// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/assembler-inl.h" #include "src/base/bits.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/wasm-run-utils.h" #include "test/common/wasm/wasm-macro-gen.h" namespace v8 { namespace internal { namespace wasm { namespace test_run_wasm_simd { namespace { typedef float (*FloatUnOp)(float); typedef float (*FloatBinOp)(float, float); typedef int (*FloatCompareOp)(float, float); typedef int32_t (*Int32UnOp)(int32_t); typedef int32_t (*Int32BinOp)(int32_t, int32_t); typedef int (*Int32CompareOp)(int32_t, int32_t); typedef int32_t (*Int32ShiftOp)(int32_t, int); typedef int16_t (*Int16UnOp)(int16_t); typedef int16_t (*Int16BinOp)(int16_t, int16_t); typedef int (*Int16CompareOp)(int16_t, int16_t); typedef int16_t (*Int16ShiftOp)(int16_t, int); typedef int8_t (*Int8UnOp)(int8_t); typedef int8_t (*Int8BinOp)(int8_t, int8_t); typedef int (*Int8CompareOp)(int8_t, int8_t); typedef int8_t (*Int8ShiftOp)(int8_t, int); #define WASM_SIMD_TEST(name) \ void RunWasm_##name##_Impl(LowerSimd lower_simd, \ ExecutionTier execution_tier); \ TEST(RunWasm_##name##_turbofan) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kOptimized); \ } \ TEST(RunWasm_##name##_interpreter) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kInterpreter); \ } \ TEST(RunWasm_##name##_simd_lowered) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kLowerSimd, ExecutionTier::kOptimized); \ } \ void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier) // Generic expected value functions. template T Negate(T a) { return -a; } template T Add(T a, T b) { return a + b; } template T Sub(T a, T b) { return a - b; } template T Mul(T a, T b) { return a * b; } template T Minimum(T a, T b) { return a <= b ? a : b; } template T Maximum(T a, T b) { return a >= b ? a : b; } template T UnsignedMinimum(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) <= static_cast(b) ? a : b; } template T UnsignedMaximum(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) >= static_cast(b) ? a : b; } template int Equal(T a, T b) { return a == b ? -1 : 0; } template int NotEqual(T a, T b) { return a != b ? -1 : 0; } template int Less(T a, T b) { return a < b ? -1 : 0; } template int LessEqual(T a, T b) { return a <= b ? -1 : 0; } template int Greater(T a, T b) { return a > b ? -1 : 0; } template int GreaterEqual(T a, T b) { return a >= b ? -1 : 0; } template int UnsignedLess(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) < static_cast(b) ? -1 : 0; } template int UnsignedLessEqual(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) <= static_cast(b) ? -1 : 0; } template int UnsignedGreater(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) > static_cast(b) ? -1 : 0; } template int UnsignedGreaterEqual(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) >= static_cast(b) ? -1 : 0; } template T LogicalShiftLeft(T a, int shift) { return a << shift; } template T LogicalShiftRight(T a, int shift) { using UnsignedT = typename std::make_unsigned::type; return static_cast(a) >> shift; } template T Clamp(int64_t value) { static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller"); int64_t min = static_cast(std::numeric_limits::min()); int64_t max = static_cast(std::numeric_limits::max()); int64_t clamped = std::max(min, std::min(max, value)); return static_cast(clamped); } template int64_t Widen(T value) { static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller"); return static_cast(value); } template int64_t UnsignedWiden(T value) { static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller"); using UnsignedT = typename std::make_unsigned::type; return static_cast(static_cast(value)); } template T Narrow(int64_t value) { return Clamp(value); } template T UnsignedNarrow(int64_t value) { static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller"); using UnsignedT = typename std::make_unsigned::type; return static_cast(Clamp(value & 0xFFFFFFFFu)); } template T AddSaturate(T