// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "codegen-inl.h" #include "compiler.h" #include "debug.h" #include "fast-codegen.h" #include "parser.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o rdi: the JS function object being called (ie, ourselves) // o rsi: our context // o rbp: our caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-x64.h for its layout. void FastCodeGenerator::Generate(FunctionLiteral* fun) { function_ = fun; SetFunctionPosition(fun); __ push(rbp); // Caller's frame pointer. __ movq(rbp, rsp); __ push(rsi); // Callee's context. __ push(rdi); // Callee's JS Function. { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = fun->scope()->num_stack_slots(); if (locals_count == 1) { __ PushRoot(Heap::kUndefinedValueRootIndex); } else if (locals_count > 1) { __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); for (int i = 0; i < locals_count; i++) { __ push(rdx); } } } bool function_in_register = true; // Possibly allocate a local context. if (fun->scope()->num_heap_slots() > 0) { Comment cmnt(masm_, "[ Allocate local context"); // Argument to NewContext is the function, which is still in rdi. __ push(rdi); __ CallRuntime(Runtime::kNewContext, 1); function_in_register = false; // Context is returned in both rax and rsi. It replaces the context // passed to us. It's saved in the stack and kept live in rsi. __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); // Copy any necessary parameters into the context. int num_parameters = fun->scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Slot* slot = fun->scope()->parameter(i)->slot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movq(rax, Operand(rbp, parameter_offset)); // Store it in the context __ movq(Operand(rsi, Context::SlotOffset(slot->index())), rax); } } } // Possibly allocate an arguments object. Variable* arguments = fun->scope()->arguments()->AsVariable(); if (arguments != NULL) { // Arguments object must be allocated after the context object, in // case the "arguments" or ".arguments" variables are in the context. Comment cmnt(masm_, "[ Allocate arguments object"); if (function_in_register) { __ push(rdi); } else { __ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // The receiver is just before the parameters on the caller's stack. __ lea(rdx, Operand(rbp, StandardFrameConstants::kCallerSPOffset + fun->num_parameters() * kPointerSize)); __ push(rdx); __ Push(Smi::FromInt(fun->num_parameters())); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiver and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); __ CallStub(&stub); // Store new arguments object in both "arguments" and ".arguments" slots. __ movq(rcx, rax); Move(arguments->slot(), rax, rbx, rdx); Slot* dot_arguments_slot = fun->scope()->arguments_shadow()->AsVariable()->slot(); Move(dot_arguments_slot, rcx, rbx, rdx); } { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(fun->scope()->declarations()); } { Comment cmnt(masm_, "[ Stack check"); Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok); StackCheckStub stub; __ CallStub(&stub); __ bind(&ok); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(fun->body()); ASSERT(loop_depth() == 0); } { Comment cmnt(masm_, "[ return ;"); // Emit a 'return undefined' in case control fell off the end of the body. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); EmitReturnSequence(function_->end_position()); } } void FastCodeGenerator::EmitReturnSequence(int position) { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ jmp(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { __ push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } #ifdef DEBUG // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif CodeGenerator::RecordPositions(masm_, position); __ RecordJSReturn(); // Do not use the leave instruction here because it is too short to // patch with the code required by the debugger. __ movq(rsp, rbp); __ pop(rbp); __ ret((function_->scope()->num_parameters() + 1) * kPointerSize); #ifdef ENABLE_DEBUGGER_SUPPORT // Add padding that will be overwritten by a debugger breakpoint. We // have just generated "movq rsp, rbp; pop rbp; ret k" with length 7 // (3 + 1 + 3). const int kPadding = Assembler::kJSReturnSequenceLength - 7; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } // Check that the size of the code used for returning matches what is // expected by the debugger. ASSERT_EQ(Assembler::kJSReturnSequenceLength, masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif } } void FastCodeGenerator::Apply(Expression::Context context, Register reg) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Nothing to do. break; case Expression::kValue: // Move value into place. switch (location_) { case kAccumulator: if (!reg.is(result_register())) __ movq(result_register(), reg); break; case kStack: __ push(reg); break; } break; case Expression::kValueTest: case Expression::kTestValue: // Push an extra copy of the value in case it's needed. __ push(reg); // Fall through. case Expression::kTest: // For simplicity we always test the accumulator register. if (!reg.is(result_register())) __ movq(result_register(), reg); DoTest(context); break; } } void FastCodeGenerator::Apply(Expression::Context context, Slot* slot) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Nothing to do. break; case Expression::kValue: { MemOperand slot_operand = EmitSlotSearch(slot, result_register()); switch (location_) { case kAccumulator: __ movq(result_register(), slot_operand); break; case kStack: // Memory operands can be pushed directly. __ push(slot_operand); break; } break; } case Expression::kTest: Move(result_register(), slot); DoTest(context); break; case Expression::kValueTest: case Expression::kTestValue: Move(result_register(), slot); __ push(result_register()); DoTest(context); break; } } void FastCodeGenerator::Apply(Expression::Context context, Literal* lit) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Nothing to do. break; case Expression::kValue: switch (location_) { case kAccumulator: __ Move(result_register(), lit->handle()); break; case kStack: __ Push(lit->handle()); break; } break; case Expression::kTest: __ Move(result_register(), lit->handle()); DoTest(context); break; case Expression::kValueTest: case Expression::kTestValue: __ Move(result_register(), lit->handle()); __ push(result_register()); DoTest(context); break; } } void FastCodeGenerator::ApplyTOS(Expression::Context context) { switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: __ Drop(1); break; case Expression::kValue: switch (location_) { case kAccumulator: __ pop(result_register()); break; case kStack: break; } break; case Expression::kTest: __ pop(result_register()); DoTest(context); break; case Expression::kValueTest: case Expression::kTestValue: __ movq(result_register(), Operand(rsp, 0)); DoTest(context); break; } } void FastCodeGenerator::DropAndApply(int count, Expression::Context context, Register reg) { ASSERT(count > 0); ASSERT(!reg.is(rsp)); switch (context) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: __ Drop(count); break; case Expression::kValue: switch (location_) { case kAccumulator: __ Drop(count); if (!reg.is(result_register())) __ movq(result_register(), reg); break; case kStack: if (count > 1) __ Drop(count - 1); __ movq(Operand(rsp, 0), reg); break; } break; case Expression::kTest: __ Drop(count); if (!reg.is(result_register())) __ movq(result_register(), reg); DoTest(context); break; case Expression::kValueTest: case Expression::kTestValue: if (count > 1) __ Drop(count - 1); if (!reg.is(result_register())) __ movq(result_register(), reg); __ movq(Operand(rsp, 0), result_register()); DoTest(context); break; } } void FastCodeGenerator::Apply(Expression::Context context, Label* materialize_true, Label* materialize_false) { switch (context) { case Expression::kUninitialized: case Expression::kEffect: ASSERT_EQ(materialize_true, materialize_false); __ bind(materialize_true); case Expression::kValue: { Label done; switch (location_) { case kAccumulator: __ bind(materialize_true); __ Move(result_register(), Factory::true_value()); __ jmp(&done); __ bind(materialize_false); __ Move(result_register(), Factory::false_value()); break; case kStack: __ bind(materialize_true); __ Push(Factory::true_value()); __ jmp(&done); __ bind(materialize_false); __ Push(Factory::false_value()); break; } __ bind(&done); break; } case Expression::kTest: break; case Expression::kValueTest: __ bind(materialize_true); switch (location_) { case kAccumulator: __ Move(result_register(), Factory::true_value()); break; case kStack: __ Push(Factory::true_value()); break; } __ jmp(true_label_); break; case Expression::kTestValue: __ bind(materialize_false); switch (location_) { case kAccumulator: __ Move(result_register(), Factory::false_value()); break; case kStack: __ Push(Factory::false_value()); break; } __ jmp(false_label_); break; } } void FastCodeGenerator::DoTest(Expression::Context context) { // The value to test is in the accumulator, and duplicated on the stack if // necessary (for value/test and test/value contexts). ASSERT_NE(NULL, true_label_); ASSERT_NE(NULL, false_label_); // If there is a value on the stack, use a discard label for the // value-is-unneeded branch in the inlined part of the test. Label discard; Label* if_true = (context == Expression::kTestValue) ? &discard : true_label_; Label* if_false = (context == Expression::kValueTest) ? &discard : false_label_; // Emit the inlined tests assumed by the stub. __ CompareRoot(result_register(), Heap::kUndefinedValueRootIndex); __ j(equal, if_false); __ CompareRoot(result_register(), Heap::kTrueValueRootIndex); __ j(equal, if_true); __ CompareRoot(result_register(), Heap::kFalseValueRootIndex); __ j(equal, if_false); ASSERT_EQ(0, kSmiTag); __ SmiCompare(result_register(), Smi::FromInt(0)); __ j(equal, if_false); Condition is_smi = masm_->CheckSmi(result_register()); __ j(is_smi, if_true); // Call the ToBoolean stub for all other cases. ToBooleanStub stub; __ push(result_register()); __ CallStub(&stub); __ testq(rax, rax); // The stub returns nonzero for true. Complete based on the context. switch (context) { case Expression::kUninitialized: case Expression::kEffect: case Expression::kValue: UNREACHABLE(); case Expression::kTest: __ j(not_zero, true_label_); __ jmp(false_label_); break; case Expression::kValueTest: switch (location_) { case kAccumulator: __ j(zero, &discard); __ pop(result_register()); __ jmp(true_label_); break; case kStack: __ j(not_zero, true_label_); break; } __ bind(&discard); __ Drop(1); __ jmp(false_label_); break; case Expression::kTestValue: switch (location_) { case kAccumulator: __ j(not_zero, &discard); __ pop(result_register()); __ jmp(false_label_); break; case kStack: __ j(zero, false_label_); break; } __ bind(&discard); __ Drop(1); __ jmp(true_label_); break; } } MemOperand FastCodeGenerator::EmitSlotSearch(Slot* slot, Register scratch) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: return Operand(rbp, SlotOffset(slot)); case Slot::CONTEXT: { int context_chain_length = function_->scope()->ContextChainLength(slot->var()->scope()); __ LoadContext(scratch, context_chain_length); return CodeGenerator::ContextOperand(scratch, slot->index()); } case Slot::LOOKUP: UNREACHABLE(); } UNREACHABLE(); return Operand(rax, 0); } void FastCodeGenerator::Move(Register destination, Slot* source) { MemOperand location = EmitSlotSearch(source, destination); __ movq(destination, location); } void FastCodeGenerator::Move(Slot* dst, Register src, Register scratch1, Register scratch2) { ASSERT(dst->type() != Slot::LOOKUP); // Not yet implemented. ASSERT(!scratch1.is(src) && !scratch2.is(src)); MemOperand location = EmitSlotSearch(dst, scratch1); __ movq(location, src); // Emit the write barrier code if the location is in the heap. if (dst->type() == Slot::CONTEXT) { int offset = FixedArray::kHeaderSize + dst->index() * kPointerSize; __ RecordWrite(scratch1, offset, src, scratch2); } } void FastCodeGenerator::VisitDeclaration(Declaration* decl) { Comment cmnt(masm_, "[ Declaration"); Variable* var = decl->proxy()->var(); ASSERT(var != NULL); // Must have been resolved. Slot* slot = var->slot(); Property* prop = var->AsProperty(); if (slot != NULL) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: if (decl->mode() == Variable::CONST) { __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movq(Operand(rbp, SlotOffset(slot)), kScratchRegister); } else if (decl->fun() != NULL) { VisitForValue(decl->fun(), kAccumulator); __ movq(Operand(rbp, SlotOffset(slot)), result_register()); } break; case Slot::CONTEXT: // We bypass the general EmitSlotSearch because we know more about // this specific context. // The variable in the decl always resides in the current context. ASSERT_EQ(0, function_->scope()->ContextChainLength(var->scope())); if (FLAG_debug_code) { // Check if we have the correct context pointer. __ movq(rbx, CodeGenerator::ContextOperand(rsi, Context::FCONTEXT_INDEX)); __ cmpq(rbx, rsi); __ Check(equal, "Unexpected declaration in current context."); } if (decl->mode() == Variable::CONST) { __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movq(CodeGenerator::ContextOperand(rsi, slot->index()), kScratchRegister); // No write barrier since the hole value is in old space. } else if (decl->fun() != NULL) { VisitForValue(decl->fun(), kAccumulator); __ movq(CodeGenerator::ContextOperand(rsi, slot->index()), result_register()); int offset = Context::SlotOffset(slot->index()); __ RecordWrite(rsi, offset, result_register(), rcx); } break; case Slot::LOOKUP: { __ push(rsi); __ Push(var->name()); // Declaration nodes are always introduced in one of two modes. ASSERT(decl->mode() == Variable::VAR || decl->mode() == Variable::CONST); PropertyAttributes attr = (decl->mode() == Variable::VAR) ? NONE : READ_ONLY; __ Push(Smi::FromInt(attr)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (decl->mode() == Variable::CONST) { __ PushRoot(Heap::kTheHoleValueRootIndex); } else if (decl->fun() != NULL) { VisitForValue(decl->fun(), kStack); } else { __ Push(Smi::FromInt(0)); // no initial value! } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } } } else if (prop != NULL) { if (decl->fun() != NULL || decl->mode() == Variable::CONST) { // We are declaring a function or constant that rewrites to a // property. Use (keyed) IC to set the initial value. VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kStack); if (decl->fun() != NULL) { VisitForValue(decl->fun(), kAccumulator); } else { __ LoadRoot(result_register(), Heap::kTheHoleValueRootIndex); } Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // Absence of a test rax instruction following the call // indicates that none of the load was inlined. __ nop(); // Value in rax is ignored (declarations are statements). Receiver // and key on stack are discarded. __ Drop(2); } } } void FastCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. __ push(rsi); // The context is the first argument. __ Push(pairs); __ Push(Smi::FromInt(is_eval_ ? 