// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "handles.h" #include "scanner.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Character predicates unibrow::Predicate Scanner::kIsIdentifierStart; unibrow::Predicate Scanner::kIsIdentifierPart; unibrow::Predicate Scanner::kIsLineTerminator; unibrow::Predicate Scanner::kIsWhiteSpace; StaticResource Scanner::utf8_decoder_; // ---------------------------------------------------------------------------- // UTF8Buffer UTF8Buffer::UTF8Buffer() : data_(NULL), limit_(NULL) { } UTF8Buffer::~UTF8Buffer() { if (data_ != NULL) DeleteArray(data_); } void UTF8Buffer::AddCharSlow(uc32 c) { static const int kCapacityGrowthLimit = 1 * MB; if (cursor_ > limit_) { int old_capacity = Capacity(); int old_position = pos(); int new_capacity = Min(old_capacity * 3, old_capacity + kCapacityGrowthLimit); char* new_data = NewArray(new_capacity); memcpy(new_data, data_, old_position); DeleteArray(data_); data_ = new_data; cursor_ = new_data + old_position; limit_ = ComputeLimit(new_data, new_capacity); ASSERT(Capacity() == new_capacity && pos() == old_position); } if (static_cast(c) <= unibrow::Utf8::kMaxOneByteChar) { *cursor_++ = c; // Common case: 7-bit ASCII. } else { cursor_ += unibrow::Utf8::Encode(cursor_, c); } ASSERT(pos() <= Capacity()); } // ---------------------------------------------------------------------------- // UTF16Buffer UTF16Buffer::UTF16Buffer() : pos_(0), end_(Scanner::kNoEndPosition) { } // CharacterStreamUTF16Buffer CharacterStreamUTF16Buffer::CharacterStreamUTF16Buffer() : pushback_buffer_(0), last_(0), stream_(NULL) { } void CharacterStreamUTF16Buffer::Initialize(Handle data, unibrow::CharacterStream* input, int start_position, int end_position) { stream_ = input; if (start_position > 0) { SeekForward(start_position); } end_ = end_position != Scanner::kNoEndPosition ? end_position : kMaxInt; } void CharacterStreamUTF16Buffer::PushBack(uc32 ch) { pushback_buffer()->Add(last_); last_ = ch; pos_--; } uc32 CharacterStreamUTF16Buffer::Advance() { ASSERT(end_ != Scanner::kNoEndPosition); ASSERT(end_ >= 0); // NOTE: It is of importance to Persian / Farsi resources that we do // *not* strip format control characters in the scanner; see // // https://bugzilla.mozilla.org/show_bug.cgi?id=274152 // // So, even though ECMA-262, section 7.1, page 11, dictates that we // must remove Unicode format-control characters, we do not. This is // in line with how IE and SpiderMonkey handles it. if (!pushback_buffer()->is_empty()) { pos_++; return last_ = pushback_buffer()->RemoveLast(); } else if (stream_->has_more() && pos_ < end_) { pos_++; uc32 next = stream_->GetNext(); return last_ = next; } else { // Note: currently the following increment is necessary to avoid a // test-parser problem! pos_++; return last_ = static_cast(-1); } } void CharacterStreamUTF16Buffer::SeekForward(int pos) { pos_ = pos; ASSERT(pushback_buffer()->is_empty()); stream_->Seek(pos); } // ExternalStringUTF16Buffer template ExternalStringUTF16Buffer::ExternalStringUTF16Buffer() : raw_data_(NULL) { } template void ExternalStringUTF16Buffer::Initialize( Handle data, int start_position, int end_position) { ASSERT(!data.is_null()); raw_data_ = data->resource()->data(); ASSERT(end_position <= data->length()); if (start_position > 0) { SeekForward(start_position); } end_ = end_position != Scanner::kNoEndPosition ? end_position : data->length(); } template uc32 ExternalStringUTF16Buffer::Advance() { if (pos_ < end_) { return raw_data_[pos_++]; } else { // note: currently the following increment is necessary to avoid a // test-parser problem! pos_++; return static_cast(-1); } } template void ExternalStringUTF16Buffer::PushBack(uc32 ch) { pos_--; ASSERT(pos_ >= Scanner::kCharacterLookaheadBufferSize); ASSERT(raw_data_[pos_ - Scanner::kCharacterLookaheadBufferSize] == ch); } template void ExternalStringUTF16Buffer::SeekForward(int pos) { pos_ = pos; } // ---------------------------------------------------------------------------- // Keyword Matcher KeywordMatcher::FirstState KeywordMatcher::first_states_[] = { { "break", KEYWORD_PREFIX, Token::BREAK }, { NULL, C, Token::ILLEGAL }, { NULL, D, Token::ILLEGAL }, { "else", KEYWORD_PREFIX, Token::ELSE }, { NULL, F, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, I, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, N, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { "return", KEYWORD_PREFIX, Token::RETURN }, { "switch", KEYWORD_PREFIX, Token::SWITCH }, { NULL, T, Token::ILLEGAL }, { NULL, UNMATCHABLE, Token::ILLEGAL }, { NULL, V, Token::ILLEGAL }, { NULL, W, Token::ILLEGAL } }; void KeywordMatcher::Step(uc32 input) { switch (state_) { case INITIAL: { // matching the first character is the only state with significant fanout. // Match only lower-case letters in range 'b'..'w'. unsigned int offset = input - kFirstCharRangeMin; if (offset < kFirstCharRangeLength) { state_ = first_states_[offset].state; if (state_ == KEYWORD_PREFIX) { keyword_ = first_states_[offset].keyword; counter_ = 1; keyword_token_ = first_states_[offset].token; } return; } break; } case KEYWORD_PREFIX: if (keyword_[counter_] == input) { ASSERT_NE(input, '\0'); counter_++; if (keyword_[counter_] == '\0') { state_ = KEYWORD_MATCHED; token_ = keyword_token_; } return; } break; case KEYWORD_MATCHED: token_ = Token::IDENTIFIER; break; case C: if (MatchState(input, 'a', CA)) return; if (MatchState(input, 'o', CO)) return; break; case CA: if (MatchKeywordStart(input, "case", 2, Token::CASE)) return; if (MatchKeywordStart(input, "catch", 2, Token::CATCH)) return; break; case CO: if (MatchState(input, 'n', CON)) return; break; case CON: if (MatchKeywordStart(input, "const", 3, Token::CONST)) return; if (MatchKeywordStart(input, "continue", 3, Token::CONTINUE)) return; break; case D: if (MatchState(input, 'e', DE)) return; if (MatchKeyword(input, 'o', KEYWORD_MATCHED, Token::DO)) return; break; case DE: if (MatchKeywordStart(input, "debugger", 2, Token::DEBUGGER)) return; if (MatchKeywordStart(input, "default", 2, Token::DEFAULT)) return; if (MatchKeywordStart(input, "delete", 2, Token::DELETE)) return; break; case F: if (MatchKeywordStart(input, "false", 1, Token::FALSE_LITERAL)) return; if (MatchKeywordStart(input, "finally", 1, Token::FINALLY)) return; if (MatchKeywordStart(input, "for", 1, Token::FOR)) return; if (MatchKeywordStart(input, "function", 1, Token::FUNCTION)) return; break; case I: if (MatchKeyword(input, 'f', KEYWORD_MATCHED, Token::IF)) return; if (MatchKeyword(input, 'n', IN, Token::IN)) return; break; case IN: token_ = Token::IDENTIFIER; if (MatchKeywordStart(input, "instanceof", 2, Token::INSTANCEOF)) { return; } break; case N: if (MatchKeywordStart(input, "native", 1, Token::NATIVE)) return; if (MatchKeywordStart(input, "new", 1, Token::NEW)) return; if (MatchKeywordStart(input, "null", 1, Token::NULL_LITERAL)) return; break; case T: if (MatchState(input, 'h', TH)) return; if (MatchState(input, 'r', TR)) return; if (MatchKeywordStart(input, "typeof", 1, Token::TYPEOF)) return; break; case TH: if (MatchKeywordStart(input, "this", 2, Token::THIS)) return; if (MatchKeywordStart(input, "throw", 2, Token::THROW)) return; break; case TR: if (MatchKeywordStart(input, "true", 2, Token::TRUE_LITERAL)) return; if (MatchKeyword(input, 'y', KEYWORD_MATCHED, Token::TRY)) return; break; case V: if (MatchKeywordStart(input, "var", 1, Token::VAR)) return; if (MatchKeywordStart(input, "void", 1, Token::VOID)) return; break; case W: if (MatchKeywordStart(input, "while", 1, Token::WHILE)) return; if (MatchKeywordStart(input, "with", 1, Token::WITH)) return; break; default: UNREACHABLE(); } // On fallthrough, it's a failure. state_ = UNMATCHABLE; } // ---------------------------------------------------------------------------- // Scanner Scanner::Scanner(ParserMode pre) : is_pre_parsing_(pre == PREPARSE), stack_overflow_(false) { } void