// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "bootstrapper.h" #include "codegen.h" #include "debug.h" #include "runtime.h" #include "serialize.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // MacroAssembler implementation. MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) : Assembler(arg_isolate, buffer, size), generating_stub_(false), allow_stub_calls_(true) { if (isolate() != NULL) { code_object_ = Handle(isolate()->heap()->undefined_value(), isolate()); } } void MacroAssembler::RecordWriteHelper(Register object, Register addr, Register scratch) { if (emit_debug_code()) { // Check that the object is not in new space. Label not_in_new_space; InNewSpace(object, scratch, not_equal, ¬_in_new_space); Abort("new-space object passed to RecordWriteHelper"); bind(¬_in_new_space); } // Compute the page start address from the heap object pointer, and reuse // the 'object' register for it. and_(object, ~Page::kPageAlignmentMask); // Compute number of region covering addr. See Page::GetRegionNumberForAddress // method for more details. and_(addr, Page::kPageAlignmentMask); shr(addr, Page::kRegionSizeLog2); // Set dirty mark for region. // Bit tests with a memory operand should be avoided on Intel processors, // as they usually have long latency and multiple uops. We load the bit base // operand to a register at first and store it back after bit set. mov(scratch, Operand(object, Page::kDirtyFlagOffset)); bts(Operand(scratch), addr); mov(Operand(object, Page::kDirtyFlagOffset), scratch); } void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg, Register result_reg) { Label done; ExternalReference zero_ref = ExternalReference::address_of_zero(); movdbl(scratch_reg, Operand::StaticVariable(zero_ref)); Set(result_reg, Immediate(0)); ucomisd(input_reg, scratch_reg); j(below, &done, Label::kNear); ExternalReference half_ref = ExternalReference::address_of_one_half(); movdbl(scratch_reg, Operand::StaticVariable(half_ref)); addsd(scratch_reg, input_reg); cvttsd2si(result_reg, Operand(scratch_reg)); test(result_reg, Immediate(0xFFFFFF00)); j(zero, &done, Label::kNear); Set(result_reg, Immediate(255)); bind(&done); } void MacroAssembler::ClampUint8(Register reg) { Label done; test(reg, Immediate(0xFFFFFF00)); j(zero, &done, Label::kNear); setcc(negative, reg); // 1 if negative, 0 if positive. dec_b(reg); // 0 if negative, 255 if positive. bind(&done); } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, Label* branch, Label::Distance branch_near) { ASSERT(cc == equal || cc == not_equal); if (Serializer::enabled()) { // Can't do arithmetic on external references if it might get serialized. mov(scratch, Operand(object)); // The mask isn't really an address. We load it as an external reference in // case the size of the new space is different between the snapshot maker // and the running system. and_(Operand(scratch), Immediate(ExternalReference::new_space_mask(isolate()))); cmp(Operand(scratch), Immediate(ExternalReference::new_space_start(isolate()))); j(cc, branch, branch_near); } else { int32_t new_space_start = reinterpret_cast( ExternalReference::new_space_start(isolate()).address()); lea(scratch, Operand(object, -new_space_start)); and_(scratch, isolate()->heap()->NewSpaceMask()); j(cc, branch, branch_near); } } void MacroAssembler::RecordWrite(Register object, int offset, Register value, Register scratch) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; // Skip barrier if writing a smi. ASSERT_EQ(0, kSmiTag); JumpIfSmi(value, &done, Label::kNear); InNewSpace(object, value, equal, &done, Label::kNear); // The offset is relative to a tagged or untagged HeapObject pointer, // so either offset or offset + kHeapObjectTag must be a // multiple of kPointerSize. ASSERT(IsAligned(offset, kPointerSize) || IsAligned(offset + kHeapObjectTag, kPointerSize)); Register dst = scratch; if (offset != 0) { lea(dst, Operand(object, offset)); } else { // Array access: calculate the destination address in the same manner as // KeyedStoreIC::GenerateGeneric. Multiply a smi by 2 to get an offset // into an array of words. ASSERT_EQ(1, kSmiTagSize); ASSERT_EQ(0, kSmiTag); lea(dst, Operand(object, dst, times_half_pointer_size, FixedArray::kHeaderSize - kHeapObjectTag)); } RecordWriteHelper(object, dst, value); bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(object, Immediate(BitCast(kZapValue))); mov(value, Immediate(BitCast(kZapValue))); mov(scratch, Immediate(BitCast(kZapValue))); } } void MacroAssembler::RecordWrite(Register object, Register address, Register value) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; // Skip barrier if writing a smi. ASSERT_EQ(0, kSmiTag); JumpIfSmi(value, &done, Label::kNear); InNewSpace(object, value, equal, &done); RecordWriteHelper(object, address, value); bind(&done); // Clobber all input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(object, Immediate(BitCast(kZapValue))); mov(address, Immediate(BitCast(kZapValue))); mov(value, Immediate(BitCast(kZapValue))); } } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::DebugBreak() { Set(eax, Immediate(0)); mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate()))); CEntryStub ces(1); call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } #endif void MacroAssembler::Set(Register dst, const Immediate& x) { if (x.is_zero()) { xor_(dst, Operand(dst)); // Shorter than mov. } else { mov(dst, x); } } void MacroAssembler::Set(const Operand& dst, const Immediate& x) { mov(dst, x); } bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) { static const int kMaxImmediateBits = 17; if (x.rmode_ != RelocInfo::NONE) return false; return !is_intn(x.x_, kMaxImmediateBits); } void MacroAssembler::SafeSet(Register dst, const Immediate& x) { if (IsUnsafeImmediate(x) && jit_cookie() != 0) { Set(dst, Immediate(x.x_ ^ jit_cookie())); xor_(dst, jit_cookie()); } else { Set(dst, x); } } void MacroAssembler::SafePush(const Immediate& x) { if (IsUnsafeImmediate(x) && jit_cookie() != 0) { push(Immediate(x.x_ ^ jit_cookie())); xor_(Operand(esp, 0), Immediate(jit_cookie())); } else { push(x); } } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpb(FieldOperand(map, Map::kInstanceTypeOffset), static_cast(type)); } void MacroAssembler::CheckFastElements(Register map, Label* fail, Label::Distance distance) { STATIC_ASSERT(JSObject::FAST_ELEMENTS == 0); cmpb(FieldOperand(map, Map::kBitField2Offset), Map::kMaximumBitField2FastElementValue); j(above, fail, distance); } void MacroAssembler::CheckMap(Register obj, Handle map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map)); j(not_equal, fail); } void MacroAssembler::DispatchMap(Register obj, Handle map, Handle success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map)); j(equal, success); bind(&fail); } Condition MacroAssembler::IsObjectStringType(Register heap_object, Register map, Register instance_type) { mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset)); ASSERT(kNotStringTag != 0); test(instance_type, Immediate(kIsNotStringMask)); return zero; } void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map, Register scratch, Label* fail) { mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); IsInstanceJSObjectType(map, scratch, fail); } void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch, Label* fail) { movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset)); sub(Operand(scratch), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); cmp(scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); j(above, fail); } void MacroAssembler::FCmp() { if (CpuFeatures::IsSupported(CMOV)) { fucomip(); ffree(0); fincstp(); } else { fucompp(); push(eax); fnstsw_ax(); sahf(); pop(eax); } } void MacroAssembler::AbortIfNotNumber(Register object) { Label ok; JumpIfSmi(object, &ok); cmp(FieldOperand(object, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); Assert(equal, "Operand not a number"); bind(&ok); } void MacroAssembler::AbortIfNotSmi(Register object) { test(object, Immediate(kSmiTagMask)); Assert(equal, "Operand is not a smi"); } void MacroAssembler::AbortIfNotString(Register object) { test(object, Immediate(kSmiTagMask)); Assert(not_equal, "Operand is not a string"); push(object); mov(object, FieldOperand(object, HeapObject::kMapOffset)); CmpInstanceType(object, FIRST_NONSTRING_TYPE); pop(object); Assert(below, "Operand is not a string"); } void MacroAssembler::AbortIfSmi(Register object) { test(object, Immediate(kSmiTagMask)); Assert(not_equal, "Operand is a smi"); } void MacroAssembler::EnterFrame(StackFrame::Type type) { push(ebp); mov(ebp, Operand(esp)); push(esi); push(Immediate(Smi::FromInt(type))); push(Immediate(CodeObject())); if (emit_debug_code()) { cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value())); Check(not_equal, "code object not properly patched"); } } void MacroAssembler::LeaveFrame(StackFrame::Type type) { if (emit_debug_code()) { cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset), Immediate(Smi::FromInt(type))); Check(equal, "stack frame types must match"); } leave(); } void MacroAssembler::EnterExitFramePrologue() { // Setup the frame structure on the stack. ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize); ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize); ASSERT(ExitFrameConstants::kCallerFPOffset == 0 * kPointerSize); push(ebp); mov(ebp, Operand(esp)); // Reserve room for entry stack pointer and push the code object. ASSERT(ExitFrameConstants::kSPOffset == -1 * kPointerSize); push(Immediate(0)); // Saved entry sp, patched before call. push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address(Isolate::k_c_entry_fp_address, isolate()); ExternalReference context_address(Isolate::k_context_address, isolate()); mov(Operand::StaticVariable(c_entry_fp_address), ebp); mov(Operand::StaticVariable(context_address), esi); } void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { // Optionally save all XMM registers. if (save_doubles) { CpuFeatures::Scope scope(SSE2); int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize; sub(Operand(esp), Immediate(space)); const int offset = -2 * kPointerSize; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movdbl(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); } } else { sub(Operand(esp), Immediate(argc * kPointerSize)); } // Get the required frame alignment for the OS. const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); and_(esp, -kFrameAlignment); } // Patch the saved entry sp. mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); } void MacroAssembler::EnterExitFrame(bool save_doubles) { EnterExitFramePrologue(); // Setup argc and argv in callee-saved registers. int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; mov(edi, Operand(eax)); lea(esi, Operand(ebp, eax, times_4, offset)); // Reserve space for argc, argv and isolate. EnterExitFrameEpilogue(3, save_doubles); } void MacroAssembler::EnterApiExitFrame(int argc) { EnterExitFramePrologue(); EnterExitFrameEpilogue(argc, false); } void MacroAssembler::LeaveExitFrame(bool save_doubles) { // Optionally restore all XMM registers. if (save_doubles) { CpuFeatures::Scope scope(SSE2); const int offset = -2 * kPointerSize; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movdbl(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); } } // Get the return address from the stack and restore the frame pointer. mov(ecx, Operand(ebp, 1 * kPointerSize)); mov(ebp, Operand(ebp, 0 * kPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(esp, Operand(esi, 1 * kPointerSize)); // Push the return address to get ready to return. push(ecx); LeaveExitFrameEpilogue(); } void MacroAssembler::LeaveExitFrameEpilogue() { // Restore current context from top and clear it in debug mode. ExternalReference context_address(Isolate::k_context_address, isolate()); mov(esi, Operand::StaticVariable(context_address)); #ifdef DEBUG mov(Operand::StaticVariable(context_address), Immediate(0)); #endif // Clear the top frame. ExternalReference c_entry_fp_address(Isolate::k_c_entry_fp_address, isolate()); mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); } void MacroAssembler::LeaveApiExitFrame() { mov(esp, Operand(ebp)); pop(ebp); LeaveExitFrameEpilogue(); } void MacroAssembler::PushTryHandler(CodeLocation try_location, HandlerType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // The pc (return address) is already on TOS. if (try_location == IN_JAVASCRIPT) { if (type == TRY_CATCH_HANDLER) { push(Immediate(StackHandler::TRY_CATCH)); } else { push(Immediate(StackHandler::TRY_FINALLY)); } push(ebp); } else { ASSERT(try_location == IN_JS_ENTRY); // The frame pointer does not point to a JS frame so we save NULL // for ebp. We expect the code throwing an exception to check ebp // before dereferencing it to restore the context. push(Immediate(StackHandler::ENTRY)); push(Immediate(0)); // NULL frame pointer. } // Save the current handler as the next handler. push(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address, isolate()))); // Link this handler as the new current one. mov(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address, isolate())), esp); } void MacroAssembler::PopTryHandler() { ASSERT_EQ(0, StackHandlerConstants::kNextOffset); pop(Operand::StaticVariable(ExternalReference(Isolate::k_handler_address, isolate()))); add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); } void MacroAssembler::Throw(Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // eax must hold the exception. if (!value.is(eax)) { mov(eax, value); } // Drop the sp to the top of the handler. ExternalReference handler_address(Isolate::k_handler_address, isolate()); mov(esp, Operand::StaticVariable(handler_address)); // Restore next handler and frame pointer, discard handler state. STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(Operand::StaticVariable(handler_address)); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); pop(ebp); pop(edx); // Remove state. // Before returning we restore the context from the frame pointer if // not NULL. The frame pointer is NULL in the exception handler of // a JS entry frame. Set(esi, Immediate(0)); // Tentatively set context pointer to NULL. Label skip; cmp(ebp, 0); j(equal, &skip, Label::kNear); mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); bind(&skip); STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); ret(0); } void MacroAssembler::ThrowUncatchable(UncatchableExceptionType type, Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // eax must hold the exception. if (!value.is(eax)) { mov(eax, value); } // Drop sp to the top stack handler. ExternalReference handler_address(Isolate::k_handler_address, isolate()); mov(esp, Operand::StaticVariable(handler_address)); // Unwind the handlers until the ENTRY handler is found. Label loop, done; bind(&loop); // Load the type of the current stack handler. const int kStateOffset = StackHandlerConstants::kStateOffset; cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); j(equal, &done, Label::kNear); // Fetch the next handler in the list. const int kNextOffset = StackHandlerConstants::kNextOffset; mov(esp, Operand(esp, kNextOffset)); jmp(&loop); bind(&done); // Set the top handler address to next handler past the current ENTRY handler. STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(Operand::StaticVariable(handler_address)); if (type == OUT_OF_MEMORY) { // Set external caught exception to false. ExternalReference external_caught( Isolate::k_external_caught_exception_address, isolate()); mov(eax, false); mov(Operand::StaticVariable(external_caught), eax); // Set pending exception and eax to out of memory exception. ExternalReference pending_exception(Isolate::k_pending_exception_address, isolate()); mov(eax, reinterpret_cast(Failure::OutOfMemoryException())); mov(Operand::StaticVariable(pending_exception), eax); } // Clear the context pointer. Set(esi, Immediate(0)); // Restore fp from handler and discard handler state. STATIC_ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); pop(ebp); pop(edx); // State. STATIC_ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); ret(0); } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); // Load current lexical context from the stack frame. mov(scratch, Operand(ebp, StandardFrameConstants::kContextOffset)); // When generating debug code, make sure the lexical context is set. if (emit_debug_code()) { cmp(Operand(scratch), Immediate(0)); Check(not_equal, "we should not have an empty lexical context"); } // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; mov(scratch, FieldOperand(scratch, offset)); mov(scratch, FieldOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (emit_debug_code()) { push(scratch); // Read the first word and compare to global_context_map. mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); cmp(scratch, isolate()->factory()->global_context_map()); Check(equal, "JSGlobalObject::global_context should be a global context."); pop(scratch); } // Check if both contexts are the same. cmp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); j(equal, &same_contexts); // Compare security tokens, save holder_reg on the stack so we can use it // as a temporary register. // // TODO(119): avoid push(holder_reg)/pop(holder_reg) push(holder_reg); // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. mov(holder_reg, FieldOperand(holder_reg, JSGlobalProxy::kContextOffset)); // Check the context is a global context. if (emit_debug_code()) { cmp(holder_reg, isolate()->factory()->null_value()); Check(not_equal, "JSGlobalProxy::context() should not be null."); push(holder_reg); // Read the first word and compare to global_context_map(), mov(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset)); cmp(holder_reg, isolate()->factory()->global_context_map()); Check(equal, "JSGlobalObject::global_context should be a global context."); pop(holder_reg); } int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; mov(scratch, FieldOperand(scratch, token_offset)); cmp(scratch, FieldOperand(holder_reg, token_offset)); pop(holder_reg); j(not_equal, miss); bind(&same_contexts); } void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register r0, Register r1, Register r2, Register result) { // Register use: // // elements - holds the slow-case elements of the receiver and is unchanged. // // key - holds the smi key on entry and is unchanged. // // Scratch registers: // // r0 - holds the untagged key on entry and holds the hash once computed. // // r1 - used to hold the capacity mask of the dictionary // // r2 - used for the index into the dictionary. // // result - holds the result on exit if the load succeeds and we fall through. Label done; // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); mov(r1, r0); not_(r0); shl(r1, 15); add(r0, Operand(r1)); // hash = hash ^ (hash >> 12); mov(r1, r0); shr(r1, 12); xor_(r0, Operand(r1)); // hash = hash + (hash << 2); lea(r0, Operand(r0, r0, times_4, 0)); // hash = hash ^ (hash >> 4); mov(r1, r0); shr(r1, 4); xor_(r0, Operand(r1)); // hash = hash * 2057; imul(r0, r0, 2057); // hash = hash ^ (hash >> 16); mov(r1, r0); shr(r1, 16); xor_(r0, Operand(r1)); // Compute capacity mask. mov(r1, FieldOperand(elements, NumberDictionary::kCapacityOffset)); shr(r1, kSmiTagSize); // convert smi to int dec(r1); // Generate an unrolled loop that performs a few probes before giving up. const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Use r2 for index calculations and keep the hash intact in r0. mov(r2, r0); // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { add(Operand(r2), Immediate(NumberDictionary::GetProbeOffset(i))); } and_(r2, Operand(r1)); // Scale the index by multiplying by the entry size. ASSERT(NumberDictionary::kEntrySize == 3); lea(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3 // Check if the key matches. cmp(key, FieldOperand(elements, r2, times_pointer_size, NumberDictionary::kElementsStartOffset)); if (i != (kProbes - 1)) { j(equal, &done); } else { j(not_equal, miss); } } bind(&done); // Check that the value is a normal propety. const int kDetailsOffset = NumberDictionary::kElementsStartOffset + 2 * kPointerSize; ASSERT_EQ(NORMAL, 0); test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset), Immediate(PropertyDetails::TypeField::mask() << kSmiTagSize)); j(not_zero, miss); // Get the value at the masked, scaled index. const int kValueOffset = NumberDictionary::kElementsStartOffset + kPointerSize; mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset)); } void MacroAssembler::LoadAllocationTopHelper(Register result, Register scratch, AllocationFlags flags) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Just return if allocation top is already known. if ((flags & RESULT_CONTAINS_TOP) != 0) { // No use of scratch if allocation top is provided. ASSERT(scratch.is(no_reg)); #ifdef DEBUG // Assert that result actually contains top on entry. cmp(result, Operand::StaticVariable(new_space_allocation_top)); Check(equal, "Unexpected allocation top"); #endif return; } // Move address of new object to result. Use scratch register if available. if (scratch.is(no_reg)) { mov(result, Operand::StaticVariable(new_space_allocation_top)); } else { mov(Operand(scratch), Immediate(new_space_allocation_top)); mov(result, Operand(scratch, 0)); } } void MacroAssembler::UpdateAllocationTopHelper(Register result_end, Register scratch) { if (emit_debug_code()) { test(result_end, Immediate(kObjectAlignmentMask)); Check(zero, "Unaligned allocation in new space"); } ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Update new top. Use scratch if available. if (scratch.is(no_reg)) { mov(Operand::StaticVariable(new_space_allocation_top), result_end); } else { mov(Operand(scratch, 0), result_end); } } void MacroAssembler::AllocateInNewSpace(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Immediate(0x7091)); if (result_end.is_valid()) { mov(result_end, Immediate(0x7191)); } if (scratch.is_valid()) { mov(scratch, Immediate(0x7291)); } } jmp(gc_required); return; } ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); Register top_reg = result_end.is_valid() ? result_end : result; // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); if (!top_reg.is(result)) { mov(top_reg, result); } add(Operand(top_reg), Immediate(object_size)); j(carry, gc_required); cmp(top_reg, Operand::StaticVariable(new_space_allocation_limit)); j(above, gc_required); // Update allocation top. UpdateAllocationTopHelper(top_reg, scratch); // Tag result if requested. if (top_reg.is(result)) { if ((flags & TAG_OBJECT) != 0) { sub(Operand(result), Immediate(object_size - kHeapObjectTag)); } else { sub(Operand(result), Immediate(object_size)); } } else if ((flags & TAG_OBJECT) != 0) { add(Operand(result), Immediate(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(int header_size, ScaleFactor element_size, Register element_count, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Immediate(0x7091)); mov(result_end, Immediate(0x7191)); if (scratch.is_valid()) { mov(scratch, Immediate(0x7291)); } // Register element_count is not modified by the function. } jmp(gc_required); return; } ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); // We assume that element_count*element_size + header_size does not // overflow. lea(result_end, Operand(element_count, element_size, header_size)); add(result_end, Operand(result)); j(carry, gc_required); cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); j(above, gc_required); // Tag result if requested. if ((flags & TAG_OBJECT) != 0) { lea(result, Operand(result, kHeapObjectTag)); } // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); } void MacroAssembler::AllocateInNewSpace(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Immediate(0x7091)); mov(result_end, Immediate(0x7191)); if (scratch.is_valid()) { mov(scratch, Immediate(0x7291)); } // object_size is left unchanged by this function. } jmp(gc_required); return; } ASSERT(!result.is(result_end)); // Load address of new object into result. LoadAllocationTopHelper(result, scratch, flags); // Calculate new top and bail out if new space is exhausted. ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); if (!object_size.is(result_end)) { mov(result_end, object_size); } add(result_end, Operand(result)); j(carry, gc_required); cmp(result_end, Operand::StaticVariable(new_space_allocation_limit)); j(above, gc_required); // Tag result if requested. if ((flags & TAG_OBJECT) != 0) { lea(result, Operand(result, kHeapObjectTag)); } // Update allocation top. UpdateAllocationTopHelper(result_end, scratch); } void MacroAssembler::UndoAllocationInNewSpace(Register object) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Make sure the object has no tag before resetting top. and_(Operand(object), Immediate(~kHeapObjectTagMask)); #ifdef DEBUG cmp(object, Operand::StaticVariable(new_space_allocation_top)); Check(below, "Undo allocation of non allocated memory"); #endif mov(Operand::StaticVariable(new_space_allocation_top), object); } void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(HeapNumber::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->heap_number_map())); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); ASSERT(kShortSize == 2); // scratch1 = length * 2 + kObjectAlignmentMask. lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask)); and_(Operand(scratch1), Immediate(~kObjectAlignmentMask)); // Allocate