); return RawCallCodeObject(code, rmode); } Result VirtualFrame::CallCodeObject(Handle code, RelocInfo::Mode rmode, Result* arg0, Result* arg1, int dropped_args) { int spilled_args = 1; switch (code->kind()) { case Code::STORE_IC: ASSERT(arg0->reg().is(eax)); ASSERT(arg1->reg().is(ecx)); ASSERT(dropped_args == 0); spilled_args = 1; break; case Code::BUILTIN: ASSERT(*code == Builtins::builtin(Builtins::JSConstructCall)); ASSERT(arg0->reg().is(eax)); ASSERT(arg1->reg().is(edi)); spilled_args = dropped_args + 1; break; default: // No other types of code objects are called with values // in exactly two registers. UNREACHABLE(); break; } PrepareForCall(spilled_args, dropped_args); arg0->Unuse(); arg1->Unuse(); return RawCallCodeObject(code, rmode); } void VirtualFrame::Drop(int count) { ASSERT(height() >= count); int num_virtual_elements = (elements_.length() - 1) - stack_pointer_; // Emit code to lower the stack pointer if necessary. if (num_virtual_elements < count) { int num_dropped = count - num_virtual_elements; stack_pointer_ -= num_dropped; __ add(Operand(esp), Immediate(num_dropped * kPointerSize)); } // Discard elements from the virtual frame and free any registers. for (int i = 0; i < count; i++) { FrameElement dropped = elements_.RemoveLast(); if (dropped.is_register()) { Unuse(dropped.reg()); } } } Result VirtualFrame::Pop() { FrameElement element = elements_.RemoveLast(); int index = elements_.length(); ASSERT(element.is_valid()); bool pop_needed = (stack_pointer_ == index); if (pop_needed) { stack_pointer_--; if (element.is_memory()) { Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); __ pop(temp.reg()); return temp; } __ add(Operand(esp), Immediate(kPointerSize)); } ASSERT(!element.is_memory()); // The top element is a register, constant, or a copy. Unuse // registers and follow copies to their backing store. if (element.is_register()) { Unuse(element.reg()); } else if (element.is_copy()) { ASSERT(element.index() < index); index = element.index(); element = elements_[index]; } ASSERT(!element.is_copy()); // The element is memory, a register, or a constant. if (element.is_memory()) { // Memory elements could only be the backing store of a copy. // Allocate the original to a register. ASSERT(index <= stack_pointer_); Result temp = cgen_->allocator()->Allocate(); ASSERT(temp.is_valid()); Use(temp.reg()); FrameElement new_element = FrameElement::RegisterElement(temp.reg(), FrameElement::SYNCED); elements_[index] = new_element; __ mov(temp.reg(), Operand(ebp, fp_relative(index))); return Result(temp.reg(), cgen_); } else if (element.is_register()) { return Result(element.reg(), cgen_); } else { ASSERT(element.is_constant()); return Result(element.handle(), cgen_); } } void VirtualFrame::EmitPop(Register reg) { ASSERT(stack_pointer_ == elements_.length() - 1); stack_pointer_--; elements_.RemoveLast(); __ pop(reg); } void VirtualFrame::EmitPop(Operand operand) { ASSERT(stack_pointer_ == elements_.length() - 1); stack_pointer_--; elements_.RemoveLast(); __ pop(operand); } void VirtualFrame::EmitPush(Register reg) { ASSERT(stack_pointer_ == elements_.length() - 1); elements_.Add(FrameElement::MemoryElement()); stack_pointer_++; __ push(reg); } void VirtualFrame::EmitPush(Operand operand) { ASSERT(stack_pointer_ == elements_.length() - 1); elements_.Add(FrameElement::MemoryElement()); stack_pointer_++; __ push(operand); } void VirtualFrame::EmitPush(Immediate immediate) { ASSERT(stack_pointer_ == elements_.length() - 1); elements_.Add(FrameElement::MemoryElement()); stack_pointer_++; __ push(immediate); } #undef __ } } // namespace v8::internal