// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Declares a Simulator for ARM instructions if we are not generating a native // ARM binary. This Simulator allows us to run and debug ARM code generation on // regular desktop machines. // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro, // which will start execution in the Simulator or forwards to the real entry // on a ARM HW platform. #ifndef V8_ARM_SIMULATOR_ARM_H_ #define V8_ARM_SIMULATOR_ARM_H_ #include "allocation.h" #if !defined(USE_SIMULATOR) // Running without a simulator on a native arm platform. namespace v8 { namespace internal { // When running without a simulator we call the entry directly. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ (entry(p0, p1, p2, p3, p4)) typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*, void*, int*, int, Address, int, Isolate*); // Call the generated regexp code directly. The code at the entry address // should act as a function matching the type arm_regexp_matcher. // The fifth argument is a dummy that reserves the space used for // the return address added by the ExitFrame in native calls. #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ (FUNCTION_CAST(entry)( \ p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)) #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ reinterpret_cast(try_catch_address) // The stack limit beyond which we will throw stack overflow errors in // generated code. Because generated code on arm uses the C stack, we // just use the C stack limit. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, uintptr_t c_limit) { USE(isolate); return c_limit; } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { return try_catch_address; } static inline void UnregisterCTryCatch() { } }; } } // namespace v8::internal #else // !defined(USE_SIMULATOR) // Running with a simulator. #include "constants-arm.h" #include "hashmap.h" #include "assembler.h" namespace v8 { namespace internal { class CachePage { public: static const int LINE_VALID = 0; static const int LINE_INVALID = 1; static const int kPageShift = 12; static const int kPageSize = 1 << kPageShift; static const int kPageMask = kPageSize - 1; static const int kLineShift = 2; // The cache line is only 4 bytes right now. static const int kLineLength = 1 << kLineShift; static const int kLineMask = kLineLength - 1; CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } char* ValidityByte(int offset) { return &validity_map_[offset >> kLineShift]; } char* CachedData(int offset) { return &data_[offset]; } private: char data_[kPageSize]; // The cached data. static const int kValidityMapSize = kPageSize >> kLineShift; char validity_map_[kValidityMapSize]; // One byte per line. }; class Simulator { public: friend class ArmDebugger; enum Register { no_reg = -1, r0 = 0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, num_registers, sp = 13, lr = 14, pc = 15, s0 = 0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31, num_s_registers = 32, d0 = 0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, num_d_registers = 16 }; explicit Simulator(Isolate* isolate); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. static Simulator* current(v8::internal::Isolate* isolate); // Accessors for register state. Reading the pc value adheres to the ARM // architecture specification and is off by a 8 from the currently executing // instruction. void set_register(int reg, int32_t value); int32_t get_register(int reg) const; double get_double_from_register_pair(int reg); void set_dw_register(int dreg, const int* dbl); // Support for VFP. void set_s_register(int reg, unsigned int value); unsigned int get_s_register(int reg) const; void set_d_register_from_double(int dreg, const double& dbl); double get_double_from_d_register(int dreg); void set_s_register_from_float(int sreg, const float dbl); float get_float_from_s_register(int sreg); void set_s_register_from_sinteger(int reg, const int value); int get_sinteger_from_s_register(int reg); // Special case of set_register and get_register to access the raw PC value. void set_pc(int32_t value); int32_t get_pc() const; // Accessor to the internal simulator stack area. uintptr_t StackLimit() const; // Executes ARM instructions until the PC reaches end_sim_pc. void Execute(); // Call on program start. static void Initialize(Isolate* isolate); // V8 generally calls into generated JS code with 5 parameters and into // generated RegExp code with 7 parameters. This is a convenience function, // which sets up the simulator state and grabs the result on return. int32_t Call(byte* entry, int argument_count, ...); // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); // Debugger input. void set_last_debugger_input(char* input); char* last_debugger_input() { return last_debugger_input_; } // ICache checking. static void FlushICache(v8::internal::HashMap* i_cache, void* start, size_t size); // Returns true if pc register contains one of the 'special_values' defined // below (bad_lr, end_sim_pc). bool has_bad_pc() const; // EABI variant for double arguments in use. bool use_eabi_hardfloat() { #if USE_EABI_HARDFLOAT return true; #else return false; #endif } private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_lr = -1, // A pc value used to signal the simulator to stop execution. Generally // the lr is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2 }; // Unsupported instructions use Format to print an error and stop execution. void Format(Instruction* instr, const char* format); // Checks if the current instruction should be executed based on its // condition bits. bool ConditionallyExecute(Instruction* instr); // Helper functions to set the conditional flags in the architecture state. void SetNZFlags(int32_t val); void SetCFlag(bool val); void SetVFlag(bool val); bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); bool BorrowFrom(int32_t left, int32_t right); bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition); inline int GetCarry() { return c_flag_ ? 