// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include "src/codegen/machine-type.h" #include "src/codegen/optimized-compilation-info.h" #include "src/compiler/backend/instruction-selector.h" #include "src/compiler/graph.h" #include "src/compiler/linkage.h" #include "src/compiler/node.h" #include "src/compiler/operator.h" #include "src/compiler/pipeline.h" #include "src/compiler/raw-machine-assembler.h" #include "src/compiler/wasm-compiler.h" #include "src/execution/simulator.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-features.h" #include "src/wasm/wasm-limits.h" #include "src/wasm/wasm-objects-inl.h" #include "src/wasm/wasm-objects.h" #include "src/wasm/wasm-opcodes.h" #include "src/zone/accounting-allocator.h" #include "src/zone/zone.h" #include "test/fuzzer/fuzzer-support.h" namespace v8 { namespace internal { namespace compiler { namespace fuzzer { constexpr MachineType kTypes[] = { // The first entry is just a placeholder, because '0' is a separator. MachineType(), #if !V8_TARGET_ARCH_32_BIT MachineType::Int64(), #endif MachineType::Int32(), MachineType::Float32(), MachineType::Float64()}; static constexpr int kNumTypes = arraysize(kTypes); class InputProvider { public: InputProvider(const uint8_t* data, size_t size) : current_(data), end_(data + size) {} size_t NumNonZeroBytes(size_t offset, int limit) { DCHECK_LE(limit, std::numeric_limits::max()); DCHECK_GE(current_ + offset, current_); const uint8_t* p; for (p = current_ + offset; p < end_; ++p) { if (*p % limit == 0) break; } return p - current_ - offset; } int NextInt8(int limit) { DCHECK_LE(limit, std::numeric_limits::max()); if (current_ == end_) return 0; uint8_t result = *current_; current_++; return static_cast(result) % limit; } int NextInt32(int limit) { if (current_ + sizeof(uint32_t) > end_) return 0; int result = base::ReadLittleEndianValue(reinterpret_cast
(current_)); current_ += sizeof(uint32_t); return result % limit; } private: const uint8_t* current_; const uint8_t* end_; }; MachineType RandomType(InputProvider* input) { return kTypes[input->NextInt8(kNumTypes)]; } int index(MachineType type) { return static_cast(type.representation()); } Node* Constant(RawMachineAssembler* m, MachineType type, int value) { switch (type.representation()) { case MachineRepresentation::kWord32: return m->Int32Constant(static_cast(value)); case MachineRepresentation::kWord64: return m->Int64Constant(static_cast(value)); case MachineRepresentation::kFloat32: return m->Float32Constant(static_cast(value)); case MachineRepresentation::kFloat64: return m->Float64Constant(static_cast(value)); default: UNREACHABLE(); } } Node* ToInt32(RawMachineAssembler* m, MachineType type, Node* a) { switch (type.representation()) { case MachineRepresentation::kWord32: return a; case MachineRepresentation::kWord64: return m->TruncateInt64ToInt32(a); case MachineRepresentation::kFloat32: return m->TruncateFloat32ToInt32(a, TruncateKind::kArchitectureDefault); case MachineRepresentation::kFloat64: return m->RoundFloat64ToInt32(a); default: UNREACHABLE(); } } CallDescriptor* CreateRandomCallDescriptor(Zone* zone, size_t return_count, size_t param_count, InputProvider* input) { wasm::FunctionSig::Builder builder(zone, return_count, param_count); for (size_t i = 0; i < param_count; i++) { MachineType type = RandomType(input); builder.AddParam(wasm::ValueType::For(type)); } // Read the end byte of the parameters. input->NextInt8(1); for (size_t i = 0; i < return_count; i++) { MachineType type = RandomType(input); builder.AddReturn(wasm::ValueType::For(type)); } return compiler::GetWasmCallDescriptor(zone, builder.Build()); } std::shared_ptr AllocateNativeModule(i::Isolate* isolate, size_t code_size) { auto module = std::make_shared(wasm::kWasmOrigin); module->num_declared_functions = 1; // We have to add the code object to a NativeModule, because the // WasmCallDescriptor assumes that code is on the native heap and not // within a code object. auto native_module = wasm::GetWasmEngine()->NewNativeModule( isolate, i::wasm::WasmFeatures::All(), std::move(module), code_size); native_module->SetWireBytes({}); return native_module; } extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) { v8_fuzzer::FuzzerSupport* support = v8_fuzzer::FuzzerSupport::Get(); v8::Isolate* isolate = support->GetIsolate(); i::Isolate* i_isolate = reinterpret_cast(isolate); v8::Isolate::Scope isolate_scope(isolate); v8::HandleScope handle_scope(isolate); v8::Context::Scope context_scope(support->GetContext()); v8::TryCatch try_catch(isolate); v8::internal::AccountingAllocator allocator; Zone zone(&allocator, ZONE_NAME); InputProvider input(data, size); // Create randomized