1 : 0)); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FastCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle boilerplate = Compiler::BuildBoilerplate(expr, script_, this); if (HasStackOverflow()) return; ASSERT(boilerplate->IsBoilerplate()); // Create a new closure. __ push(rsi); __ Push(boilerplate); __ CallRuntime(Runtime::kNewClosure, 2); Apply(expr->context(), rax); } void FastCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr->var(), expr->context()); } void FastCodeGenerator::EmitVariableLoad(Variable* var, Expression::Context context) { Expression* rewrite = var->rewrite(); if (rewrite == NULL) { ASSERT(var->is_global()); Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in rcx and the global // object on the stack. __ push(CodeGenerator::GlobalObject()); __ Move(rcx, var->name()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET_CONTEXT); // A test rax instruction following the call is used by the IC to // indicate that the inobject property case was inlined. Ensure there // is no test rax instruction here. __ nop(); DropAndApply(1, context, rax); } else if (rewrite->AsSlot() != NULL) { Slot* slot = rewrite->AsSlot(); if (FLAG_debug_code) { switch (slot->type()) { case Slot::PARAMETER: case Slot::LOCAL: { Comment cmnt(masm_, "Stack slot"); break; } case Slot::CONTEXT: { Comment cmnt(masm_, "Context slot"); break; } case Slot::LOOKUP: UNIMPLEMENTED(); break; } } Apply(context, slot); } else { Comment cmnt(masm_, "Variable rewritten to property"); // A variable has been rewritten into an explicit access to an object // property. Property* property = rewrite->AsProperty(); ASSERT_NOT_NULL(property); // The only property expressions that can occur are of the form // "slot[literal]". // Assert that the object is in a slot. Variable* object_var = property->obj()->AsVariableProxy()->AsVariable(); ASSERT_NOT_NULL(object_var); Slot* object_slot = object_var->slot(); ASSERT_NOT_NULL(object_slot); // Load the object. MemOperand object_loc = EmitSlotSearch(object_slot, rax); __ push(object_loc); // Assert that the key is a smi. Literal* key_literal = property->key()->AsLiteral(); ASSERT_NOT_NULL(key_literal); ASSERT(key_literal->handle()->IsSmi()); // Load the key. __ Push(key_literal->handle()); // Do a keyed property load. Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // Notice: We must not have a "test rax, ..." instruction after the // call. It is treated specially by the LoadIC code. __ nop(); // Drop key and object left on the stack by IC, and push the result. DropAndApply(2, context, rax); } } void FastCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label done; // Registers will be used as follows: // rdi = JS function. // rbx = literals array. // rax = regexp literal. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rbx, FieldOperand(rdi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ movq(rax, FieldOperand(rbx, literal_offset)); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(not_equal, &done); // Create regexp literal using runtime function // Result will be in rax. __ push(rbx); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->pattern()); __ Push(expr->flags()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ bind(&done); Apply(expr->context(), rax); } void FastCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rdi, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->constant_properties()); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateObjectLiteral, 3); } else { __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 3); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in rax. bool result_saved = false; for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(rax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { VisitForValue(value, kAccumulator); __ Move(rcx, key->handle()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); __ nop(); // StoreIC leaves the receiver on the stack. break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: __ push(Operand(rsp, 0)); // Duplicate receiver. VisitForValue(key, kStack); VisitForValue(value, kStack); __ CallRuntime(Runtime::kSetProperty, 3); break; case ObjectLiteral::Property::SETTER: case ObjectLiteral::Property::GETTER: __ push(Operand(rsp, 0)); // Duplicate receiver. VisitForValue(key, kStack); __ Push(property->kind() == ObjectLiteral::Property::SETTER ? Smi::FromInt(1) : Smi::FromInt(0)); VisitForValue(value, kStack); __ CallRuntime(Runtime::kDefineAccessor, 4); break; } } if (result_saved) { ApplyTOS(expr->context()); } else { Apply(expr->context(), rax); } } void FastCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rbx, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->constant_elements()); if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateArrayLiteral, 3); } else { __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. ZoneList* subexprs = expr->values(); for (int i = 0, len = subexprs->length(); i < len; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(rax); result_saved = true; } VisitForValue(subexpr, kAccumulator); // Store the subexpression value in the array's elements. __ movq(rbx, Operand(rsp, 0)); // Copy of array literal. __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ movq(FieldOperand(rbx, offset), result_register()); // Update the write barrier for the array store. __ RecordWrite(rbx, offset, result_register(), rcx); } if (result_saved) { ApplyTOS(expr->context()); } else { Apply(expr->context(), rax); } } void FastCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ Move(rcx, key->handle()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); __ nop(); } void FastCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); __ nop(); } void FastCodeGenerator::EmitBinaryOp(Token::Value op, Expression::Context context) { __ push(result_register()); GenericBinaryOpStub stub(op, NO_OVERWRITE, NO_GENERIC_BINARY_FLAGS); __ CallStub(&stub); Apply(context, rax); } void FastCodeGenerator::EmitVariableAssignment(Variable* var, Expression::Context context) { ASSERT(var != NULL); ASSERT(var->is_global() || var->slot() != NULL); if (var->is_global()) { // Assignment to a global variable. Use inline caching for the // assignment. Right-hand-side value is passed in rax, variable name in // rcx, and the global object on the stack. __ Move(rcx, var->name()); __ push(CodeGenerator::GlobalObject()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // Overwrite the global object on the stack with the result if needed. DropAndApply(1, context, rax); } else if (var->slot() != NULL) { Slot* slot = var->slot(); switch (slot->type()) { case Slot::LOCAL: case Slot::PARAMETER: __ movq(Operand(rbp, SlotOffset(slot)), result_register()); break; case Slot::CONTEXT: { MemOperand target = EmitSlotSearch(slot, rcx); __ movq(target, result_register()); // RecordWrite may destroy all its register arguments. __ movq(rdx, result_register()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; __ RecordWrite(rcx, offset, rdx, rbx); break; } case Slot::LOOKUP: UNREACHABLE(); break; } Apply(context, result_register()); } else { // Variables rewritten as properties are not treated as variables in // assignments. UNREACHABLE(); } } void FastCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); __ push(Operand(rsp, kPointerSize)); // Receiver is now under value. __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ Move(rcx, prop->key()->AsLiteral()->handle()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); __ nop(); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(rax); // Result of assignment, saved even if not needed. __ push(Operand(rsp, kPointerSize)); // Receiver is under value. __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(rax); } DropAndApply(1, expr->context(), rax); } void FastCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); // Receiver is now under the key and value. __ push(Operand(rsp, 2 * kPointerSize)); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ Call(ic, RelocInfo::CODE_TARGET); // This nop signals to the IC that there is no inlined code at the call // site for it to patch. __ nop(); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(rax); // Result of assignment, saved even if not needed. // Receiver is under the key and value. __ push(Operand(rsp, 2 * kPointerSize)); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(rax); } // Receiver and key are still on stack. DropAndApply(2, expr->context(), rax); } void FastCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); // Evaluate receiver. VisitForValue(expr->obj(), kStack); if (key->IsPropertyName()) { EmitNamedPropertyLoad(expr); // Drop receiver left on the stack by IC. DropAndApply(1, expr->context(), rax); } else { VisitForValue(expr->key(), kStack); EmitKeyedPropertyLoad(expr); // Drop key and receiver left on the stack by IC. DropAndApply(2, expr->context(), rax); } } void FastCodeGenerator::EmitCallWithIC(Call* expr, Handle ignored, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. InLoopFlag in_loop = (loop_depth() > 0) ? IN_LOOP : NOT_IN_LOOP; Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, in_loop); __ Call(ic, mode); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. DropAndApply(1, expr->context(), rax); } void FastCodeGenerator::EmitCallWithStub(Call* expr) { // Code common for calls using the call stub. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(arg_count, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE); __ CallStub(&stub); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. DropAndApply(1, expr->context(), rax); } void FastCodeGenerator::VisitCall(Call* expr) { Comment cmnt(masm_, "[ Call"); Expression* fun = expr->expression(); Variable* var = fun->AsVariableProxy()->AsVariable(); if (var != NULL && var->is_possibly_eval()) { // Call to the identifier 'eval'. UNREACHABLE(); } else if (var != NULL && !var->is_this() && var->is_global()) { // Call to a global variable. __ Push(var->name()); // Push global object as receiver for the call IC lookup. __ push(CodeGenerator::GlobalObject()); EmitCallWithIC(expr, var->name(), RelocInfo::CODE_TARGET_CONTEXT); } else if (var != NULL && var->slot() != NULL && var->slot()->type() == Slot::LOOKUP) { // Call to a lookup slot. UNREACHABLE(); } else if (fun->AsProperty() != NULL) { // Call to an object property. Property* prop = fun->AsProperty(); Literal* key = prop->key()->AsLiteral(); if (key != NULL && key->handle()->IsSymbol()) { // Call to a named property, use call IC. __ Push(key->handle()); VisitForValue(prop->obj(), kStack); EmitCallWithIC(expr, key->handle(), RelocInfo::CODE_TARGET); } else { // Call to a keyed property, use keyed load IC followed by function // call. VisitForValue(prop->obj(), kStack); VisitForValue(prop->key(), kStack); // Record source code position for IC call. SetSourcePosition(prop->position()); Handle ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // By emitting a nop we make sure that we do not have a "test rax,..." // instruction after the call it is treated specially by the LoadIC code. __ nop(); // Drop key left on the stack by IC. __ Drop(1); // Pop receiver. __ pop(rbx); // Push result (function). __ push(rax); // Push receiver object on stack. if (prop->is_synthetic()) { __ movq(rcx, CodeGenerator::GlobalObject()); __ push(FieldOperand(rcx, GlobalObject::kGlobalReceiverOffset)); } else { __ push(rbx); } EmitCallWithStub(expr); } } else { // Call to some other expression. If the expression is an anonymous // function literal not called in a loop, mark it as one that should // also use the fast code generator. FunctionLiteral* lit = fun->AsFunctionLiteral(); if (lit != NULL && lit->name()->Equals(Heap::empty_string()) && loop_depth() == 0) { lit->set_try_fast_codegen(true); } VisitForValue(fun, kStack); // Load global receiver object. __ movq(rbx, CodeGenerator::GlobalObject()); __ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); // Emit function call. EmitCallWithStub(expr); } } void FastCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push function on the stack. VisitForValue(expr->expression(), kStack); // Push global object (receiver). __ push(CodeGenerator::GlobalObject()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function, arg_count into rdi and rax. __ Set(rax, arg_count); // Function is in rsp[arg_count + 1]. __ movq(rdi, Operand(rsp, rax, times_pointer_size, kPointerSize)); Handle construct_builtin(Builtins::builtin(Builtins::JSConstructCall)); __ Call(construct_builtin, RelocInfo::CONSTRUCT_CALL); // Replace function on TOS with result in rax, or pop it. DropAndApply(1, expr->context(), rax); } void FastCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Comment cmnt(masm_, "[ CallRuntime"); ZoneList* args = expr->arguments(); if (expr->is_jsruntime()) { // Prepare for calling JS runtime function. __ Push(expr->name()); __ movq(rax, CodeGenerator::GlobalObject()); __ push(FieldOperand(rax, GlobalObject::kBuiltinsOffset)); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForValue(args->at(i), kStack); } if (expr->is_jsruntime()) { // Call the JS runtime function. Handle ic = CodeGenerator::ComputeCallInitialize(arg_count, NOT_IN_LOOP); __ call(ic, RelocInfo::CODE_TARGET); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. DropAndApply(1, expr->context(), rax); } else { __ CallRuntime(expr->function(), arg_count); Apply(expr->context(), rax); } } void FastCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); ASSERT_EQ(Expression::kEffect, expr->expression()->context()); Visit(expr->expression()); switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: break; case Expression::kValue: switch (location_) { case