// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "test/unittests/compiler/backend/instruction-selector-unittest.h" #include "src/code-factory.h" #include "src/compiler/compiler-source-position-table.h" #include "src/compiler/graph.h" #include "src/compiler/schedule.h" #include "src/flags.h" #include "src/objects-inl.h" #include "test/unittests/compiler/compiler-test-utils.h" namespace v8 { namespace internal { namespace compiler { InstructionSelectorTest::InstructionSelectorTest() : rng_(FLAG_random_seed) {} InstructionSelectorTest::~InstructionSelectorTest() = default; InstructionSelectorTest::Stream InstructionSelectorTest::StreamBuilder::Build( InstructionSelector::Features features, InstructionSelectorTest::StreamBuilderMode mode, InstructionSelector::SourcePositionMode source_position_mode) { Schedule* schedule = Export(); if (FLAG_trace_turbo) { StdoutStream{} << "=== Schedule before instruction selection ===" << std::endl << *schedule; } size_t const node_count = graph()->NodeCount(); EXPECT_NE(0u, node_count); Linkage linkage(call_descriptor()); InstructionBlocks* instruction_blocks = InstructionSequence::InstructionBlocksFor(test_->zone(), schedule); InstructionSequence sequence(test_->isolate(), test_->zone(), instruction_blocks); SourcePositionTable source_position_table(graph()); InstructionSelector selector( test_->zone(), node_count, &linkage, &sequence, schedule, &source_position_table, nullptr, InstructionSelector::kEnableSwitchJumpTable, source_position_mode, features, InstructionSelector::kDisableScheduling, InstructionSelector::kEnableRootsRelativeAddressing, PoisoningMitigationLevel::kPoisonAll); selector.SelectInstructions(); if (FLAG_trace_turbo) { StdoutStream{} << "=== Code sequence after instruction selection ===" << std::endl << sequence; } Stream s; s.virtual_registers_ = selector.GetVirtualRegistersForTesting(); // Map virtual registers. for (Instruction* const instr : sequence) { if (instr->opcode() < 0) continue; if (mode == kTargetInstructions) { switch (instr->arch_opcode()) { #define CASE(Name) \ case k##Name: \ break; TARGET_ARCH_OPCODE_LIST(CASE) #undef CASE default: continue; } } if (mode == kAllExceptNopInstructions && instr->arch_opcode() == kArchNop) { continue; } for (size_t i = 0; i < instr->OutputCount(); ++i) { InstructionOperand* output = instr->OutputAt(i); EXPECT_NE(InstructionOperand::IMMEDIATE, output->kind()); if (output->IsConstant()) { int vreg = ConstantOperand::cast(output)->virtual_register(); s.constants_.insert(std::make_pair(vreg, sequence.GetConstant(vreg))); } } for (size_t i = 0; i < instr->InputCount(); ++i) { InstructionOperand* input = instr->InputAt(i); EXPECT_NE(InstructionOperand::CONSTANT, input->kind()); if (input->IsImmediate()) { auto imm = ImmediateOperand::cast(input); if (imm->type() == ImmediateOperand::INDEXED) { int index = imm->indexed_value(); s.immediates_.insert( std::make_pair(index, sequence.GetImmediate(imm))); } } } s.instructions_.push_back(instr); } for (auto i : s.virtual_registers_) { int const virtual_register = i.second; if (sequence.IsFP(virtual_register)) { EXPECT_FALSE(sequence.IsReference(virtual_register)); s.doubles_.insert(virtual_register); } if (sequence.IsReference(virtual_register)) { EXPECT_FALSE(sequence.IsFP(virtual_register)); s.references_.insert(virtual_register); } } for (int i = 0; i < sequence.GetDeoptimizationEntryCount(); i++) { s.deoptimization_entries_.push_back( sequence.GetDeoptimizationEntry(i).descriptor()); } return s; } int InstructionSelectorTest::Stream::ToVreg(const Node* node) const { VirtualRegisters::const_iterator i = virtual_registers_.find(node->id()); CHECK(i != virtual_registers_.end()); return i->second; } bool InstructionSelectorTest::Stream::IsFixed(const InstructionOperand* operand, Register reg) const { if (!operand->IsUnallocated()) return false; const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand); if (!unallocated->HasFixedRegisterPolicy()) return false; return unallocated->fixed_register_index() == reg.code(); } bool InstructionSelectorTest::Stream::IsSameAsFirst( const InstructionOperand* operand) const { if (!operand->IsUnallocated()) return false; const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand); return unallocated->HasSameAsInputPolicy(); } bool InstructionSelectorTest::Stream::IsUsedAtStart( const InstructionOperand* operand) const { if (!operand->IsUnallocated()) return false; const UnallocatedOperand* unallocated = UnallocatedOperand::cast(operand); return unallocated->IsUsedAtStart(); } const FrameStateFunctionInfo* InstructionSelectorTest::StreamBuilder::GetFrameStateFunctionInfo( int parameter_count, int local_count) { return common()->CreateFrameStateFunctionInfo( FrameStateType::kInterpretedFunction, parameter_count, local_count, Handle()); } // ----------------------------------------------------------------------------- // Return. TARGET_TEST_F(InstructionSelectorTest, ReturnFloat32Constant) { const float kValue = 4.2f; StreamBuilder m(this, MachineType::Float32()); m.Return(m.Float32Constant(kValue)); Stream s = m.Build(kAllInstructions); ASSERT_EQ(3U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind()); EXPECT_FLOAT_EQ(kValue, s.ToFloat32(s[0]->OutputAt(0))); EXPECT_EQ(kArchRet, s[1]->arch_opcode()); EXPECT_EQ(2U, s[1]->InputCount()); } TARGET_TEST_F(InstructionSelectorTest, ReturnParameter) { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Parameter(0)); Stream s = m.Build(kAllInstructions); ASSERT_EQ(3U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kArchRet, s[1]->arch_opcode()); EXPECT_EQ(2U, s[1]->InputCount()); } TARGET_TEST_F(InstructionSelectorTest, ReturnZero) { StreamBuilder m(this, MachineType::Int32()); m.Return(m.Int32Constant(0)); Stream s = m.Build(kAllInstructions); ASSERT_EQ(3U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(InstructionOperand::CONSTANT, s[0]->OutputAt(0)->kind()); EXPECT_EQ(0, s.ToInt32(s[0]->OutputAt(0))); EXPECT_EQ(kArchRet, s[1]->arch_opcode()); EXPECT_EQ(2U, s[1]->InputCount()); } // ----------------------------------------------------------------------------- // Conversions. TARGET_TEST_F(InstructionSelectorTest, TruncateFloat64ToWord32WithParameter) { StreamBuilder m(this, MachineType::Int32(), MachineType::Float64()); m.Return(m.TruncateFloat64ToWord32(m.Parameter(0))); Stream s = m.Build(kAllInstructions); ASSERT_EQ(4U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); EXPECT_EQ(kArchTruncateDoubleToI, s[1]->arch_opcode()); EXPECT_EQ(1U, s[1]->InputCount()); EXPECT_EQ(1U, s[1]->OutputCount()); EXPECT_EQ(kArchRet, s[2]->arch_opcode()); } // ----------------------------------------------------------------------------- // Parameters. TARGET_TEST_F(InstructionSelectorTest, DoubleParameter) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64()); Node* param = m.Parameter(0); m.Return(param); Stream s = m.Build(kAllInstructions); EXPECT_TRUE(s.IsDouble(param)); } TARGET_TEST_F(InstructionSelectorTest, ReferenceParameter) { StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged()); Node* param = m.Parameter(0); m.Return(param); Stream s = m.Build(kAllInstructions); EXPECT_TRUE(s.IsReference(param)); } // ----------------------------------------------------------------------------- // FinishRegion. TARGET_TEST_F(InstructionSelectorTest, FinishRegion) { StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged()); Node* param = m.Parameter(0); Node* finish = m.AddNode(m.common()->FinishRegion(), param, m.graph()->start()); m.Return(finish); Stream s = m.Build(kAllInstructions); ASSERT_EQ(3U, s.size()); EXPECT_EQ(kArchNop, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->OutputCount()); ASSERT_TRUE(s[0]->Output()->IsUnallocated()); EXPECT_EQ(kArchRet, s[1]->arch_opcode()); EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[0]->Output())); EXPECT_EQ(s.ToVreg(param), s.ToVreg(s[1]->InputAt(1))); EXPECT_TRUE(s.IsReference(finish)); } // ----------------------------------------------------------------------------- // Phi. typedef InstructionSelectorTestWithParam InstructionSelectorPhiTest; TARGET_TEST_P(InstructionSelectorPhiTest, Doubleness) { const MachineType type = GetParam(); StreamBuilder m(this, type, type, type); Node* param0 = m.Parameter(0); Node* param1 = m.Parameter(1); RawMachineLabel a, b, c; m.Branch(m.Int32Constant(0), &a, &b); m.Bind(&a); m.Goto(&c); m.Bind(&b); m.Goto(&c); m.Bind(&c); Node* phi = m.Phi(type.representation(), param0, param1); m.Return(phi); Stream s = m.Build(kAllInstructions); EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param0)); EXPECT_EQ(s.IsDouble(phi), s.IsDouble(param1)); } TARGET_TEST_P(InstructionSelectorPhiTest, Referenceness) { const MachineType type = GetParam(); StreamBuilder m(this, type, type, type); Node* param0 = m.Parameter(0); Node* param1 = m.Parameter(1); RawMachineLabel a, b, c; m.Branch(m.Int32Constant(1), &a, &b); m.Bind(&a); m.Goto(&c); m.Bind(&b); m.Goto(&c); m.Bind(&c); Node* phi = m.Phi(type.representation(), param0, param1); m.Return(phi); Stream s = m.Build(kAllInstructions); EXPECT_EQ(s.IsReference(phi), s.IsReference(param0)); EXPECT_EQ(s.IsReference(phi), s.IsReference(param1)); } INSTANTIATE_TEST_SUITE_P( InstructionSelectorTest, InstructionSelectorPhiTest, ::testing::Values(MachineType::Float64(), MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Pointer(), MachineType::AnyTagged())); // ----------------------------------------------------------------------------- // ValueEffect. TARGET_TEST_F(InstructionSelectorTest, ValueEffect) { StreamBuilder m1(this, MachineType::Int32(), MachineType::Pointer()); Node* p1 = m1.Parameter(0); m1.Return(m1.Load(MachineType::Int32(), p1, m1.Int32Constant(0))); Stream s1 = m1.Build(kAllInstructions); StreamBuilder m2(this, MachineType::Int32(), MachineType::Pointer()); Node* p2 = m2.Parameter(0); m2.Return(m2.AddNode( m2.machine()->Load(MachineType::Int32()), p2, m2.Int32Constant(0), m2.AddNode(m2.common()->BeginRegion(RegionObservability::kObservable), m2.graph()->start()))); Stream s2 = m2.Build(kAllInstructions); EXPECT_LE(3U, s1.size()); ASSERT_EQ(s1.size(), s2.size()); TRACED_FORRANGE(size_t, i, 0, s1.size() - 1) { const Instruction* i1 = s1[i]; const Instruction* i2 = s2[i]; EXPECT_EQ(i1->arch_opcode(), i2->arch_opcode()); EXPECT_EQ(i1->InputCount(), i2->InputCount()); EXPECT_EQ(i1->OutputCount(), i2->OutputCount()); } } // ----------------------------------------------------------------------------- // Calls with deoptimization. TARGET_TEST_F(InstructionSelectorTest, CallJSFunctionWithDeopt) { StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(), MachineType::AnyTagged(), MachineType::AnyTagged()); BailoutId bailout_id(42); Node* function_node = m.Parameter(0); Node* receiver = m.Parameter(1); Node* context = m.Parameter(2); ZoneVector int32_type(1, MachineType::Int32(), zone()); ZoneVector empty_types(zone()); auto call_descriptor = Linkage::GetJSCallDescriptor( zone(), false, 1, CallDescriptor::kNeedsFrameState | CallDescriptor::kCanUseRoots); // Build frame state for the state before the call. Node* parameters = m.AddNode( m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()), m.Int32Constant(1)); Node* locals = m.AddNode( m.common()->TypedStateValues(&empty_types, SparseInputMask::Dense())); Node* stack = m.AddNode( m.common()->TypedStateValues(&empty_types, SparseInputMask::Dense())); Node* context_sentinel = m.Int32Constant(0); Node* state_node = m.AddNode( m.common()->FrameState(bailout_id, OutputFrameStateCombine::PokeAt(0), m.GetFrameStateFunctionInfo(1, 0)), parameters, locals, stack, context_sentinel, function_node, m.UndefinedConstant()); // Build the call. Node* nodes[] = {function_node, receiver, m.UndefinedConstant(), m.Int32Constant(1), context, state_node}; Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes); m.Return(call); Stream s = m.Build(kAllExceptNopInstructions); // Skip until kArchCallJSFunction. size_t index = 0; for (; index < s.size() && s[index]->arch_opcode() != kArchCallJSFunction; index++) { } // Now we should have two instructions: call and return. ASSERT_EQ(index + 2, s.size()); EXPECT_EQ(kArchCallJSFunction, s[index++]->arch_opcode()); EXPECT_EQ(kArchRet, s[index++]->arch_opcode()); // TODO(jarin) Check deoptimization table. } TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeopt) { StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(), MachineType::AnyTagged(), MachineType::AnyTagged()); BailoutId bailout_id_before(42); // Some arguments for the call node. Node* function_node = m.Parameter(0); Node* receiver = m.Parameter(1); Node* context = m.Int32Constant(1); // Context is ignored. ZoneVector int32_type(1, MachineType::Int32(), zone()); ZoneVector float64_type(1, MachineType::Float64(), zone()); ZoneVector tagged_type(1, MachineType::AnyTagged(), zone()); Callable callable = Builtins::CallableFor(isolate(), Builtins::kToObject); auto call_descriptor = Linkage::GetStubCallDescriptor( zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState, Operator::kNoProperties); // Build frame state for the state before the call. Node* parameters = m.AddNode( m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()), m.Int32Constant(43)); Node* locals = m.AddNode( m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()), m.Float64Constant(0.5)); Node* stack = m.AddNode( m.common()->TypedStateValues(&tagged_type, SparseInputMask::Dense()), m.UndefinedConstant()); Node* context_sentinel = m.Int32Constant(0); Node* state_node = m.AddNode(m.common()->FrameState(bailout_id_before, OutputFrameStateCombine::PokeAt(0), m.GetFrameStateFunctionInfo(1, 1)), parameters, locals, stack, context_sentinel, function_node, m.UndefinedConstant()); // Build the call. Node* stub_code = m.HeapConstant(callable.code()); Node* nodes[] = {stub_code, function_node, receiver, context, state_node}; Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes); m.Return(call); Stream s = m.Build(kAllExceptNopInstructions); // Skip until kArchCallJSFunction. size_t index = 0; for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject; index++) { } // Now we should have two instructions: call, return. ASSERT_EQ(index + 2, s.size()); // Check the call instruction const Instruction* call_instr = s[index++]; EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode()); size_t num_operands = 1 + // Code object. 