two byte string in new space. AllocateInNewSpace(SeqTwoByteString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->string_map())); mov(scratch1, length); SmiTag(scratch1); mov(FieldOperand(result, String::kLengthOffset), scratch1); mov(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); mov(scratch1, length); ASSERT(kCharSize == 1); add(Operand(scratch1), Immediate(kObjectAlignmentMask)); and_(Operand(scratch1), Immediate(~kObjectAlignmentMask)); // Allocate ascii string in new space. AllocateInNewSpace(SeqAsciiString::kHeaderSize, times_1, scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->ascii_string_map())); mov(scratch1, length); SmiTag(scratch1); mov(FieldOperand(result, String::kLengthOffset), scratch1); mov(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateAsciiString(Register result, int length, Register scratch1, Register scratch2, Label* gc_required) { ASSERT(length > 0); // Allocate ascii string in new space. AllocateInNewSpace(SeqAsciiString::SizeFor(length), result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map, length and hash field. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->ascii_string_map())); mov(FieldOperand(result, String::kLengthOffset), Immediate(Smi::FromInt(length))); mov(FieldOperand(result, String::kHashFieldOffset), Immediate(String::kEmptyHashField)); } void MacroAssembler::AllocateConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->cons_string_map())); } void MacroAssembler::AllocateAsciiConsString(Register result, Register scratch1, Register scratch2, Label* gc_required) { // Allocate heap number in new space. AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Set the map. The other fields are left uninitialized. mov(FieldOperand(result, HeapObject::kMapOffset), Immediate(isolate()->factory()->cons_ascii_string_map())); } // Copy memory, byte-by-byte, from source to destination. Not optimized for // long or aligned copies. The contents of scratch and length are destroyed. // Source and destination are incremented by length. // Many variants of movsb, loop unrolling, word moves, and indexed operands // have been tried here already, and this is fastest. // A simpler loop is faster on small copies, but 30% slower on large ones. // The cld() instruction must have been emitted, to set the direction flag(), // before calling this function. void MacroAssembler::CopyBytes(Register source, Register destination, Register length, Register scratch) { Label loop, done, short_string, short_loop; // Experimentation shows that the short string loop is faster if length < 10. cmp(Operand(length), Immediate(10)); j(less_equal, &short_string); ASSERT(source.is(esi)); ASSERT(destination.is(edi)); ASSERT(length.is(ecx)); // Because source is 4-byte aligned in our uses of this function, // we keep source aligned for the rep_movs call by copying the odd bytes // at the end of the ranges. mov(scratch, Operand(source, length, times_1, -4)); mov(Operand(destination, length, times_1, -4), scratch); mov(scratch, ecx); shr(ecx, 2); rep_movs(); and_(Operand(scratch), Immediate(0x3)); add(destination, Operand(scratch)); jmp(&done); bind(&short_string); test(length, Operand(length)); j(zero, &done); bind(&short_loop); mov_b(scratch, Operand(source, 0)); mov_b(Operand(destination, 0), scratch); inc(source); inc(destination); dec(length); j(not_zero, &short_loop); bind(&done); } void MacroAssembler::NegativeZeroTest(Register result, Register op, Label* then_label) { Label ok; test(result, Operand(result)); j(not_zero, &ok); test(op, Operand(op)); j(sign, then_label); bind(&ok); } void MacroAssembler::NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label) { Label ok; test(result, Operand(result)); j(not_zero, &ok); mov(scratch, Operand(op1)); or_(scratch, Operand(op2)); j(sign, then_label); bind(&ok); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss) { // Check that the receiver isn't a smi. JumpIfSmi(function, miss); // Check that the function really is a function. CmpObjectType(function, JS_FUNCTION_TYPE, result); j(not_equal, miss); // Make sure that the function has an instance prototype. Label non_instance; movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset)); test(scratch, Immediate(1 << Map::kHasNonInstancePrototype)); j(not_zero, &non_instance); // Get the prototype or initial map from the function. mov(result, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. cmp(Operand(result), Immediate(isolate()->factory()->the_hole_value())); j(equal, miss); // If the function does not have an initial map, we're done. Label done; CmpObjectType(result, MAP_TYPE, scratch); j(not_equal, &done); // Get the prototype from the initial map. mov(result, FieldOperand(result, Map::kPrototypeOffset)); jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); mov(result, FieldOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::CallStub(CodeStub* stub, unsigned ast_id) { ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id); } MaybeObject* MacroAssembler::TryCallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. Object* result; { MaybeObject* maybe_result = stub->TryGetCode(); if (!maybe_result->ToObject(&result)) return maybe_result; } call(Handle(Code::cast(result)), RelocInfo::CODE_TARGET); return result; } void MacroAssembler::TailCallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. jmp(stub->GetCode(), RelocInfo::CODE_TARGET); } MaybeObject* MacroAssembler::TryTailCallStub(CodeStub* stub) { ASSERT(allow_stub_calls()); // Calls are not allowed in some stubs. Object* result; { MaybeObject* maybe_result = stub->TryGetCode(); if (!maybe_result->ToObject(&result)) return maybe_result; } jmp(Handle(Code::cast(result)), RelocInfo::CODE_TARGET); return result; } void MacroAssembler::StubReturn(int argc) { ASSERT(argc >= 1 && generating_stub()); ret((argc - 1) * kPointerSize); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { add(Operand(esp), Immediate(num_arguments * kPointerSize)); } mov(eax, Immediate(isolate()->factory()->undefined_value())); } void MacroAssembler::IndexFromHash(Register hash, Register index) { // The assert checks that the constants for the maximum number of digits // for an array index cached in the hash field and the number of bits // reserved for it does not conflict. ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in // the low kHashShift bits. and_(hash, String::kArrayIndexValueMask); STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0); if (String::kHashShift > kSmiTagSize) { shr(hash, String::kHashShift - kSmiTagSize); } if (!index.is(hash)) { mov(index, hash); } } void MacroAssembler::CallRuntime(Runtime::FunctionId id, int num_arguments) { CallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { const Runtime::Function* function = Runtime::FunctionForId(id); Set(eax, Immediate(function->nargs)); mov(ebx, Immediate(ExternalReference(function, isolate()))); CEntryStub ces(1); ces.SaveDoubles(); CallStub(&ces); } MaybeObject* MacroAssembler::TryCallRuntime(Runtime::FunctionId id, int num_arguments) { return TryCallRuntime(Runtime::FunctionForId(id), num_arguments); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(eax, Immediate(num_arguments)); mov(ebx, Immediate(ExternalReference(f, isolate()))); CEntryStub ces(1); CallStub(&ces); } MaybeObject* MacroAssembler::TryCallRuntime(const Runtime::Function* f, int num_arguments) { if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); // Since we did not call the stub, there was no allocation failure. // Return some non-failure object. return isolate()->heap()->undefined_value(); } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(eax, Immediate(num_arguments)); mov(ebx, Immediate(ExternalReference(f, isolate()))); CEntryStub ces(1); return TryCallStub(&ces); } void MacroAssembler::CallExternalReference(ExternalReference ref, int num_arguments) { mov(eax, Immediate(num_arguments)); mov(ebx, Immediate(ref)); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(eax, Immediate(num_arguments)); JumpToExternalReference(ext); } MaybeObject* MacroAssembler::TryTailCallExternalReference( const ExternalReference& ext, int num_arguments, int result_size) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Set(eax, Immediate(num_arguments)); return TryJumpToExternalReference(ext); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, result_size); } MaybeObject* MacroAssembler::TryTailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { return TryTailCallExternalReference( ExternalReference(fid, isolate()), num_arguments, result_size); } // If true, a Handle returned by value from a function with cdecl calling // convention will be returned directly as a value of location_ field in a // register eax. // If false, it is returned as a pointer to a preallocated by caller memory // region. Pointer to this region should be passed to a function as an // implicit first argument. #if defined(USING_BSD_ABI) || defined(__MINGW32__) || defined(__CYGWIN__) static const bool kReturnHandlesDirectly = true; #else static const bool kReturnHandlesDirectly = false; #endif Operand ApiParameterOperand(int index) { return Operand( esp, (index + (kReturnHandlesDirectly ? 0 : 1)) * kPointerSize); } void MacroAssembler::PrepareCallApiFunction(int argc) { if (kReturnHandlesDirectly) { EnterApiExitFrame(argc); // When handles are returned directly we don't have to allocate extra // space for and pass an out parameter. if (emit_debug_code()) { mov(esi, Immediate(BitCast(kZapValue))); } } else { // We allocate two additional slots: return value and pointer to it. EnterApiExitFrame(argc + 2); // The argument slots are filled as follows: // // n + 1: output slot // n: arg n // ... // 1: arg1 // 0: pointer to the output slot lea(esi, Operand(esp, (argc + 1) * kPointerSize)); mov(Operand(esp, 0 * kPointerSize), esi); if (emit_debug_code()) { mov(Operand(esi, 0), Immediate(0)); } } } MaybeObject* MacroAssembler::TryCallApiFunctionAndReturn(ApiFunction* function, int stack_space) { ExternalReference next_address = ExternalReference::handle_scope_next_address(); ExternalReference limit_address = ExternalReference::handle_scope_limit_address(); ExternalReference level_address = ExternalReference::handle_scope_level_address(); // Allocate HandleScope in callee-save registers. mov(ebx, Operand::StaticVariable(next_address)); mov(edi, Operand::StaticVariable(limit_address)); add(Operand::StaticVariable(level_address), Immediate(1)); // Call the api function! call(function->address(), RelocInfo::RUNTIME_ENTRY); if (!kReturnHandlesDirectly) { // PrepareCallApiFunction saved pointer to the output slot into // callee-save register esi. mov(eax, Operand(esi, 0)); } Label empty_handle; Label prologue; Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; // Check if the result handle holds 0. test(eax, Operand(eax)); j(zero, &empty_handle); // It was non-zero. Dereference to get the result value. mov(eax, Operand(eax, 0)); bind(&prologue); // No more valid handles (the result handle was the last one). Restore // previous handle scope. mov(Operand::StaticVariable(next_address), ebx); sub(Operand::StaticVariable(level_address), Immediate(1)); Assert(above_equal, "Invalid HandleScope level"); cmp(edi, Operand::StaticVariable(limit_address)); j(not_equal, &delete_allocated_handles); bind(&leave_exit_frame); // Check if the function scheduled an exception. ExternalReference scheduled_exception_address = ExternalReference::scheduled_exception_address(isolate()); cmp(Operand::StaticVariable(scheduled_exception_address), Immediate(isolate()->factory()->the_hole_value())); j(not_equal, &promote_scheduled_exception); LeaveApiExitFrame(); ret(stack_space * kPointerSize); bind(&promote_scheduled_exception); MaybeObject* result = TryTailCallRuntime(Runtime::kPromoteScheduledException, 0, 1); if (result->IsFailure()) { return result; } bind(&empty_handle); // It was zero; the result is undefined. mov(eax, isolate()->factory()->undefined_value()); jmp(&prologue); // HandleScope limit has changed. Delete allocated extensions. ExternalReference delete_extensions = ExternalReference::delete_handle_scope_extensions(isolate()); bind(&delete_allocated_handles); mov(Operand::StaticVariable(limit_address), edi); mov(edi, eax); mov(Operand(esp, 0), Immediate(ExternalReference::isolate_address())); mov(eax, Immediate(delete_extensions)); call(Operand(eax)); mov(eax, edi); jmp(&leave_exit_frame); return result; } void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) { // Set the entry point and jump to the C entry runtime stub. mov(ebx, Immediate(ext)); CEntryStub