a, T b) { return Clamp(Widen(a) + Widen(b)); } template T SubSaturate(T a, T b) { return Clamp(Widen(a) - Widen(b)); } template T UnsignedAddSaturate(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return Clamp(UnsignedWiden(a) + UnsignedWiden(b)); } template T UnsignedSubSaturate(T a, T b) { using UnsignedT = typename std::make_unsigned::type; return Clamp(UnsignedWiden(a) - UnsignedWiden(b)); } template T And(T a, T b) { return a & b; } template T Or(T a, T b) { return a | b; } template T Xor(T a, T b) { return a ^ b; } template T Not(T a) { return ~a; } template T LogicalNot(T a) { return a == 0 ? -1 : 0; } template T Sqrt(T a) { return std::sqrt(a); } template T Recip(T a) { return 1.0f / a; } template T RecipSqrt(T a) { return 1.0f / std::sqrt(a); } } // namespace #define WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lane_value, lane_index) \ WASM_IF(WASM_##LANE_TYPE##_NE(WASM_GET_LOCAL(lane_value), \ WASM_SIMD_##TYPE##_EXTRACT_LANE( \ lane_index, WASM_GET_LOCAL(value))), \ WASM_RETURN1(WASM_ZERO)) #define WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3) \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \ , WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3) #define WASM_SIMD_CHECK_SPLAT4(TYPE, value, LANE_TYPE, lv) \ WASM_SIMD_CHECK4(TYPE, value, LANE_TYPE, lv, lv, lv, lv) #define WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, lv5, \ lv6, lv7) \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \ , WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7) #define WASM_SIMD_CHECK_SPLAT8(TYPE, value, LANE_TYPE, lv) \ WASM_SIMD_CHECK8(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv) #define WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv0, lv1, lv2, lv3, lv4, \ lv5, lv6, lv7, lv8, lv9, lv10, lv11, lv12, lv13, \ lv14, lv15) \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv0, 0) \ , WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv1, 1), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv2, 2), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv3, 3), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv4, 4), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv5, 5), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv6, 6), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv7, 7), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv8, 8), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv9, 9), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv10, 10), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv11, 11), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv12, 12), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv13, 13), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv14, 14), \ WASM_SIMD_CHECK_LANE(TYPE, value, LANE_TYPE, lv15, 15) #define WASM_SIMD_CHECK_SPLAT16(TYPE, value, LANE_TYPE, lv) \ WASM_SIMD_CHECK16(TYPE, value, LANE_TYPE, lv, lv, lv, lv, lv, lv, lv, lv, \ lv, lv, lv, lv, lv, lv, lv, lv) #define WASM_SIMD_CHECK_F32_LANE(value, lane_value, lane_index) \ WASM_IF(WASM_F32_NE(WASM_GET_LOCAL(lane_value), \ WASM_SIMD_F32x4_EXTRACT_LANE(lane_index, \ WASM_GET_LOCAL(value))), \ WASM_RETURN1(WASM_ZERO)) #define WASM_SIMD_CHECK_F32x4(value, lv0, lv1, lv2, lv3) \ WASM_SIMD_CHECK_F32_LANE(value, lv0, 0) \ , WASM_SIMD_CHECK_F32_LANE(value, lv1, 1), \ WASM_SIMD_CHECK_F32_LANE(value, lv2, 2), \ WASM_SIMD_CHECK_F32_LANE(value, lv3, 3) #define WASM_SIMD_CHECK_SPLAT_F32x4(value, lv) \ WASM_SIMD_CHECK_F32x4(value, lv, lv, lv, lv) #define WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, lane_index) \ WASM_IF(WASM_F32_GT(WASM_GET_LOCAL(low), \ WASM_SIMD_F32x4_EXTRACT_LANE(lane_index, \ WASM_GET_LOCAL(value))), \ WASM_RETURN1(WASM_ZERO)) \ , WASM_IF(WASM_F32_LT(WASM_GET_LOCAL(high), \ WASM_SIMD_F32x4_EXTRACT_LANE(lane_index, \ WASM_GET_LOCAL(value))), \ WASM_RETURN1(WASM_ZERO)) #define WASM_SIMD_CHECK_SPLAT_F32x4_ESTIMATE(value, low, high) \ WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 0) \ , WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 1), \ WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 2), \ WASM_SIMD_CHECK_F32_LANE_ESTIMATE(value, low, high, 3) #define TO_BYTE(val) static_cast(val) #define WASM_SIMD_OP(op) kSimdPrefix, TO_BYTE(op) #define WASM_SIMD_SPLAT(Type, x) x, WASM_SIMD_OP(kExpr##Type##Splat) #define WASM_SIMD_UNOP(op, x) x, WASM_SIMD_OP(op) #define WASM_SIMD_BINOP(op, x, y) x, y, WASM_SIMD_OP(op) #define WASM_SIMD_SHIFT_OP(op, shift, x) x, WASM_SIMD_OP(op), TO_BYTE(shift) #define WASM_SIMD_CONCAT_OP(op, bytes, x, y) \ x, y, WASM_SIMD_OP(op), TO_BYTE(bytes) #define WASM_SIMD_SELECT(format, x, y, z) x, y, z, WASM_SIMD_OP(kExprS128Select) #define WASM_SIMD_F32x4_SPLAT(x) x, WASM_SIMD_OP(kExprF32x4Splat) #define WASM_SIMD_F32x4_EXTRACT_LANE(lane, x) \ x, WASM_SIMD_OP(kExprF32x4ExtractLane), TO_BYTE(lane) #define WASM_SIMD_F32x4_REPLACE_LANE(lane, x, y) \ x, y, WASM_SIMD_OP(kExprF32x4ReplaceLane), TO_BYTE(lane) #define WASM_SIMD_I32x4_SPLAT(x) x, WASM_SIMD_OP(kExprI32x4Splat) #define WASM_SIMD_I32x4_EXTRACT_LANE(lane, x) \ x, WASM_SIMD_OP(kExprI32x4ExtractLane), TO_BYTE(lane) #define WASM_SIMD_I32x4_REPLACE_LANE(lane, x, y) \ x, y, WASM_SIMD_OP(kExprI32x4ReplaceLane), TO_BYTE(lane) #define WASM_SIMD_I16x8_SPLAT(x) x, WASM_SIMD_OP(kExprI16x8Splat) #define WASM_SIMD_I16x8_EXTRACT_LANE(lane, x) \ x, WASM_SIMD_OP(kExprI16x8ExtractLane), TO_BYTE(lane) #define WASM_SIMD_I16x8_REPLACE_LANE(lane, x, y) \ x, y, WASM_SIMD_OP(kExprI16x8ReplaceLane), TO_BYTE(lane) #define WASM_SIMD_I8x16_SPLAT(x) x, WASM_SIMD_OP(kExprI8x16Splat) #define WASM_SIMD_I8x16_EXTRACT_LANE(lane, x) \ x, WASM_SIMD_OP(kExprI8x16ExtractLane), TO_BYTE(lane) #define WASM_SIMD_I8x16_REPLACE_LANE(lane, x, y) \ x, y, WASM_SIMD_OP(kExprI8x16ReplaceLane), TO_BYTE(lane) #define WASM_SIMD_S8x16_SHUFFLE_OP(opcode, m, x, y) \ x, y, WASM_SIMD_OP(opcode), TO_BYTE(m[0]), TO_BYTE(m[1]), TO_BYTE(m[2]), \ TO_BYTE(m[3]), TO_BYTE(m[4]), TO_BYTE(m[5]), TO_BYTE(m[6]), \ TO_BYTE(m[7]), TO_BYTE(m[8]), TO_BYTE(m[9]), TO_BYTE(m[10]), \ TO_BYTE(m[11]), TO_BYTE(m[12]), TO_BYTE(m[13]), TO_BYTE(m[14]), \ TO_BYTE(m[15]) #define WASM_SIMD_LOAD_MEM(index) \ index, WASM_SIMD_OP(kExprS128LoadMem), ZERO_ALIGNMENT, ZERO_OFFSET #define WASM_SIMD_STORE_MEM(index, val) \ index, val, WASM_SIMD_OP(kExprS128StoreMem), ZERO_ALIGNMENT, ZERO_OFFSET // Skip FP tests involving extremely large or extremely small values, which // may fail due to non-IEEE-754 SIMD arithmetic on some platforms. bool SkipFPValue(float x) { float abs_x = std::fabs(x); const float kSmallFloatThreshold = 1.0e-32f; const float kLargeFloatThreshold = 1.0e32f; return abs_x != 0.0f && // 0 or -0 are fine. (abs_x < kSmallFloatThreshold || abs_x > kLargeFloatThreshold); } // Skip tests where the expected value is a NaN, since our wasm test code // doesn't handle NaNs. Also skip extreme values. bool SkipFPExpectedValue(float x) { return std::isnan(x) || SkipFPValue(x); } WASM_SIMD_TEST(F32x4Splat) { WasmRunner r(execution_tier, lower_simd); byte lane_val = 0; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(lane_val))), WASM_SIMD_CHECK_SPLAT_F32x4(simd, lane_val), WASM_RETURN1(WASM_ONE)); FOR_FLOAT32_INPUTS(i) { if (SkipFPExpectedValue(*i)) continue; CHECK_EQ(1, r.Call(*i)); } } WASM_SIMD_TEST(F32x4ReplaceLane) { WasmRunner r(execution_tier, lower_simd); byte old_val = 0; byte new_val = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(old_val))), WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_F32x4(simd, new_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_F32x4(simd, new_val, new_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_F32x4(simd, new_val, new_val, new_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_SPLAT_F32x4(simd, new_val), WASM_RETURN1(WASM_ONE)); CHECK_EQ(1, r.Call(3.14159f, -1.5f)); } // Runs tests of compiled code, using the interpreter as a reference. #define WASM_SIMD_COMPILED_TEST(name) \ void RunWasm_##name##_Impl(LowerSimd lower_simd, \ ExecutionTier execution_tier); \ TEST(RunWasm_##name##_turbofan) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kNoLowerSimd, ExecutionTier::kOptimized); \ } \ TEST(RunWasm_##name##_simd_lowered) { \ EXPERIMENTAL_FLAG_SCOPE(simd); \ RunWasm_##name##_Impl(kLowerSimd, ExecutionTier::kOptimized); \ } \ void RunWasm_##name##_Impl(LowerSimd lower_simd, ExecutionTier execution_tier) // Tests both signed and unsigned conversion. // v8:8425 tracks this test being enabled in the interpreter. WASM_SIMD_COMPILED_TEST(F32x4ConvertI32x4) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected_signed = 1; byte expected_unsigned = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprF32x4SConvertI32x4, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT_F32x4(simd1, expected_signed), WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprF32x4UConvertI32x4, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT_F32x4(simd2, expected_unsigned), WASM_RETURN1(WASM_ONE)); FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, static_cast(*i), static_cast(static_cast(*i)))); } } void RunF32x4UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, FloatUnOp expected_op, float error = 0.0f) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte low = 1; byte high = 2; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT_F32x4_ESTIMATE(simd, low, high), WASM_RETURN1(WASM_ONE)); FOR_FLOAT32_INPUTS(i) { if (SkipFPValue(*i)) continue; float expected = expected_op(*i); if (SkipFPExpectedValue(expected)) continue; float abs_error = std::abs(expected) * error; CHECK_EQ(1, r.Call(*i, expected - abs_error, expected + abs_error)); } } WASM_SIMD_TEST(F32x4Abs) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Abs, std::abs); } WASM_SIMD_TEST(F32x4Neg) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4Neg, Negate); } static const float kApproxError = 0.01f; WASM_SIMD_TEST(F32x4RecipApprox) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipApprox, Recip, kApproxError); } WASM_SIMD_TEST(F32x4RecipSqrtApprox) { RunF32x4UnOpTest(execution_tier, lower_simd, kExprF32x4RecipSqrtApprox, RecipSqrt, kApproxError); } void RunF32x4BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, FloatBinOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT_F32x4(simd1, expected), WASM_RETURN1(WASM_ONE)); FOR_FLOAT32_INPUTS(i) { if (SkipFPValue(*i)) continue; FOR_FLOAT32_INPUTS(j) { if (SkipFPValue(*j)) continue; float expected = expected_op(*i, *j); if (SkipFPExpectedValue(expected)) continue; CHECK_EQ(1, r.Call(*i, *j, expected)); } } } WASM_SIMD_TEST(F32x4Add) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Add, Add); } WASM_SIMD_TEST(F32x4Sub) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Sub, Sub); } WASM_SIMD_TEST(F32x4Mul) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Mul, Mul); } WASM_SIMD_TEST(F32x4_Min) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Min, JSMin); } WASM_SIMD_TEST(F32x4_Max) { RunF32x4BinOpTest(execution_tier, lower_simd, kExprF32x4Max, JSMax); } void RunF32x4CompareOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, FloatCompareOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE); FOR_FLOAT32_INPUTS(i) { if (SkipFPValue(*i)) continue; FOR_FLOAT32_INPUTS(j) { if (SkipFPValue(*j)) continue; float diff = *i - *j; if (SkipFPExpectedValue(diff)) continue; CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_SIMD_TEST(F32x4Eq) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Eq, Equal); } WASM_SIMD_TEST(F32x4Ne) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ne, NotEqual); } WASM_SIMD_TEST(F32x4Gt) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Gt, Greater); } WASM_SIMD_TEST(F32x4Ge) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Ge, GreaterEqual); } WASM_SIMD_TEST(F32x4Lt) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Lt, Less); } WASM_SIMD_TEST(F32x4Le) { RunF32x4CompareOpTest(execution_tier, lower_simd, kExprF32x4Le, LessEqual); } WASM_SIMD_TEST(I32x4Splat) { // Store