1 + // Poison index 6 + // Frame state deopt id + one input for each value in frame state. 1 + // Function. 1; // Context. ASSERT_EQ(num_operands, call_instr->InputCount()); // Code object. EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate()); // Deoptimization id. int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(2)); FrameStateDescriptor* desc_before = s.GetFrameStateDescriptor(deopt_id_before); EXPECT_EQ(bailout_id_before, desc_before->bailout_id()); EXPECT_EQ(1u, desc_before->parameters_count()); EXPECT_EQ(1u, desc_before->locals_count()); EXPECT_EQ(1u, desc_before->stack_count()); EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(4))); EXPECT_EQ(0, s.ToInt32(call_instr->InputAt(5))); // This should be a context. // We inserted 0 here. EXPECT_EQ(0.5, s.ToFloat64(call_instr->InputAt(6))); EXPECT_TRUE(s.ToHeapObject(call_instr->InputAt(7))->IsUndefined(isolate())); // Function. EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(8))); // Context. EXPECT_EQ(s.ToVreg(context), s.ToVreg(call_instr->InputAt(9))); EXPECT_EQ(kArchRet, s[index++]->arch_opcode()); EXPECT_EQ(index, s.size()); } TARGET_TEST_F(InstructionSelectorTest, CallStubWithDeoptRecursiveFrameState) { StreamBuilder m(this, MachineType::AnyTagged(), MachineType::AnyTagged(), MachineType::AnyTagged(), MachineType::AnyTagged()); BailoutId bailout_id_before(42); BailoutId bailout_id_parent(62); // Some arguments for the call node. Node* function_node = m.Parameter(0); Node* receiver = m.Parameter(1); Node* context = m.Int32Constant(66); Node* context2 = m.Int32Constant(46); ZoneVector int32_type(1, MachineType::Int32(), zone()); ZoneVector int32x2_type(2, MachineType::Int32(), zone()); ZoneVector float64_type(1, MachineType::Float64(), zone()); Callable callable = Builtins::CallableFor(isolate(), Builtins::kToObject); auto call_descriptor = Linkage::GetStubCallDescriptor( zone(), callable.descriptor(), 1, CallDescriptor::kNeedsFrameState, Operator::kNoProperties); // Build frame state for the state before the call. Node* parameters = m.AddNode( m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()), m.Int32Constant(63)); Node* locals = m.AddNode( m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()), m.Int32Constant(64)); Node* stack = m.AddNode( m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()), m.Int32Constant(65)); Node* frame_state_parent = m.AddNode( m.common()->FrameState(bailout_id_parent, OutputFrameStateCombine::Ignore(), m.GetFrameStateFunctionInfo(1, 1)), parameters, locals, stack, context, function_node, m.UndefinedConstant()); Node* parameters2 = m.AddNode( m.common()->TypedStateValues(&int32_type, SparseInputMask::Dense()), m.Int32Constant(43)); Node* locals2 = m.AddNode( m.common()->TypedStateValues(&float64_type, SparseInputMask::Dense()), m.Float64Constant(0.25)); Node* stack2 = m.AddNode( m.common()->TypedStateValues(&int32x2_type, SparseInputMask::Dense()), m.Int32Constant(44), m.Int32Constant(45)); Node* state_node = m.AddNode(m.common()->FrameState(bailout_id_before, OutputFrameStateCombine::PokeAt(0), m.GetFrameStateFunctionInfo(1, 1)), parameters2, locals2, stack2, context2, function_node, frame_state_parent); // Build the call. Node* stub_code = m.HeapConstant(callable.code()); Node* nodes[] = {stub_code, function_node, receiver, context2, state_node}; Node* call = m.CallNWithFrameState(call_descriptor, arraysize(nodes), nodes); m.Return(call); Stream s = m.Build(kAllExceptNopInstructions); // Skip until kArchCallJSFunction. size_t index = 0; for (; index < s.size() && s[index]->arch_opcode() != kArchCallCodeObject; index++) { } // Now we should have three instructions: call, return. EXPECT_EQ(index + 2, s.size()); // Check the call instruction const Instruction* call_instr = s[index++]; EXPECT_EQ(kArchCallCodeObject, call_instr->arch_opcode()); size_t num_operands = 1 + // Code object. 