Scanner::Initialize(Handle source, ParserLanguage language) { safe_string_input_buffer_.Reset(source.location()); Init(source, &safe_string_input_buffer_, 0, source->length(), language); } void Scanner::Initialize(Handle source, unibrow::CharacterStream* stream, ParserLanguage language) { Init(source, stream, 0, kNoEndPosition, language); } void Scanner::Initialize(Handle source, int start_position, int end_position, ParserLanguage language) { safe_string_input_buffer_.Reset(source.location()); Init(source, &safe_string_input_buffer_, start_position, end_position, language); } void Scanner::Init(Handle source, unibrow::CharacterStream* stream, int start_position, int end_position, ParserLanguage language) { // Initialize the source buffer. if (!source.is_null() && StringShape(*source).IsExternalTwoByte()) { two_byte_string_buffer_.Initialize( Handle::cast(source), start_position, end_position); source_ = &two_byte_string_buffer_; } else if (!source.is_null() && StringShape(*source).IsExternalAscii()) { ascii_string_buffer_.Initialize( Handle::cast(source), start_position, end_position); source_ = &ascii_string_buffer_; } else { char_stream_buffer_.Initialize(source, stream, start_position, end_position); source_ = &char_stream_buffer_; } is_parsing_json_ = (language == JSON); // Set c0_ (one character ahead) ASSERT(kCharacterLookaheadBufferSize == 1); Advance(); // Initializer current_ to not refer to a literal buffer. current_.literal_buffer = NULL; // Skip initial whitespace allowing HTML comment ends just like // after a newline and scan first token. has_line_terminator_before_next_ = true; SkipWhiteSpace(); Scan(); } Token::Value Scanner::Next() { // BUG 1215673: Find a thread safe way to set a stack limit in // pre-parse mode. Otherwise, we cannot safely pre-parse from other // threads. current_ = next_; // Check for stack-overflow before returning any tokens. StackLimitCheck check; if (check.HasOverflowed()) { stack_overflow_ = true; next_.token = Token::ILLEGAL; } else { Scan(); } return current_.token; } void Scanner::StartLiteral() { // Use the first buffer unless it's currently in use by the current_ token. // In most cases we won't have two literals/identifiers in a row, so // the second buffer won't be used very often and is unlikely to grow much. UTF8Buffer* free_buffer = (current_.literal_buffer != &literal_buffer_1_) ? &literal_buffer_1_ : &literal_buffer_2_; next_.literal_buffer = free_buffer; free_buffer->Reset(); } void Scanner::AddChar(uc32 c) { next_.literal_buffer->AddChar(c); } void Scanner::TerminateLiteral() { AddChar(0); } void Scanner::AddCharAdvance() { AddChar(c0_); Advance(); } static inline bool IsByteOrderMark(uc32 c) { // The Unicode value U+FFFE is guaranteed never to be assigned as a // Unicode character; this implies that in a Unicode context the // 0xFF, 0xFE byte pattern can only be interpreted as the U+FEFF // character expressed in little-endian byte order (since it could // not be a U+FFFE character expressed in big-endian byte // order). Nevertheless, we check for it to be compatible with // Spidermonkey. return c == 0xFEFF || c == 0xFFFE; } bool Scanner::SkipJsonWhiteSpace() { int start_position = source_pos(); // JSON WhiteSpace is tab, carrige-return, newline and space. while (c0_ == ' ' || c0_ == '\n' || c0_ == '\r' || c0_ == '\t') { Advance(); } return source_pos() != start_position; } bool Scanner::SkipJavaScriptWhiteSpace() { int start_position = source_pos(); while (true) { // We treat byte-order marks (BOMs) as whitespace for better // compatibility with Spidermonkey and other JavaScript engines. while (kIsWhiteSpace.get(c0_) || IsByteOrderMark(c0_)) { // IsWhiteSpace() includes line terminators! if (kIsLineTerminator.get(c0_)) { // Ignore line terminators, but remember them. This is necessary // for automatic semicolon insertion. has_line_terminator_before_next_ = true; } Advance(); } // If there is