ces(1); jmp(ces.GetCode(), RelocInfo::CODE_TARGET); } MaybeObject* MacroAssembler::TryJumpToExternalReference( const ExternalReference& ext) { // Set the entry point and jump to the C entry runtime stub. mov(ebx, Immediate(ext)); CEntryStub ces(1); return TryTailCallStub(&ces); } void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { // This macro takes the dst register to make the code more readable // at the call sites. However, the dst register has to be ecx to // follow the calling convention which requires the call type to be // in ecx. ASSERT(dst.is(ecx)); if (call_kind == CALL_AS_FUNCTION) { // Set to some non-zero smi by updating the least significant // byte. mov_b(Operand(dst), 1 << kSmiTagSize); } else { // Set to smi zero by clearing the register. xor_(dst, Operand(dst)); } } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, const Operand& code_operand, Label* done, InvokeFlag flag, Label::Distance done_near, const CallWrapper& call_wrapper, CallKind call_kind) { bool definitely_matches = false; Label invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { mov(eax, actual.immediate()); const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { mov(ebx, expected.immediate()); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmp(expected.reg(), actual.immediate()); j(equal, &invoke); ASSERT(expected.reg().is(ebx)); mov(eax, actual.immediate()); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmp(expected.reg(), Operand(actual.reg())); j(equal, &invoke); ASSERT(actual.reg().is(eax)); ASSERT(expected.reg().is(ebx)); } } if (!definitely_matches) { Handle adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (!code_constant.is_null()) { mov(edx, Immediate(code_constant)); add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_operand.is_reg(edx)) { mov(edx, code_operand); } if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET)); SetCallKind(ecx, call_kind); call(adaptor, RelocInfo::CODE_TARGET); call_wrapper.AfterCall(); jmp(done, done_near); } else { SetCallKind(ecx, call_kind); jmp(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } void MacroAssembler::InvokeCode(const Operand& code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { Label done; InvokePrologue(expected, actual, Handle::null(), code, &done, flag, Label::kNear, call_wrapper, call_kind); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); SetCallKind(ecx, call_kind); call(code); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(ecx, call_kind); jmp(code); } bind(&done); } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { Label done; Operand dummy(eax); InvokePrologue(expected, actual, code, dummy, &done, flag, Label::kNear, call_wrapper, call_kind); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code, rmode)); SetCallKind(ecx, call_kind); call(code, rmode); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(ecx, call_kind); jmp(code, rmode); } bind(&done); } void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { ASSERT(fun.is(edi)); mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset)); SmiUntag(ebx); ParameterCount expected(ebx); InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), expected, actual, flag, call_wrapper, call_kind); } void MacroAssembler::InvokeFunction(JSFunction* function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { ASSERT(function->is_compiled()); // Get the function and setup the context. mov(edi, Immediate(Handle(function))); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); ParameterCount expected(function->shared()->formal_parameter_count()); if (V8::UseCrankshaft()) { // TODO(kasperl): For now, we always call indirectly through the // code field in the function to allow recompilation to take effect // without changing any of the call sites. InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), expected, actual, flag, call_wrapper, call_kind); } else { Handle code(function->code()); InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag, call_wrapper, call_kind); } } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper) { // Calls are not allowed in some stubs. ASSERT(flag == JUMP_FUNCTION || allow_stub_calls()); // Rely on the assertion to check that the number of provided // arguments match the expected number of arguments. Fake a // parameter count to avoid emitting code to do the check. ParameterCount expected(0); GetBuiltinFunction(edi, id); InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset), expected, expected, flag, call_wrapper, CALL_AS_METHOD); } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { // Load the JavaScript builtin function from the builtins object. mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset)); mov(target, FieldOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { ASSERT(!target.is(edi)); // Load the JavaScript builtin function from the builtins object. GetBuiltinFunction(edi, id); // Load the code entry point from the function into the target register. mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset)); } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). mov(dst, esi); } // We should not have found a with context by walking the context chain // (i.e., the static scope chain and runtime context chain do not agree). // A variable occurring in such a scope should have slot type LOOKUP and // not CONTEXT. if (emit_debug_code()) { cmp(FieldOperand(dst, HeapObject::kMapOffset), isolate()->factory()->with_context_map()); Check(not_equal, "Variable resolved to with context."); } } void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the global or builtins object from the current context. mov(function, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); // Load the global context from the global or builtins object. mov(function, FieldOperand(function, GlobalObject::kGlobalContextOffset)); // Load the function from the global context. mov(function, Operand(function, Context::SlotOffset(index))); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map) { // Load the initial map. The global functions all have initial maps. mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK); jmp(&ok); bind(&fail); Abort("Global functions must have initial map"); bind(&ok); } } // Store the value in register src in the safepoint register stack // slot for register dst. void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) { mov(SafepointRegisterSlot(dst), src); } void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) { mov(SafepointRegisterSlot(dst), src); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { mov(dst, SafepointRegisterSlot(src)); } Operand MacroAssembler::SafepointRegisterSlot(Register reg) { return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the lowest encoding, // which means that lowest encodings are furthest away from // the stack pointer. ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters); return kNumSafepointRegisters - reg_code - 1; } void MacroAssembler::Ret() { ret(0); } void MacroAssembler::Ret(int bytes_dropped, Register scratch) { if (is_uint16(bytes_dropped)) { ret(bytes_dropped); } else { pop(scratch); add(Operand(esp), Immediate(bytes_dropped)); push(scratch); ret(0); } } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { add(Operand(esp), Immediate(stack_elements * kPointerSize)); } } void MacroAssembler::Move(Register dst, Register src) { if (!dst.is(src)) { mov(dst, src); } } void MacroAssembler::Move(Register dst, Handle value) { mov(dst, value); } void MacroAssembler::SetCounter(StatsCounter* counter, int value) { if (FLAG_native_code_counters && counter->Enabled()) { mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { inc(operand); } else { add(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = Operand::StaticVariable(ExternalReference(counter)); if (value == 1) { dec(operand); } else { sub(operand, Immediate(value)); } } } void MacroAssembler::IncrementCounter(Condition cc, StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Label skip; j(NegateCondition(cc), &skip); pushfd(); IncrementCounter(counter, value); popfd(); bind(&skip); } } void MacroAssembler::DecrementCounter(Condition cc, StatsCounter* counter, int value) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { Label skip; j(NegateCondition(cc), &skip); pushfd(); DecrementCounter(counter, value); popfd(); bind(&skip); } } void MacroAssembler::Assert(Condition cc, const char* msg) { if (emit_debug_code()) Check(cc, msg); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { Factory* factory = isolate()->factory(); Label ok; cmp(FieldOperand(elements, HeapObject::kMapOffset), Immediate(factory->fixed_array_map())); j(equal, &ok); cmp(FieldOperand(elements, HeapObject::kMapOffset), Immediate(factory->fixed_cow_array_map())); j(equal, &ok); Abort("JSObject with fast elements map has slow elements"); bind(&ok); } } void MacroAssembler::Check(Condition cc, const char* msg) { Label L; j(cc, &L); Abort(msg); // will not return here bind(&L); } void MacroAssembler::CheckStackAlignment() { int frame_alignment = OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { ASSERT(IsPowerOf2(frame_alignment)); Label alignment_as_expected; test(esp, Immediate(frame_alignment_mask)); j(zero, &alignment_as_expected); // Abort if stack is not aligned. int3(); bind(&alignment_as_expected); } } void MacroAssembler::Abort(const char* msg) { // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif // Disable stub call restrictions to always allow calls to abort. AllowStubCallsScope allow_scope(this, true); push(eax); push(Immediate(p0)); push(Immediate(reinterpret_cast(Smi::FromInt(p1 - p0)))); CallRuntime(Runtime::kAbort, 2); // will not return here int3(); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { mov(descriptors, FieldOperand(map, Map::kInstanceDescriptorsOrBitField3Offset)); Label not_smi; JumpIfNotSmi(descriptors, ¬_smi); mov(descriptors, isolate()->factory()->empty_descriptor_array()); bind(¬_smi); } void MacroAssembler::LoadPowerOf2(XMMRegister dst, Register scratch, int power) { ASSERT(is_uintn(power + HeapNumber::kExponentBias, HeapNumber::kExponentBits)); mov(scratch, Immediate(power + HeapNumber::kExponentBias)); movd(dst, Operand(scratch)); psllq(dst, HeapNumber::kMantissaBits); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( Register instance_type, Register scratch, Label* failure) { if (!scratch.is(instance_type)) { mov(scratch, instance_type); } and_(scratch, kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask); cmp(scratch, kStringTag | kSeqStringTag | kAsciiStringTag); j(not_equal, failure); } void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1, Register object2, Register scratch1, Register scratch2, Label* failure) { // Check that both objects are not smis. ASSERT_EQ(0, kSmiTag); mov(scratch1, Operand(object1)); and_(scratch1, Operand(object2)); JumpIfSmi(scratch1, failure); // Load instance type for both strings. mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset)); mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset)); movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); // Check that both are flat ascii strings. const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; // Interleave bits from both instance types and compare them in one check. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); and_(scratch1, kFlatAsciiStringMask); and_(scratch2, kFlatAsciiStringMask); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3)); j(not_equal, failure); } void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { int frame_alignment = OS::ActivationFrameAlignment(); if (frame_alignment != 0) { // Make stack end at alignment and make room for num_arguments words // and the original value of esp. mov(scratch, esp); sub(Operand(esp), Immediate((num_arguments + 1) * kPointerSize)); ASSERT(IsPowerOf2(frame_alignment)); and_(esp, -frame_alignment); mov(Operand(esp, num_arguments * kPointerSize), scratch); } else { sub(Operand(esp), Immediate(num_arguments * kPointerSize)); } } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { // Trashing eax is ok as it will be the return value. mov(Operand(eax), Immediate(function)); CallCFunction(eax, num_arguments); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { // Check stack alignment. if (emit_debug_code()) { CheckStackAlignment(); } call(Operand(function)); if (OS::ActivationFrameAlignment() != 0) { mov(esp, Operand(esp, num_arguments * kPointerSize)); } else { add(Operand(esp), Immediate(num_arguments * kPointerSize)); } } CodePatcher::CodePatcher(byte* address, int size) : address_(address), size_(size), masm_(Isolate::Current(), address, size + Assembler::kGap) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32