descriptor. size_t param_count = input.NumNonZeroBytes(0, kNumTypes); if (param_count > InstructionStream::kMaxArguments) return 0; size_t return_count = input.NumNonZeroBytes(param_count + 1, kNumTypes); if (return_count > wasm::kV8MaxWasmFunctionReturns) return 0; CallDescriptor* desc = CreateRandomCallDescriptor(&zone, return_count, param_count, &input); if (v8_flags.wasm_fuzzer_gen_test) { // Print some debugging output which describes the produced signature. printf("["); for (size_t j = 0; j < param_count; ++j) { // Parameter 0 is the WasmContext. printf(" %s", MachineReprToString( desc->GetParameterType(j + 1).representation())); } printf(" ] -> ["); for (size_t j = 0; j < desc->ReturnCount(); ++j) { printf(" %s", MachineReprToString(desc->GetReturnType(j).representation())); } printf(" ]\n\n"); } // Count parameters of each type. constexpr size_t kNumMachineRepresentations = static_cast(MachineRepresentation::kLastRepresentation) + 1; // Trivial hash table for the number of occurrences of parameter types. The // MachineRepresentation of the parameter types is used as hash code. int counts[kNumMachineRepresentations] = {0}; for (size_t i = 0; i < param_count; ++i) { // Parameter 0 is the WasmContext. ++counts[index(desc->GetParameterType(i + 1))]; } // Generate random inputs. std::unique_ptr inputs(new int[param_count]); std::unique_ptr outputs(new int[desc->ReturnCount()]); for (size_t i = 0; i < param_count; ++i) { inputs[i] = input.NextInt32(10000); } RawMachineAssembler callee( i_isolate, zone.New(&zone), desc, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags()); // Generate callee, returning random picks of its parameters. std::unique_ptr params(new Node*[desc->ParameterCount() + 2]); // The first input of a return is the number of stack slots that should be // popped before returning. std::unique_ptr returns(new Node*[desc->ReturnCount() + 1]); for (size_t i = 0; i < param_count; ++i) { // Parameter(0) is the WasmContext. params[i] = callee.Parameter(i + 1); } for (size_t i = 0; i < desc->ReturnCount(); ++i) { MachineType type = desc->GetReturnType(i); // Find a random same-type parameter to return. Use a constant if none. if (counts[index(type)] == 0) { returns[i] = Constant(&callee, type, 42); outputs[i] = 42; } else { int n = input.NextInt32(counts[index(type)]); int k = 0; while (desc->GetParameterType(k + 1) != desc->GetReturnType(i) || --n > 0) { ++k; } returns[i] = params[k]; outputs[i] = inputs[k]; } } callee.Return(static_cast(desc->ReturnCount()), returns.get()); OptimizedCompilationInfo info(base::ArrayVector("testing"), &zone, CodeKind::FOR_TESTING); Handle code = Pipeline::GenerateCodeForTesting(&info, i_isolate, desc, callee.graph(), AssemblerOptions::Default(i_isolate), callee.ExportForTest()) .ToHandleChecked(); Handle istream(code->instruction_stream(), i_isolate); std::shared_ptr module = AllocateNativeModule(i_isolate, code->raw_instruction_size()); wasm::WasmCodeRefScope wasm_code_ref_scope; byte* code_start = module->AddCodeForTesting(istream)->instructions().begin(); // Generate wrapper. int expect = 0; MachineSignature::Builder sig_builder(&zone, 1, 0); sig_builder.AddReturn(MachineType::Int32()); CallDescriptor* wrapper_desc = Linkage::GetSimplifiedCDescriptor(&zone, sig_builder.Build()); RawMachineAssembler caller( i_isolate, zone.New(&zone), wrapper_desc, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags()); params[0] = caller.PointerConstant(code_start); // WasmContext dummy. params[1] = caller.PointerConstant(nullptr); for (size_t i = 0; i < param_count; ++i) { params[i + 2] = Constant(&caller, desc->GetParameterType(i + 1), inputs[i]); } Node* call = caller.AddNode(caller.common()->Call(desc), static_cast(param_count + 2), params.get()); Node* ret = Constant(&caller, MachineType::Int32(), 0); for (size_t i = 0; i < desc->ReturnCount(); ++i) { // Skip roughly one third of the outputs. if (input.NextInt8(3) == 0) continue; Node* ret_i = (desc->ReturnCount() == 1) ? call : caller.AddNode(caller.common()->Projection(i), call); ret = caller.Int32Add(ret, ToInt32(&caller, desc->GetReturnType(i), ret_i)); expect += outputs[i]; } caller.Return(ret); // Call the wrapper. OptimizedCompilationInfo wrapper_info(base::ArrayVector("wrapper"), &zone, CodeKind::FOR_TESTING); Handle wrapper_code = Pipeline::GenerateCodeForTesting( &wrapper_info, i_isolate, wrapper_desc, caller.graph(), AssemblerOptions::Default(i_isolate), caller.ExportForTest()) .ToHandleChecked(); auto fn = GeneratedCode::FromCode(*wrapper_code); int result = fn.Call(); CHECK_EQ(expect, result); return 0; } } // namespace fuzzer } // namespace compiler } // namespace internal } // namespace v8