// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CCTEST_COMPILER_VALUE_HELPER_H_ #define V8_CCTEST_COMPILER_VALUE_HELPER_H_ #include #include "src/base/template-utils.h" #include "src/compiler/common-operator.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node.h" #include "src/isolate.h" #include "src/objects.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { namespace compiler { // A collection of utilities related to numerical and heap values, including // example input values of various types, including int32_t, uint32_t, double, // etc. class ValueHelper { public: Isolate* isolate_; ValueHelper() : isolate_(CcTest::InitIsolateOnce()) {} void CheckFloat64Constant(double expected, Node* node) { CHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); CHECK_EQ(expected, OpParameter(node->op())); } void CheckNumberConstant(double expected, Node* node) { CHECK_EQ(IrOpcode::kNumberConstant, node->opcode()); CHECK_EQ(expected, OpParameter(node->op())); } void CheckInt32Constant(int32_t expected, Node* node) { CHECK_EQ(IrOpcode::kInt32Constant, node->opcode()); CHECK_EQ(expected, OpParameter(node->op())); } void CheckUint32Constant(int32_t expected, Node* node) { CHECK_EQ(IrOpcode::kInt32Constant, node->opcode()); CHECK_EQ(expected, OpParameter(node->op())); } void CheckHeapConstant(HeapObject expected, Node* node) { CHECK_EQ(IrOpcode::kHeapConstant, node->opcode()); CHECK_EQ(expected, *HeapConstantOf(node->op())); } static constexpr float float32_array[] = { -std::numeric_limits::infinity(), -2.70497e+38f, -1.4698e+37f, -1.22813e+35f, -1.20555e+35f, -1.34584e+34f, -1.0079e+32f, -6.49364e+26f, -3.06077e+25f, -1.46821e+25f, -1.17658e+23f, -1.9617e+22f, -2.7357e+20f, -9223372036854775808.0f, // INT64_MIN -1.48708e+13f, -1.89633e+12f, -4.66622e+11f, -2.22581e+11f, -1.45381e+10f, -2147483904.0f, // First float32 after INT32_MIN -2147483648.0f, // INT32_MIN -2147483520.0f, // Last float32 before INT32_MIN -1.3956e+09f, -1.32951e+09f, -1.30721e+09f, -1.19756e+09f, -9.26822e+08f, -6.35647e+08f, -4.00037e+08f, -1.81227e+08f, -5.09256e+07f, -964300.0f, -192446.0f, -28455.0f, -27194.0f, -26401.0f, -20575.0f, -17069.0f, -9167.0f, -960.178f, -113.0f, -62.0f, -15.0f, -7.0f, -1.0f, -0.0256635f, -4.60374e-07f, -3.63759e-10f, -4.30175e-14f, -5.27385e-15f, -1.5707963267948966f, -1.48084e-15f, -2.220446049250313e-16f, -1.05755e-19f, -3.2995e-21f, -1.67354e-23f, -1.11885e-23f, -1.78506e-30f, -5.07594e-31f, -3.65799e-31f, -1.43718e-34f, -1.27126e-38f, -0.0f, 0.0f, 1.17549e-38f, 1.56657e-37f, 4.08512e-29f, 3.31357e-28f, 6.25073e-22f, 4.1723e-13f, 1.44343e-09f, 1.5707963267948966f, 5.27004e-08f, 9.48298e-08f, 5.57888e-07f, 4.89988e-05f, 0.244326f, 1.0f, 12.4895f, 19.0f, 47.0f, 106.0f, 538.324f, 564.536f, 819.124f, 7048.0f, 12611.0f, 19878.0f, 20309.0f, 797056.0f, 1.77219e+09f, 2147483648.0f, // INT32_MAX + 1 4294967296.0f, // UINT32_MAX + 1 1.51116e+11f, 4.18193e+13f, 3.59167e+16f, 9223372036854775808.0f, // INT64_MAX + 1 18446744073709551616.0f, // UINT64_MAX + 1 3.38211e+19f, 2.67488e+20f, 1.78831e+21f, 9.20914e+21f, 8.35654e+23f, 1.4495e+24f, 5.94015e+25f, 4.43608e+30f, 2.44502e+33f, 2.61152e+33f, 1.38178e+37f, 1.71306e+37f, 3.31899e+38f, 3.40282e+38f, std::numeric_limits::infinity(), std::numeric_limits::quiet_NaN(), -std::numeric_limits::quiet_NaN()}; static