1 : 0; }; // Support for VFP. void Compute_FPSCR_Flags(double val1, double val2); void Copy_FPSCR_to_APSR(); // Helper functions to decode common "addressing" modes int32_t GetShiftRm(Instruction* instr, bool* carry_out); int32_t GetImm(Instruction* instr, bool* carry_out); void ProcessPUW(Instruction* instr, int num_regs, int operand_size, intptr_t* start_address, intptr_t* end_address); void HandleRList(Instruction* instr, bool load); void HandleVList(Instruction* inst); void SoftwareInterrupt(Instruction* instr); // Stop helper functions. inline bool isStopInstruction(Instruction* instr); inline bool isWatchedStop(uint32_t bkpt_code); inline bool isEnabledStop(uint32_t bkpt_code); inline void EnableStop(uint32_t bkpt_code); inline void DisableStop(uint32_t bkpt_code); inline void IncreaseStopCounter(uint32_t bkpt_code); void PrintStopInfo(uint32_t code); // Read and write memory. inline uint8_t ReadBU(int32_t addr); inline int8_t ReadB(int32_t addr); inline void WriteB(int32_t addr, uint8_t value); inline void WriteB(int32_t addr, int8_t value); inline uint16_t ReadHU(int32_t addr, Instruction* instr); inline int16_t ReadH(int32_t addr, Instruction* instr); // Note: Overloaded on the sign of the value. inline void WriteH(int32_t addr, uint16_t value, Instruction* instr); inline void WriteH(int32_t addr, int16_t value, Instruction* instr); inline int ReadW(int32_t addr, Instruction* instr); inline void WriteW(int32_t addr, int value, Instruction* instr); int32_t* ReadDW(int32_t addr); void WriteDW(int32_t addr, int32_t value1, int32_t value2); // Executing is handled based on the instruction type. // Both type 0 and type 1 rolled into one. void DecodeType01(Instruction* instr); void DecodeType2(Instruction* instr); void DecodeType3(Instruction* instr); void DecodeType4(Instruction* instr); void DecodeType5(Instruction* instr); void DecodeType6(Instruction* instr); void DecodeType7(Instruction* instr); // Support for VFP. void DecodeTypeVFP(Instruction* instr); void DecodeType6CoprocessorIns(Instruction* instr); void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); void DecodeVCMP(Instruction* instr); void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); // Executes one instruction. void InstructionDecode(Instruction* instr); // ICache. static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr); static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, int size); static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page); // Runtime call support. static void* RedirectExternalReference( void* external_function, v8::internal::ExternalReference::Type type); // For use in calls that take double value arguments. void GetFpArgs(double* x, double* y); void GetFpArgs(double* x); void GetFpArgs(double* x, int32_t* y); void SetFpResult(const double& result); void TrashCallerSaveRegisters(); // Architecture state. // Saturating instructions require a Q flag to indicate saturation. // There is currently no way to read the CPSR directly, and thus read the Q // flag, so this is left unimplemented. int32_t registers_[16]; bool n_flag_; bool z_flag_; bool c_flag_; bool v_flag_; // VFP architecture state. unsigned int vfp_register[num_s_registers]; bool n_flag_FPSCR_; bool z_flag_FPSCR_; bool c_flag_FPSCR_; bool v_flag_FPSCR_; // VFP rounding mode. See ARM DDI 0406B Page A2-29. VFPRoundingMode FPSCR_rounding_mode_; // VFP FP exception flags architecture state. bool inv_op_vfp_flag_; bool div_zero_vfp_flag_; bool overflow_vfp_flag_; bool underflow_vfp_flag_; bool inexact_vfp_flag_; // Simulator support. char* stack_; bool pc_modified_; int icount_; // Debugger input. char* last_debugger_input_; // Icache simulation v8::internal::HashMap* i_cache_; // Registered breakpoints. Instruction* break_pc_; Instr break_instr_; v8::internal::Isolate* isolate_; // A stop is watched if its code is less than kNumOfWatchedStops. // Only watched stops support enabling/disabling and the counter feature. static const uint32_t kNumOfWatchedStops = 256; // Breakpoint is disabled if bit 31 is set. static const uint32_t kStopDisabledBit = 1 << 31; // A stop is enabled, meaning the simulator will stop when meeting the // instruction, if bit 31 of watched_stops[code].count is unset. // The value watched_stops[code].count & ~(1 << 31) indicates how many times // the breakpoint was hit or gone through. struct StopCountAndDesc { uint32_t count; char* desc; }; StopCountAndDesc watched_stops[kNumOfWatchedStops]; }; // When running with the simulator transition into simulated execution at this // point. #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \ reinterpret_cast(Simulator::current(Isolate::Current())->Call( \ FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4)) #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \ Simulator::current(Isolate::Current())->Call( \ entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8) #define TRY_CATCH_FROM_ADDRESS(try_catch_address) \ try_catch_address == NULL ? \ NULL : *(reinterpret_cast(try_catch_address)) // The simulator has its own stack. Thus it has a different stack limit from // the C-based native code. Setting the c_limit to indicate a very small // stack cause stack overflow errors, since the simulator ignores the input. // This is unlikely to be an issue in practice, though it might cause testing // trouble down the line. class SimulatorStack : public v8::internal::AllStatic { public: static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate, uintptr_t c_limit) { return Simulator::current(isolate)->StackLimit(); } static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) { Simulator* sim = Simulator::current(Isolate::Current()); return sim->PushAddress(try_catch_address); } static inline void UnregisterCTryCatch() { Simulator::current(Isolate::Current())->PopAddress(); } }; } } // namespace v8::internal #endif // !defined(USE_SIMULATOR) #endif // V8_ARM_SIMULATOR_ARM_H_