1 + // Poison index. 1 + // Frame state deopt id 6 + // One input for each value in frame state + context. 5 + // One input for each value in the parent frame state + context. 1 + // Function. 1; // Context. EXPECT_EQ(num_operands, call_instr->InputCount()); // Code object. EXPECT_TRUE(call_instr->InputAt(0)->IsImmediate()); // Deoptimization id. int32_t deopt_id_before = s.ToInt32(call_instr->InputAt(2)); FrameStateDescriptor* desc_before = s.GetFrameStateDescriptor(deopt_id_before); FrameStateDescriptor* desc_before_outer = desc_before->outer_state(); EXPECT_EQ(bailout_id_before, desc_before->bailout_id()); EXPECT_EQ(1u, desc_before_outer->parameters_count()); EXPECT_EQ(1u, desc_before_outer->locals_count()); EXPECT_EQ(1u, desc_before_outer->stack_count()); // Values from parent environment. EXPECT_EQ(63, s.ToInt32(call_instr->InputAt(4))); // Context: EXPECT_EQ(66, s.ToInt32(call_instr->InputAt(5))); EXPECT_EQ(64, s.ToInt32(call_instr->InputAt(6))); EXPECT_EQ(65, s.ToInt32(call_instr->InputAt(7))); // Values from the nested frame. EXPECT_EQ(1u, desc_before->parameters_count()); EXPECT_EQ(1u, desc_before->locals_count()); EXPECT_EQ(2u, desc_before->stack_count()); EXPECT_EQ(43, s.ToInt32(call_instr->InputAt(9))); EXPECT_EQ(46, s.ToInt32(call_instr->InputAt(10))); EXPECT_EQ(0.25, s.ToFloat64(call_instr->InputAt(11))); EXPECT_EQ(44, s.ToInt32(call_instr->InputAt(12))); EXPECT_EQ(45, s.ToInt32(call_instr->InputAt(13))); // Function. EXPECT_EQ(s.ToVreg(function_node), s.ToVreg(call_instr->InputAt(14))); // Context. EXPECT_EQ(s.ToVreg(context2), s.ToVreg(call_instr->InputAt(15))); // Continuation. EXPECT_EQ(kArchRet, s[index++]->arch_opcode()); EXPECT_EQ(index, s.size()); } // Helper to make calls to private InstructionSelector shuffle functions. class InstructionSelectorShuffleTest : public ::testing::Test { public: using Shuffle = std::array; struct TestShuffle { Shuffle non_canonical; Shuffle canonical; bool needs_swap; bool is_swizzle; }; // Call testing members in InstructionSelector. static void CanonicalizeShuffle(bool inputs_equal, Shuffle* shuffle, bool* needs_swap, bool* is_swizzle) { InstructionSelector::CanonicalizeShuffleForTesting( inputs_equal, &(*shuffle)[0], needs_swap, is_swizzle); } static bool TryMatchIdentity(const Shuffle& shuffle) { return InstructionSelector::TryMatchIdentityForTesting(&shuffle[0]); } template static bool TryMatchDup(const Shuffle& shuffle, int* index) { return InstructionSelector::TryMatchDupForTesting(&shuffle[0], index); } static bool TryMatch32x4Shuffle(const Shuffle& shuffle, uint8_t* shuffle32x4) { return InstructionSelector::TryMatch32x4ShuffleForTesting(&shuffle[0], shuffle32x4); } static bool TryMatch16x8Shuffle(const Shuffle& shuffle, uint8_t* shuffle16x8) { return InstructionSelector::TryMatch16x8ShuffleForTesting(&shuffle[0], shuffle16x8); } static bool TryMatchConcat(const Shuffle& shuffle, uint8_t* offset) { return InstructionSelector::TryMatchConcatForTesting(&shuffle[0], offset); } static bool TryMatchBlend(const Shuffle& shuffle) { return InstructionSelector::TryMatchBlendForTesting(&shuffle[0]); } }; bool operator==(const InstructionSelectorShuffleTest::Shuffle& a, const