constexpr Vector float32_vector() { return ArrayVector(float32_array); } static constexpr double float64_array[] = { -2e66, -2.220446049250313e-16, -9223373136366403584.0, -9223372036854775808.0, // INT64_MIN -2147483649.5, -2147483648.25, -2147483648.0, -2147483647.875, -2147483647.125, -2147483647.0, -999.75, -2e66, -1.75, -1.5707963267948966, -1.0, -0.5, -0.0, 0.0, 3e-88, 0.125, 0.25, 0.375, 0.5, 1.0, 1.17549e-38, 1.56657e-37, 1.0000001, 1.25, 1.5707963267948966, 2, 3.1e7, 5.125, 6.25, 888, 982983.25, 2147483647.0, 2147483647.375, 2147483647.75, 2147483648.0, 2147483648.25, 2147483649.25, 9223372036854775808.0, // INT64_MAX + 1 9223373136366403584.0, 18446744073709551616.0, // UINT64_MAX + 1 2e66, V8_INFINITY, -V8_INFINITY, std::numeric_limits::quiet_NaN(), -std::numeric_limits::quiet_NaN()}; static constexpr Vector float64_vector() { return ArrayVector(float64_array); } static constexpr uint32_t uint32_array[] = { 0x00000000, 0x00000001, 0xFFFFFFFF, 0x1B09788B, 0x04C5FCE8, 0xCC0DE5BF, // This row is useful for testing lea optimizations on intel. 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009, 0x273A798E, 0x187937A3, 0xECE3AF83, 0x5495A16B, 0x0B668ECC, 0x11223344, 0x0000009E, 0x00000043, 0x0000AF73, 0x0000116B, 0x00658ECC, 0x002B3B4C, 0x88776655, 0x70000000, 0x07200000, 0x7FFFFFFF, 0x56123761, 0x7FFFFF00, 0x761C4761, 0x80000000, 0x88888888, 0xA0000000, 0xDDDDDDDD, 0xE0000000, 0xEEEEEEEE, 0xFFFFFFFD, 0xF0000000, 0x007FFFFF, 0x003FFFFF, 0x001FFFFF, 0x000FFFFF, 0x0007FFFF, 0x0003FFFF, 0x0001FFFF, 0x0000FFFF, 0x00007FFF, 0x00003FFF, 0x00001FFF, 0x00000FFF, 0x000007FF, 0x000003FF, 0x000001FF, // Bit pattern of a quiet NaN and signaling NaN, with or without // additional payload. 0x7FC00000, 0x7F800000, 0x7FFFFFFF, 0x7F876543}; static constexpr Vector uint32_vector() { return ArrayVector(uint32_array); } static constexpr Vector int32_vector() { return Vector::cast(uint32_vector()); } static constexpr uint64_t uint64_array[] = { 0x00000000, 0x00000001, 0xFFFFFFFF, 0x1B09788B, 0x04C5FCE8, 0xCC0DE5BF, 0x00000002, 0x00000003, 0x00000004, 0x00000005, 0x00000008, 0x00000009, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFD, 0x0000000000000000, 0x0000000100000000, 0xFFFFFFFF00000000, 0x1B09788B00000000, 0x04C5FCE800000000, 0xCC0DE5BF00000000, 0x0000000200000000, 0x0000000300000000, 0x0000000400000000, 0x0000000500000000, 0x0000000800000000, 0x0000000900000000, 0x273A798E187937A3, 0xECE3AF835495A16B, 0x0B668ECC11223344, 0x0000009E, 0x00000043, 0x0000AF73, 0x0000116B, 0x00658ECC, 0x002B3B4C, 0x88776655, 0x70000000, 0x07200000, 0x7FFFFFFF, 0x56123761, 0x7FFFFF00, 0x761C4761EEEEEEEE, 0x80000000EEEEEEEE, 0x88888888DDDDDDDD, 0xA0000000DDDDDDDD, 0xDDDDDDDDAAAAAAAA, 0xE0000000AAAAAAAA, 0xEEEEEEEEEEEEEEEE, 0xFFFFFFFDEEEEEEEE, 0xF0000000DDDDDDDD, 0x007FFFFFDDDDDDDD, 0x003FFFFFAAAAAAAA, 0x001FFFFFAAAAAAAA, 0x000FFFFF, 0x0007FFFF, 0x0003FFFF, 0x0001FFFF, 0x0000FFFF, 0x00007FFF, 0x00003FFF, 0x00001FFF, 0x00000FFF, 0x000007FF, 0x000003FF, 0x000001FF, 0x00003FFFFFFFFFFF, 0x00001FFFFFFFFFFF, 0x00000FFFFFFFFFFF, 0x000007FFFFFFFFFF, 0x000003FFFFFFFFFF, 0x000001FFFFFFFFFF, 0x8000008000000000, 0x8000008000000001, 0x8000000000000400, 0x8000000000000401, 0x0000000000000020, // Bit pattern of a quiet NaN and signaling NaN, with or without // additional payload. 