kAccumulator: __ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex); break; case kStack: __ PushRoot(Heap::kUndefinedValueRootIndex); break; } break; case Expression::kTestValue: // Value is false so it's needed. switch (location_) { case kAccumulator: __ LoadRoot(result_register(), Heap::kUndefinedValueRootIndex); break; case kStack: __ PushRoot(Heap::kUndefinedValueRootIndex); break; } // Fall through. case Expression::kTest: case Expression::kValueTest: __ jmp(false_label_); break; } break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); ASSERT_EQ(Expression::kTest, expr->expression()->context()); Label materialize_true, materialize_false, done; // Initially assume a pure test context. Notice that the labels are // swapped. Label* if_true = false_label_; Label* if_false = true_label_; switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: if_true = &done; if_false = &done; break; case Expression::kValue: if_true = &materialize_false; if_false = &materialize_true; break; case Expression::kTest: break; case Expression::kValueTest: if_false = &materialize_true; break; case Expression::kTestValue: if_true = &materialize_false; break; } VisitForControl(expr->expression(), if_true, if_false); Apply(expr->context(), if_false, if_true); // Labels swapped. break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); ASSERT_EQ(Expression::kValue, expr->expression()->context()); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (proxy != NULL && !proxy->var()->is_this() && proxy->var()->is_global()) { Comment cmnt(masm_, "Global variable"); __ push(CodeGenerator::GlobalObject()); __ Move(rcx, proxy->name()); Handle ic(Builtins::builtin(Builtins::LoadIC_Initialize)); // Use a regular load, not a contextual load, to avoid a reference // error. __ Call(ic, RelocInfo::CODE_TARGET); __ movq(Operand(rsp, 0), rax); } else if (proxy != NULL && proxy->var()->slot() != NULL && proxy->var()->slot()->type() == Slot::LOOKUP) { __ push(rsi); __ Push(proxy->name()); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); __ push(rax); } else { // This expression cannot throw a reference error at the top level. VisitForValue(expr->expression(), kStack); } __ CallRuntime(Runtime::kTypeof, 1); Apply(expr->context(), rax); break; } default: UNREACHABLE(); } } void FastCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); // Expression can only be a property, a global or a (parameter or local) // slot. Variables with rewrite to .arguments are treated as KEYED_PROPERTY. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->context() == Expression::kUninitialized) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); Location saved_location = location_; location_ = kStack; EmitVariableLoad(expr->expression()->AsVariableProxy()->var(), Expression::kValue); location_ = saved_location; } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && expr->context() != Expression::kEffect) { ASSERT(expr->context() != Expression::kUninitialized); __ Push(Smi::FromInt(0)); } VisitForValue(prop->obj(), kStack); if (assign_type == NAMED_PROPERTY) { EmitNamedPropertyLoad(prop); } else { VisitForValue(prop->key(), kStack); EmitKeyedPropertyLoad(prop); } __ push(rax); } // Convert to number. __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); // Save result for postfix expressions. if (expr->is_postfix()) { switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); case Expression::kEffect: // Do not save result. break; case Expression::kValue: case Expression::kTest: case Expression::kValueTest: case Expression::kTestValue: // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(rax); break; case NAMED_PROPERTY: __ movq(Operand(rsp, kPointerSize), rax); break; case KEYED_PROPERTY: __ movq(Operand(rsp, 2 * kPointerSize), rax); break; } break; } } // Call stub for +1/-1. __ push(rax); __ Push(Smi::FromInt(1)); GenericBinaryOpStub stub(expr->binary_op(), NO_OVERWRITE, NO_GENERIC_BINARY_FLAGS); __ CallStub(&stub); // Store the value returned in rax. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Expression::kEffect); // For all contexts except kEffect: We have the result on // top of the stack. if (expr->context() != Expression::kEffect) { ApplyTOS(expr->context()); } } else { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), expr->context()); } break; case NAMED_PROPERTY: { __ Move(rcx, prop->key()->AsLiteral()->handle()); Handle ic(Builtins::builtin(Builtins::StoreIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // This nop signals to the IC that there is no inlined code at the call // site for it to patch. __ nop(); if (expr->is_postfix()) { __ Drop(1); // Result is on the stack under the receiver. if (expr->context() != Expression::kEffect) { ApplyTOS(expr->context()); } } else { DropAndApply(1, expr->context(), rax); } break; } case KEYED_PROPERTY: { Handle ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // This nop signals to the IC that there is no inlined code at the call // site for it to patch. __ nop(); if (expr->is_postfix()) { __ Drop(2); // Result is on the stack under the key and the receiver. if (expr->context() != Expression::kEffect) { ApplyTOS(expr->context()); } } else { DropAndApply(2, expr->context(), rax); } break; } } } void FastCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) { Comment cmnt(masm_, "[ BinaryOperation"); switch (expr->op()) { case Token::COMMA: ASSERT_EQ(Expression::kEffect, expr->left()->context()); ASSERT_EQ(expr->context(), expr->right()->context()); Visit(expr->left()); Visit(expr->right()); break; case Token::OR: case Token::AND: EmitLogicalOperation(expr); break; case Token::ADD: case Token::SUB: case Token::DIV: case Token::MOD: case Token::MUL: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SHL: case Token::SHR: case Token::SAR: VisitForValue(expr->left(), kStack); VisitForValue(expr->right(), kAccumulator); EmitBinaryOp(expr->op(), expr->context()); break; default: UNREACHABLE(); } } void FastCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false, done; // Initially assume we are in a test context. Label* if_true = true_label_; Label* if_false = false_label_; switch (expr->context()) { case Expression::kUninitialized: UNREACHABLE(); break; case Expression::kEffect: if_true = &done; if_false = &done; break; case Expression::kValue: if_true = &materialize_true; if_false = &materialize_false; break; case Expression::kTest: break; case Expression::kValueTest: if_true = &materialize_true; break; case Expression::kTestValue: if_false = &materialize_false; break; } VisitForValue(expr->left(), kStack); switch (expr->op()) { case Token::IN: VisitForValue(expr->right(), kStack); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); __ CompareRoot(rax, Heap::kTrueValueRootIndex); __ j(equal, if_true); __ jmp(if_false); break; case Token::INSTANCEOF: { VisitForValue(expr->right(), kStack); InstanceofStub stub; __ CallStub(&stub); __ testq(rax, rax); __ j(zero, if_true); // The stub returns 0 for true. __ jmp(if_false); break; } default: { VisitForValue(expr->right(), kAccumulator); Condition cc = no_condition; bool strict = false; switch (expr->op()) { case Token::EQ_STRICT: strict = true; // Fall through. case Token::EQ: cc = equal; __ pop(rdx); break; case Token::LT: cc = less; __ pop(rdx); break; case Token::GT: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = less; __ movq(rdx, result_register()); __ pop(rax); break; case Token::LTE: // Reverse left and right sizes to obtain ECMA-262 conversion order. cc = greater_equal; __ movq(rdx, result_register()); __ pop(rax); break; case Token::GTE: cc = greater_equal; __ pop(rdx); break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } // The comparison stub expects the smi vs. smi case to be handled // before it is called. Label slow_case; __ JumpIfNotBothSmi(rax, rdx, &slow_case); __ SmiCompare(rdx, rax); __ j(cc, if_true); __ jmp(if_false); __ bind(&slow_case); CompareStub stub(cc, strict); __ CallStub(&stub); __ testq(rax, rax); __ j(cc, if_true); __ jmp(if_false); } } // Convert the result of the comparison into one expected for this // expression's context. Apply(expr->context(), if_true, if_false); } void FastCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); Apply(expr->context(), rax); } Register FastCodeGenerator::result_register() { return rax; } Register FastCodeGenerator::context_register() { return rsi; } void FastCodeGenerator::StoreToFrameField(int frame_offset, Register value) { ASSERT(IsAligned(frame_offset, kPointerSize)); __ movq(Operand(rbp, frame_offset), value); } void FastCodeGenerator::LoadContextField(Register dst, int context_index) { __ movq(dst, CodeGenerator::ContextOperand(rsi, context_index)); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FastCodeGenerator::EnterFinallyBlock() { ASSERT(!result_register().is(rdx)); ASSERT(!result_register().is(rcx)); // Cook return address on top of stack (smi encoded Code* delta) __ movq(rdx, Operand(rsp, 0)); __ Move(rcx, masm_->CodeObject()); __ subq(rdx, rcx); __ Integer32ToSmi(rdx, rdx); __ movq(Operand(rsp, 0), rdx); // Store result register while executing finally block. __ push(result_register()); } void FastCodeGenerator::ExitFinallyBlock() { ASSERT(!result_register().is(rdx)); ASSERT(!result_register().is(rcx)); // Restore result register from stack. __ pop(result_register()); // Uncook return address. __ movq(rdx, Operand(rsp, 0)); __ SmiToInteger32(rdx, rdx); __ Move(rcx, masm_->CodeObject()); __ addq(rdx, rcx); __ movq(Operand(rsp, 0), rdx); // And return. __ ret(0); } #undef __ } } // namespace v8::internal