an HTML comment end '-->' at the beginning of a // line (with only whitespace in front of it), we treat the rest // of the line as a comment. This is in line with the way // SpiderMonkey handles it. if (c0_ == '-' && has_line_terminator_before_next_) { Advance(); if (c0_ == '-') { Advance(); if (c0_ == '>') { // Treat the rest of the line as a comment. SkipSingleLineComment(); // Continue skipping white space after the comment. continue; } PushBack('-'); // undo Advance() } PushBack('-'); // undo Advance() } // Return whether or not we skipped any characters. return source_pos() != start_position; } } Token::Value Scanner::SkipSingleLineComment() { Advance(); // The line terminator at the end of the line is not considered // to be part of the single-line comment; it is recognized // separately by the lexical grammar and becomes part of the // stream of input elements for the syntactic grammar (see // ECMA-262, section 7.4, page 12). while (c0_ >= 0 && !kIsLineTerminator.get(c0_)) { Advance(); } return Token::WHITESPACE; } Token::Value Scanner::SkipMultiLineComment() { ASSERT(c0_ == '*'); Advance(); while (c0_ >= 0) { char ch = c0_; Advance(); // If we have reached the end of the multi-line comment, we // consume the '/' and insert a whitespace. This way all // multi-line comments are treated as whitespace - even the ones // containing line terminators. This contradicts ECMA-262, section // 7.4, page 12, that says that multi-line comments containing // line terminators should be treated as a line terminator, but it // matches the behaviour of SpiderMonkey and KJS. if (ch == '*' && c0_ == '/') { c0_ = ' '; return Token::WHITESPACE; } } // Unterminated multi-line comment. return Token::ILLEGAL; } Token::Value Scanner::ScanHtmlComment() { // Check for -= Advance(); if (c0_ == '-') { Advance(); if (c0_ == '>' && has_line_terminator_before_next_) { // For compatibility with SpiderMonkey, we skip lines that // start with an HTML comment end '-->'. token = SkipSingleLineComment(); } else { token = Token::DEC; } } else if (c0_ == '=') { token = Select(Token::ASSIGN_SUB); } else { token = Token::SUB; } break; case '*': // * *= token = Select('=', Token::ASSIGN_MUL, Token::MUL); break; case '%': // % %= token = Select('=', Token::ASSIGN_MOD, Token::MOD); break; case '/': // / // /* /= Advance(); if (c0_ == '/') { token = SkipSingleLineComment(); } else if (c0_ == '*') { token = SkipMultiLineComment(); } else if (c0_ == '=') { token = Select(Token::ASSIGN_DIV); } else { token = Token::DIV; } break; case '&': // & && &= Advance(); if (c0_ == '&') { token = Select(Token::AND); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_AND); } else { token = Token::BIT_AND; } break; case '|': // | || |= Advance(); if (c0_ == '|') { token = Select(Token::OR); } else if (c0_ == '=') { token = Select(Token::ASSIGN_BIT_OR); } else { token = Token::BIT_OR; } break; case '^': // ^ ^= token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR); break; case '.': // . Number Advance(); if (IsDecimalDigit(c0_)) { token = ScanNumber(true); } else { token = Token::PERIOD; } break; case ':': token = Select(Token::COLON); break; case ';': token = Select(Token::SEMICOLON); break; case ',': token = Select(Token::COMMA); break; case '(': token = Select(Token::LPAREN); break; case ')': token = Select(Token::RPAREN); break; case '[': token = Select(Token::LBRACK); break; case ']': token = Select(Token::RBRACK); break; case '{': token = Select(Token::LBRACE); break; case '}': token = Select(Token::RBRACE); break; case '?': token = Select(Token::CONDITIONAL); break; case '~': token = Select(Token::BIT_NOT); break; default: if (kIsIdentifierStart.get(c0_)) { token = ScanIdentifier(); } else if (IsDecimalDigit(c0_)) { token = ScanNumber(false); } else if (SkipWhiteSpace()) { token = Token::WHITESPACE; } else if (c0_ < 0) { token = Token::EOS; } else { token = Select(Token::ILLEGAL); } break; } // Continue scanning