0x7FF8000000000000, 0x7FF0000000000000, 0x7FF8123456789ABC, 0x7FF7654321FEDCBA}; static constexpr Vector uint64_vector() { return ArrayVector(uint64_array); } static constexpr Vector int64_vector() { return Vector::cast(uint64_vector()); } static constexpr int16_t int16_array[] = { 0, 1, 2, INT16_MAX - 1, INT16_MAX, INT16_MIN, INT16_MIN + 1, -2, -1}; static constexpr Vector int16_vector() { return ArrayVector(int16_array); } static constexpr Vector uint16_vector() { return Vector::cast(int16_vector()); } static constexpr int8_t int8_array[] = { 0, 1, 2, INT8_MAX - 1, INT8_MAX, INT8_MIN, INT8_MIN + 1, -2, -1}; static constexpr Vector int8_vector() { return ArrayVector(int8_array); } static constexpr Vector uint8_vector() { return Vector::cast(ArrayVector(int8_array)); } static constexpr uint32_t ror_array[31] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; static constexpr Vector ror_vector() { return ArrayVector(ror_array); } }; // Helper macros that can be used in FOR_INT32_INPUTS(i) { ... *i ... } // Watch out, these macros aren't hygenic; they pollute your scope. Thanks STL. #define FOR_INPUTS(ctype, itype, var) \ Vector var##_vec = \ ::v8::internal::compiler::ValueHelper::itype##_vector(); \ for (Vector::iterator var = var##_vec.begin(), \ var##_end = var##_vec.end(); \ var != var##_end; ++var) #define FOR_INT32_INPUTS(var) FOR_INPUTS(int32_t, int32, var) #define FOR_UINT32_INPUTS(var) FOR_INPUTS(uint32_t, uint32, var) #define FOR_INT16_INPUTS(var) FOR_INPUTS(int16_t, int16, var) #define FOR_UINT16_INPUTS(var) FOR_INPUTS(uint16_t, uint16, var) #define FOR_INT8_INPUTS(var) FOR_INPUTS(int8_t, int8, var) #define FOR_UINT8_INPUTS(var) FOR_INPUTS(uint8_t, uint8, var) #define FOR_INT64_INPUTS(var) FOR_INPUTS(int64_t, int64, var) #define FOR_UINT64_INPUTS(var) FOR_INPUTS(uint64_t, uint64, var) #define FOR_FLOAT32_INPUTS(var) FOR_INPUTS(float, float32, var) #define FOR_FLOAT64_INPUTS(var) FOR_INPUTS(double, float64, var) #define FOR_INT32_SHIFTS(var) for (int32_t var = 0; var < 32; var++) #define FOR_UINT32_SHIFTS(var) for (uint32_t var = 0; var < 32; var++) template struct FloatCompareWrapper { type value; explicit FloatCompareWrapper(type x) : value(x) {} bool operator==(FloatCompareWrapper const& other) const { return std::isnan(value) ? std::isnan(other.value) : value == other.value && std::signbit(value) == std::signbit(other.value); } }; template std::ostream& operator<<(std::ostream& out, FloatCompareWrapper wrapper) { uint8_t bytes[sizeof(type)]; memcpy(bytes, &wrapper.value, sizeof(type)); out << wrapper.value << " (0x"; const char* kHexDigits = "0123456789ABCDEF"; for (unsigned i = 0; i < sizeof(type); ++i) { out << kHexDigits[bytes[i] >> 4] << kHexDigits[bytes[i] & 15]; } return out << ")"; } #define CHECK_FLOAT_EQ(lhs, rhs) \ do { \ using FloatWrapper = ::v8::internal::compiler::FloatCompareWrapper; \ CHECK_EQ(FloatWrapper(lhs), FloatWrapper(rhs)); \ } while (false) #define CHECK_DOUBLE_EQ(lhs, rhs) \ do { \ using DoubleWrapper = \ ::v8::internal::compiler::FloatCompareWrapper; \ CHECK_EQ(DoubleWrapper(lhs), DoubleWrapper(rhs)); \ } while (false) } // namespace compiler } // namespace internal } // namespace v8 #endif // V8_CCTEST_COMPILER_VALUE_HELPER_H_