// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/execution.h" #include "src/handles.h" #include "src/interpreter/bytecode-array-builder.h" #include "src/interpreter/interpreter.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { namespace interpreter { static MaybeHandle CallInterpreter(Isolate* isolate, Handle function) { return Execution::Call(isolate, function, isolate->factory()->undefined_value(), 0, nullptr, false); } template static MaybeHandle CallInterpreter(Isolate* isolate, Handle function, A... args) { Handle argv[] = { args... }; return Execution::Call(isolate, function, isolate->factory()->undefined_value(), sizeof...(args), argv, false); } template class InterpreterCallable { public: InterpreterCallable(Isolate* isolate, Handle function) : isolate_(isolate), function_(function) {} virtual ~InterpreterCallable() {} MaybeHandle operator()(A... args) { return CallInterpreter(isolate_, function_, args...); } private: Isolate* isolate_; Handle function_; }; class InterpreterTester { public: InterpreterTester(Isolate* isolate, Handle bytecode, MaybeHandle feedback_vector = MaybeHandle()) : isolate_(isolate), bytecode_(bytecode), feedback_vector_(feedback_vector) { i::FLAG_vector_stores = true; i::FLAG_ignition = true; // Ensure handler table is generated. isolate->interpreter()->Initialize(); } virtual ~InterpreterTester() {} template InterpreterCallable GetCallable() { return InterpreterCallable(isolate_, GetBytecodeFunction()); } Handle NewObject(const char* script) { return v8::Utils::OpenHandle(*CompileRun(script)); } private: Isolate* isolate_; Handle bytecode_; MaybeHandle feedback_vector_; template Handle GetBytecodeFunction() { int arg_count = sizeof...(A); std::string function_text("(function("); for (int i = 0; i < arg_count; i++) { function_text += i == 0 ? "a" : ", a"; } function_text += "){})"; Handle function = v8::Utils::OpenHandle( *v8::Handle::Cast(CompileRun(function_text.c_str()))); function->ReplaceCode(*isolate_->builtins()->InterpreterEntryTrampoline()); function->shared()->set_function_data(*bytecode_); if (!feedback_vector_.is_null()) { function->shared()->set_feedback_vector( *feedback_vector_.ToHandleChecked()); } return function; } DISALLOW_COPY_AND_ASSIGN(InterpreterTester); }; } // namespace interpreter } // namespace internal } // namespace v8 using v8::internal::BytecodeArray; using v8::internal::Handle; using v8::internal::Object; using v8::internal::Runtime; using v8::internal::Smi; using v8::internal::Token; using namespace v8::internal::interpreter; TEST(InterpreterReturn) { HandleAndZoneScope handles; Handle undefined_value = handles.main_isolate()->factory()->undefined_value(); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(return_val.is_identical_to(undefined_value)); } TEST(InterpreterLoadUndefined) { HandleAndZoneScope handles; Handle undefined_value = handles.main_isolate()->factory()->undefined_value(); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadUndefined().Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(return_val.is_identical_to(undefined_value)); } TEST(InterpreterLoadNull) { HandleAndZoneScope handles; Handle null_value = handles.main_isolate()->factory()->null_value(); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadNull().Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(return_val.is_identical_to(null_value)); } TEST(InterpreterLoadTheHole) { HandleAndZoneScope handles; Handle the_hole_value = handles.main_isolate()->factory()->the_hole_value(); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadTheHole().Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(return_val.is_identical_to(the_hole_value)); } TEST(InterpreterLoadTrue) { HandleAndZoneScope handles; Handle true_value = handles.main_isolate()->factory()->true_value(); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadTrue().Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(return_val.is_identical_to(true_value)); } TEST(InterpreterLoadFalse) { HandleAndZoneScope handles; Handle false_value = handles.main_isolate()->factory()->false_value(); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadFalse().Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(return_val.is_identical_to(false_value)); } TEST(InterpreterLoadLiteral) { HandleAndZoneScope handles; i::Factory* factory = handles.main_isolate()->factory(); // Small Smis. for (int i = -128; i < 128; i++) { BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadLiteral(Smi::FromInt(i)).Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(i)); } // Large Smis. { BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadLiteral(Smi::FromInt(0x12345678)).Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(0x12345678)); } // Heap numbers. { BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadLiteral(factory->NewHeapNumber(-2.1e19)).Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(i::HeapNumber::cast(*return_val)->value(), -2.1e19); } // Strings. { BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); Handle string = factory->NewStringFromAsciiChecked("String"); builder.LoadLiteral(string).Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(i::String::cast(*return_val)->Equals(*string)); } } TEST(InterpreterLoadStoreRegisters) { HandleAndZoneScope handles; Handle true_value = handles.main_isolate()->factory()->true_value(); for (int i = 0; i <= Register::kMaxRegisterIndex; i++) { BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(i + 1); builder.set_parameter_count(1); Register reg(i); builder.LoadTrue() .StoreAccumulatorInRegister(reg) .LoadFalse() .LoadAccumulatorWithRegister(reg) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK(return_val.is_identical_to(true_value)); } } TEST(InterpreterAdd) { HandleAndZoneScope handles; // TODO(rmcilroy): Do add tests for heap numbers and strings once we support // them. BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); Register reg(0); builder.LoadLiteral(Smi::FromInt(1)) .StoreAccumulatorInRegister(reg) .LoadLiteral(Smi::FromInt(2)) .BinaryOperation(Token::Value::ADD, reg) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(3)); } TEST(InterpreterSub) { HandleAndZoneScope handles; // TODO(rmcilroy): Do add tests for heap numbers once we support them. BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); Register reg(0); builder.LoadLiteral(Smi::FromInt(5)) .StoreAccumulatorInRegister(reg) .LoadLiteral(Smi::FromInt(31)) .BinaryOperation(Token::Value::SUB, reg) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(-26)); } TEST(InterpreterMul) { HandleAndZoneScope handles; // TODO(rmcilroy): Do add tests for heap numbers once we support them. BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); Register reg(0); builder.LoadLiteral(Smi::FromInt(111)) .StoreAccumulatorInRegister(reg) .LoadLiteral(Smi::FromInt(6)) .BinaryOperation(Token::Value::MUL, reg) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(666)); } TEST(InterpreterDiv) { HandleAndZoneScope handles; // TODO(rmcilroy): Do add tests for heap numbers once we support them. BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); Register reg(0); builder.LoadLiteral(Smi::FromInt(-20)) .StoreAccumulatorInRegister(reg) .LoadLiteral(Smi::FromInt(5)) .BinaryOperation(Token::Value::DIV, reg) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(-4)); } TEST(InterpreterMod) { HandleAndZoneScope handles; // TODO(rmcilroy): Do add tests for heap numbers once we support them. BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); Register reg(0); builder.LoadLiteral(Smi::FromInt(121)) .StoreAccumulatorInRegister(reg) .LoadLiteral(Smi::FromInt(100)) .BinaryOperation(Token::Value::MOD, reg) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable<>(); Handle return_val = callable().ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(21)); } TEST(InterpreterParameter1) { HandleAndZoneScope handles; BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadAccumulatorWithRegister(builder.Parameter(0)).Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); auto callable = tester.GetCallable>(); // Check for heap objects. Handle true_value = handles.main_isolate()->factory()->true_value(); Handle return_val = callable(true_value).ToHandleChecked(); CHECK(return_val.is_identical_to(true_value)); // Check for Smis. return_val = callable(Handle(Smi::FromInt(3), handles.main_isolate())) .ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(3)); } TEST(InterpreterParameter8) { HandleAndZoneScope handles; BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(8); builder.LoadAccumulatorWithRegister(builder.Parameter(0)) .BinaryOperation(Token::Value::ADD, builder.Parameter(1)) .BinaryOperation(Token::Value::ADD, builder.Parameter(2)) .BinaryOperation(Token::Value::ADD, builder.Parameter(3)) .BinaryOperation(Token::Value::ADD, builder.Parameter(4)) .BinaryOperation(Token::Value::ADD, builder.Parameter(5)) .BinaryOperation(Token::Value::ADD, builder.Parameter(6)) .BinaryOperation(Token::Value::ADD, builder.Parameter(7)) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array); typedef Handle H; auto callable = tester.GetCallable(); Handle arg1 = Handle(Smi::FromInt(1), handles.main_isolate()); Handle arg2 = Handle(Smi::FromInt(2), handles.main_isolate()); Handle arg3 = Handle(Smi::FromInt(3), handles.main_isolate()); Handle arg4 = Handle(Smi::FromInt(4), handles.main_isolate()); Handle arg5 = Handle(Smi::FromInt(5), handles.main_isolate()); Handle arg6 = Handle(Smi::FromInt(6), handles.main_isolate()); Handle arg7 = Handle(Smi::FromInt(7), handles.main_isolate()); Handle arg8 = Handle(Smi::FromInt(8), handles.main_isolate()); // Check for Smis. Handle return_val = callable(arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8) .ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(36)); } TEST(InterpreterLoadNamedProperty) { HandleAndZoneScope handles; i::Isolate* isolate = handles.main_isolate(); i::Factory* factory = isolate->factory(); i::Code::Kind ic_kinds[] = { i::Code::LOAD_IC }; i::FeedbackVectorSpec feedback_spec(0, 1, ic_kinds); Handle vector = factory->NewTypeFeedbackVector(&feedback_spec); Handle name = factory->NewStringFromAsciiChecked("val"); name = factory->string_table()->LookupString(isolate, name); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(0); builder.set_parameter_count(1); builder.LoadLiteral(name) .LoadNamedProperty(builder.Parameter(0), vector->first_ic_slot_index(), i::SLOPPY) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array, vector); auto callable = tester.GetCallable>(); Handle object = tester.NewObject("({ val : 123 })"); // Test IC miss. Handle return_val = callable(object).ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123)); // Test transition to monomorphic IC. return_val = callable(object).ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123)); // Test transition to polymorphic IC. Handle object2 = tester.NewObject("({ val : 456, other : 123 })"); return_val = callable(object2).ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(456)); // Test transition to megamorphic IC. Handle object3 = tester.NewObject("({ val : 789, val2 : 123 })"); callable(object3).ToHandleChecked(); Handle object4 = tester.NewObject("({ val : 789, val3 : 123 })"); callable(object4).ToHandleChecked(); Handle object5 = tester.NewObject("({ val : 789, val4 : 123 })"); return_val = callable(object5).ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(789)); } TEST(InterpreterLoadKeyedProperty) { HandleAndZoneScope handles; i::Isolate* isolate = handles.main_isolate(); i::Factory* factory = isolate->factory(); i::Code::Kind ic_kinds[] = { i::Code::KEYED_LOAD_IC }; i::FeedbackVectorSpec feedback_spec(0, 1, ic_kinds); Handle vector = factory->NewTypeFeedbackVector(&feedback_spec); Handle key = factory->NewStringFromAsciiChecked("key"); key = factory->string_table()->LookupString(isolate, key); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); builder.LoadLiteral(key) .LoadKeyedProperty(builder.Parameter(0), vector->first_ic_slot_index(), i::SLOPPY) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(handles.main_isolate(), bytecode_array, vector); auto callable = tester.GetCallable>(); Handle object = tester.NewObject("({ key : 123 })"); // Test IC miss. Handle return_val = callable(object).ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123)); // Test transition to monomorphic IC. return_val = callable(object).ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(123)); // Test transition to megamorphic IC. Handle object3 = tester.NewObject("({ key : 789, val2 : 123 })"); return_val = callable(object3).ToHandleChecked(); CHECK_EQ(Smi::cast(*return_val), Smi::FromInt(789)); } TEST(InterpreterStoreNamedProperty) { HandleAndZoneScope handles; i::Isolate* isolate = handles.main_isolate(); i::Factory* factory = isolate->factory(); i::Code::Kind ic_kinds[] = {i::Code::STORE_IC}; i::FeedbackVectorSpec feedback_spec(0, 1, ic_kinds); Handle vector = factory->NewTypeFeedbackVector(&feedback_spec); Handle name = factory->NewStringFromAsciiChecked("val"); name = factory->string_table()->LookupString(isolate, name); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); builder.LoadLiteral(name) .StoreAccumulatorInRegister(Register(0)) .LoadLiteral(Smi::FromInt(999)) .StoreNamedProperty(builder.Parameter(0), Register(0), vector->first_ic_slot_index(), i::SLOPPY) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(isolate, bytecode_array, vector); auto callable = tester.GetCallable>(); Handle object = tester.NewObject("({ val : 123 })"); // Test IC miss. Handle result; callable(object).ToHandleChecked(); CHECK(Runtime::GetObjectProperty(isolate, object, name).ToHandle(&result)); CHECK_EQ(Smi::cast(*result), Smi::FromInt(999)); // Test transition to monomorphic IC. callable(object).ToHandleChecked(); CHECK(Runtime::GetObjectProperty(isolate, object, name).ToHandle(&result)); CHECK_EQ(Smi::cast(*result), Smi::FromInt(999)); // Test transition to polymorphic IC. Handle object2 = tester.NewObject("({ val : 456, other : 123 })"); callable(object2).ToHandleChecked(); CHECK(Runtime::GetObjectProperty(isolate, object2, name).ToHandle(&result)); CHECK_EQ(Smi::cast(*result), Smi::FromInt(999)); // Test transition to megamorphic IC. Handle object3 = tester.NewObject("({ val : 789, val2 : 123 })"); callable(object3).ToHandleChecked(); Handle object4 = tester.NewObject("({ val : 789, val3 : 123 })"); callable(object4).ToHandleChecked(); Handle object5 = tester.NewObject("({ val : 789, val4 : 123 })"); callable(object5).ToHandleChecked(); CHECK(Runtime::GetObjectProperty(isolate, object5, name).ToHandle(&result)); CHECK_EQ(Smi::cast(*result), Smi::FromInt(999)); } TEST(InterpreterStoreKeyedProperty) { HandleAndZoneScope handles; i::Isolate* isolate = handles.main_isolate(); i::Factory* factory = isolate->factory(); i::Code::Kind ic_kinds[] = {i::Code::KEYED_STORE_IC}; i::FeedbackVectorSpec feedback_spec(0, 1, ic_kinds); Handle vector = factory->NewTypeFeedbackVector(&feedback_spec); Handle name = factory->NewStringFromAsciiChecked("val"); name = factory->string_table()->LookupString(isolate, name); BytecodeArrayBuilder builder(handles.main_isolate(), handles.main_zone()); builder.set_locals_count(1); builder.set_parameter_count(1); builder.LoadLiteral(name) .StoreAccumulatorInRegister(Register(0)) .LoadLiteral(Smi::FromInt(999)) .StoreKeyedProperty(builder.Parameter(0), Register(0), vector->first_ic_slot_index(), i::SLOPPY) .Return(); Handle bytecode_array = builder.ToBytecodeArray(); InterpreterTester tester(isolate, bytecode_array, vector); auto callable = tester.GetCallable>(); Handle object = tester.NewObject("({ val : 123 })"); // Test IC miss. Handle result; callable(object).ToHandleChecked(); CHECK(Runtime::GetObjectProperty(isolate, object, name).ToHandle(&result)); CHECK_EQ(Smi::cast(*result), Smi::FromInt(999)); // Test transition to monomorphic IC. callable(object).ToHandleChecked(); CHECK(Runtime::GetObjectProperty(isolate, object, name).ToHandle(&result)); CHECK_EQ(Smi::cast(*result), Smi::FromInt(999)); // Test transition to megamorphic IC. Handle object2 = tester.NewObject("({ val : 456, other : 123 })"); callable(object2).ToHandleChecked(); CHECK(Runtime::GetObjectProperty(isolate, object2, name).ToHandle(&result)); CHECK_EQ(Smi::cast(*result), Smi::FromInt(999)); }