for tokens as long as we're just skipping // whitespace. } while (token == Token::WHITESPACE); next_.location.end_pos = source_pos(); next_.token = token; } void Scanner::SeekForward(int pos) { source_->SeekForward(pos - 1); Advance(); Scan(); } uc32 Scanner::ScanHexEscape(uc32 c, int length) { ASSERT(length <= 4); // prevent overflow uc32 digits[4]; uc32 x = 0; for (int i = 0; i < length; i++) { digits[i] = c0_; int d = HexValue(c0_); if (d < 0) { // According to ECMA-262, 3rd, 7.8.4, page 18, these hex escapes // should be illegal, but other JS VMs just return the // non-escaped version of the original character. // Push back digits read, except the last one (in c0_). for (int j = i-1; j >= 0; j--) { PushBack(digits[j]); } // Notice: No handling of error - treat it as "\u"->"u". return c; } x = x * 16 + d; Advance(); } return x; } // Octal escapes of the forms '\0xx' and '\xxx' are not a part of // ECMA-262. Other JS VMs support them. uc32 Scanner::ScanOctalEscape(uc32 c, int length) { uc32 x = c - '0'; for (int i = 0; i < length; i++) { int d = c0_ - '0'; if (d < 0 || d > 7) break; int nx = x * 8 + d; if (nx >= 256) break; x = nx; Advance(); } return x; } void Scanner::ScanEscape() { uc32 c = c0_; Advance(); // Skip escaped newlines. if (kIsLineTerminator.get(c)) { // Allow CR+LF newlines in multiline string literals. if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance(); // Allow LF+CR newlines in multiline string literals. if (IsLineFeed(c) && IsCarriageReturn(c0_)) Advance(); return; } switch (c) { case '\'': // fall through case '"' : // fall through case '\\': break; case 'b' : c = '\b'; break; case 'f' : c = '\f'; break; case 'n' : c = '\n'; break; case 'r' : c = '\r'; break; case 't' : c = '\t'; break; case 'u' : c = ScanHexEscape(c, 4); break; case 'v' : c = '\v'; break; case 'x' : c = ScanHexEscape(c, 2); break; case '0' : // fall through case '1' : // fall through case '2' : // fall through case '3' : // fall through case '4' : // fall through case '5' : // fall through case '6' : // fall through case '7' : c = ScanOctalEscape(c, 2); break; } // According to ECMA-262, 3rd, 7.8.4 (p 18ff) these // should be illegal, but they are commonly handled // as non-escaped characters by JS VMs. AddChar(c); } Token::Value Scanner::ScanString() { uc32 quote = c0_; Advance(); // consume quote StartLiteral(); while (c0_ != quote && c0_ >= 0 && !kIsLineTerminator.get(c0_)) { uc32 c = c0_; Advance(); if (c == '\\') { if (c0_ < 0) return Token::ILLEGAL; ScanEscape(); } else { AddChar(c); } } if (c0_ != quote) { return Token::ILLEGAL; } TerminateLiteral(); Advance(); // consume quote return Token::STRING; } Token::Value Scanner::Select(Token::Value tok) { Advance(); return tok; } Token::Value Scanner::Select(uc32 next, Token::Value then, Token::Value else_) { Advance(); if (c0_ == next) { Advance(); return then; } else { return else_; } } // Returns true if any decimal digits were scanned, returns false otherwise. void Scanner::ScanDecimalDigits() { while (IsDecimalDigit(c0_)) AddCharAdvance(); } Token::Value Scanner::ScanNumber(bool seen_period) { ASSERT(IsDecimalDigit(c0_)); // the first digit of the number or the fraction enum { DECIMAL, HEX, OCTAL } kind = DECIMAL; StartLiteral(); if (seen_period) { // we have already seen a decimal point of the float AddChar('.'); ScanDecimalDigits(); // we know we have at least one digit } else { // if the first character is '0' we must check for octals and hex if (c0_ == '0') { AddCharAdvance(); // either 0, 0exxx, 0Exxx, 0.xxx, an octal number, or a hex number if (c0_ == 'x' || c0_ == 'X') { // hex number kind = HEX; AddCharAdvance(); if (!IsHexDigit(c0_)) // we must have at least one hex digit after 'x'/'X' return Token::ILLEGAL; while (IsHexDigit(c0_)) AddCharAdvance(); } else if ('0' <= c0_ && c0_ <= '7') { // (possible) octal number kind = OCTAL; while (true) { if (c0_ == '8' || c0_ == '9') { kind = DECIMAL; break; } if (c0_ < '0' || '7' < c0_) break; AddCharAdvance(); } } } // Parse decimal digits and allow trailing fractional part. if (kind == DECIMAL) { ScanDecimalDigits(); // optional if (c0_ == '.') { AddCharAdvance(); ScanDecimalDigits(); // optional } } } // scan exponent, if any if (c0_ == 'e' || c0_ == 'E') { ASSERT(kind != HEX); // 'e'/'E' must be scanned as part of the hex number if (kind == OCTAL) return Token::ILLEGAL; // no exponent for octals allowed // scan exponent AddCharAdvance(); if (c0_ == '+' || c0_ == '-') AddCharAdvance(); if (!IsDecimalDigit(c0_)) // we must have at least one decimal digit after 'e'/'E' return Token::ILLEGAL; ScanDecimalDigits(); } TerminateLiteral(); // The source character immediately following a numeric literal must // not be an identifier start or a decimal digit; see ECMA-262 // section 7.8.3, page 17 (note that we read only one decimal digit // if the value is 0). if (IsDecimalDigit(c0_) || kIsIdentifierStart.get(c0_)) return Token::ILLEGAL; return Token::NUMBER; } uc32 Scanner::ScanIdentifierUnicodeEscape() { Advance(); if (c0_ != 'u') return unibrow::Utf8::kBadChar; Advance(); uc32 c = ScanHexEscape('u', 4); // We do not allow a unicode escape sequence to start another // unicode escape sequence. if (c == '\\') return unibrow::Utf8::kBadChar; return c; } Token::Value Scanner::ScanIdentifier() { ASSERT(kIsIdentifierStart.get(c0_)); StartLiteral(); KeywordMatcher keyword_match; // Scan identifier start character. if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); // Only allow legal identifier start characters. if (!kIsIdentifierStart.get(c)) return Token::ILLEGAL; AddChar(c); keyword_match.Fail(); } else { AddChar(c0_); keyword_match.AddChar(c0_); Advance(); } // Scan the rest of the identifier characters. while (kIsIdentifierPart.get(c0_)) { if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); // Only allow legal identifier part characters. if (!kIsIdentifierPart.get(c)) return Token::ILLEGAL; AddChar(c); keyword_match.Fail(); } else { AddChar(c0_); keyword_match.AddChar(c0_); Advance(); } } TerminateLiteral(); return keyword_match.token(); } bool Scanner::IsIdentifier(unibrow::CharacterStream* buffer) { // Checks whether the buffer contains an identifier (no escape). if (!buffer->has_more()) return false; if (!kIsIdentifierStart.get(buffer->GetNext())) return false; while (buffer->has_more()) { if (!kIsIdentifierPart.get(buffer->GetNext())) return false; } return true; } bool Scanner::ScanRegExpPattern(bool seen_equal) { // Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags bool in_character_class = false; // Previous token is either '/' or '/=', in the second case, the // pattern starts at =. next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1); next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0); // Scan regular expression body: According to ECMA-262, 3rd, 7.8.5, // the scanner should pass uninterpreted bodies to the RegExp // constructor. StartLiteral(); if (seen_equal) AddChar('='); while (c0_ != '/' || in_character_class) { if (kIsLineTerminator.get(c0_) || c0_ < 0) return false; if (c0_ == '\\') { // escaped character AddCharAdvance(); if (kIsLineTerminator.get(c0_) || c0_ < 0) return false; AddCharAdvance(); } else { // unescaped character if (c0_ == '[') in_character_class = true; if (c0_ == ']') in_character_class = false; AddCharAdvance(); } } Advance(); // consume '/' TerminateLiteral(); return true; } bool Scanner::ScanRegExpFlags() { // Scan regular expression flags. StartLiteral(); while (kIsIdentifierPart.get(c0_)) { if (c0_ == '\\') { uc32 c = ScanIdentifierUnicodeEscape(); if (c != static_cast(unibrow::Utf8::kBadChar)) { // We allow any escaped character, unlike the restriction on // IdentifierPart when it is used to build an IdentifierName. AddChar(c); continue; } } AddCharAdvance(); } TerminateLiteral(); next_.location.end_pos = source_pos() - 1; return true; } } } // namespace v8::internal