InstructionSelectorShuffleTest::Shuffle& b) { for (int i = 0; i < kSimd128Size; ++i) { if (a[i] != b[i]) return false; } return true; } TEST_F(InstructionSelectorShuffleTest, CanonicalizeShuffle) { const bool kInputsEqual = true; const bool kNeedsSwap = true; const bool kIsSwizzle = true; bool needs_swap; bool is_swizzle; // Test canonicalization driven by input shuffle. TestShuffle test_shuffles[] = { // Identity is canonical. {{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, !kNeedsSwap, kIsSwizzle}, // Non-canonical identity requires a swap. {{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}, {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, kNeedsSwap, kIsSwizzle}, // General shuffle, canonical is unchanged. {{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}, !kNeedsSwap, !kIsSwizzle}, // Non-canonical shuffle requires a swap. {{{16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7}}, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}, kNeedsSwap, !kIsSwizzle}, }; for (size_t i = 0; i < arraysize(test_shuffles); ++i) { Shuffle shuffle = test_shuffles[i].non_canonical; CanonicalizeShuffle(!kInputsEqual, &shuffle, &needs_swap, &is_swizzle); EXPECT_EQ(shuffle, test_shuffles[i].canonical); EXPECT_EQ(needs_swap, test_shuffles[i].needs_swap); EXPECT_EQ(is_swizzle, test_shuffles[i].is_swizzle); } // Test canonicalization when inputs are equal (explicit swizzle). TestShuffle test_swizzles[] = { // Identity is canonical. {{{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, !kNeedsSwap, kIsSwizzle}, // Non-canonical identity requires a swap. {{{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}, {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}}, !kNeedsSwap, kIsSwizzle}, // Canonicalized to swizzle. {{{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}, {{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}}, !kNeedsSwap, kIsSwizzle}, // Canonicalized to swizzle. {{{16, 0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7}}, {{0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}}, !kNeedsSwap, kIsSwizzle}, }; for (size_t i = 0; i < arraysize(test_swizzles); ++i) { Shuffle shuffle = test_swizzles[i].non_canonical; CanonicalizeShuffle(kInputsEqual, &shuffle, &needs_swap, &is_swizzle); EXPECT_EQ(shuffle, test_swizzles[i].canonical); EXPECT_EQ(needs_swap, test_swizzles[i].needs_swap); EXPECT_EQ(is_swizzle, test_swizzles[i].is_swizzle); } } TEST_F(InstructionSelectorShuffleTest, TryMatchIdentity) { // Match shuffle that returns first source operand. EXPECT_TRUE(TryMatchIdentity( {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}})); // The non-canonicalized identity shuffle doesn't match. EXPECT_FALSE(TryMatchIdentity( {{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}})); // Even one lane out of place is not an identity shuffle. EXPECT_FALSE(TryMatchIdentity( {{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 31}})); } TEST_F(InstructionSelectorShuffleTest, TryMatchDup) { int index; // All lanes from the same 32 bit source lane. EXPECT_TRUE(TryMatchDup<4>({{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}}, &index)); EXPECT_EQ(1, index); // It shouldn't match for other vector shapes. EXPECT_FALSE(TryMatchDup<8>( {{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}}, &index)); EXPECT_FALSE(TryMatchDup<16>( {{4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}}, &index)); // All lanes from the same 16 bit source lane. EXPECT_TRUE(TryMatchDup<8>( {{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}}, &index)); EXPECT_EQ(8, index); // It shouldn't match for other vector shapes. EXPECT_FALSE(TryMatchDup<4>( {{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}}, &index)); EXPECT_FALSE(TryMatchDup<16>( {{16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17, 16, 17}}, &index)); // All lanes from the same 8 bit source lane. EXPECT_TRUE(TryMatchDup<16>( {{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index)); EXPECT_EQ(7, index); // It shouldn't match for other vector shapes. EXPECT_FALSE(TryMatchDup<4>( {{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index)); EXPECT_FALSE(TryMatchDup<8>( {{7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}}, &index)); } TEST_F(InstructionSelectorShuffleTest, TryMatchConcat) { uint8_t offset; // Ascending indices, jump at end to same input (concatenating swizzle). EXPECT_TRUE(TryMatchConcat( {{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2}}, &offset)); EXPECT_EQ(3, offset); // Ascending indices, jump at end to other input (concatenating shuffle). EXPECT_TRUE(TryMatchConcat( {{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}}, &offset)); EXPECT_EQ(4, offset); // Shuffles that should not match: // Ascending indices, but jump isn't at end/beginning. EXPECT_FALSE(TryMatchConcat( {{3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6}}, &offset)); // Ascending indices, but multiple jumps. EXPECT_FALSE(TryMatchConcat( {{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}}, &offset)); } TEST_F(InstructionSelectorShuffleTest, TryMatch32x4Shuffle) { uint8_t shuffle32x4[4]; // Match if each group of 4 bytes is from the same 32 bit lane. EXPECT_TRUE(TryMatch32x4Shuffle( {{12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}}, shuffle32x4)); EXPECT_EQ(3, shuffle32x4[0]); EXPECT_EQ(2, shuffle32x4[1]); EXPECT_EQ(1, shuffle32x4[2]); EXPECT_EQ(4, shuffle32x4[3]); // Bytes must be in order in the 32 bit lane. EXPECT_FALSE(TryMatch32x4Shuffle( {{12, 13, 14, 14, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}}, shuffle32x4)); // Each group must start with the first byte in the 32 bit lane. EXPECT_FALSE(TryMatch32x4Shuffle( {{13, 14, 15, 12, 8, 9, 10, 11, 4, 5, 6, 7, 16, 17, 18, 19}}, shuffle32x4)); } TEST_F(InstructionSelectorShuffleTest, TryMatch16x8Shuffle) { uint8_t shuffle16x8[8]; // Match if each group of 2 bytes is from the same 16 bit lane. EXPECT_TRUE(TryMatch16x8Shuffle( {{12, 13, 30, 31, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}}, shuffle16x8)); EXPECT_EQ(6, shuffle16x8[0]); EXPECT_EQ(15, shuffle16x8[1]); EXPECT_EQ(4, shuffle16x8[2]); EXPECT_EQ(13, shuffle16x8[3]); EXPECT_EQ(2, shuffle16x8[4]); EXPECT_EQ(11, shuffle16x8[5]); EXPECT_EQ(8, shuffle16x8[6]); EXPECT_EQ(1, shuffle16x8[7]); // Bytes must be in order in the 16 bit lane. EXPECT_FALSE(TryMatch16x8Shuffle( {{12, 13, 30, 30, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}}, shuffle16x8)); // Each group must start with the first byte in the 16 bit lane. EXPECT_FALSE(TryMatch16x8Shuffle( {{12, 13, 31, 30, 8, 9, 26, 27, 4, 5, 22, 23, 16, 17, 2, 3}}, shuffle16x8)); } TEST_F(InstructionSelectorShuffleTest, TryMatchBlend) { // Match if each byte remains in place. EXPECT_TRUE(TryMatchBlend( {{0, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31}})); // Identity is a blend. EXPECT_TRUE( TryMatchBlend({{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}})); // Even one lane out of place is not a blend. EXPECT_FALSE(TryMatchBlend( {{1, 17, 2, 19, 4, 21, 6, 23, 8, 25, 10, 27, 12, 29, 14, 31}})); } } // namespace compiler } // namespace internal } // namespace v8