SIMD value in a local variable, use extract lane to check lane values // This test is not a test for ExtractLane as Splat does not create // interesting SIMD values. // // SetLocal(1, I32x4Splat(Local(0))); // For each lane index // if(Local(0) != I32x4ExtractLane(Local(1), index) // return 0 // // return 1 WasmRunner r(execution_tier, lower_simd); byte lane_val = 0; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(lane_val))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, lane_val), WASM_ONE); FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); } } WASM_SIMD_TEST(I32x4ReplaceLane) { WasmRunner r(execution_tier, lower_simd); byte old_val = 0; byte new_val = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(old_val))), WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_REPLACE_LANE(0, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK4(I32x4, simd, I32, new_val, new_val, new_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, new_val), WASM_ONE); CHECK_EQ(1, r.Call(1, 2)); } WASM_SIMD_TEST(I16x8Splat) { WasmRunner r(execution_tier, lower_simd); byte lane_val = 0; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(lane_val))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, lane_val), WASM_ONE); FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); } } WASM_SIMD_TEST(I16x8ReplaceLane) { WasmRunner r(execution_tier, lower_simd); byte old_val = 0; byte new_val = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(old_val))), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(0, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(1, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(2, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(3, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(4, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(5, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(6, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK8(I16x8, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_REPLACE_LANE(7, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, new_val), WASM_ONE); CHECK_EQ(1, r.Call(1, 2)); } WASM_SIMD_TEST(I8x16Splat) { WasmRunner r(execution_tier, lower_simd); byte lane_val = 0; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(lane_val))), WASM_SIMD_CHECK_SPLAT8(I8x16, simd, I32, lane_val), WASM_ONE); FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i)); } } WASM_SIMD_TEST(I8x16ReplaceLane) { WasmRunner r(execution_tier, lower_simd); byte old_val = 0; byte new_val = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(old_val))), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(0, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(1, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(2, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(3, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(4, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(5, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(6, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(7, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(8, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(9, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(10, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(11, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(12, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(13, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(14, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK16(I8x16, simd, I32, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, new_val, old_val), WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_REPLACE_LANE(15, WASM_GET_LOCAL(simd), WASM_GET_LOCAL(new_val))), WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, new_val), WASM_ONE); CHECK_EQ(1, r.Call(1, 2)); } int32_t ConvertToInt(double val, bool unsigned_integer) { if (std::isnan(val)) return 0; if (unsigned_integer) { if (val < 0) return 0; if (val > kMaxUInt32) return kMaxUInt32; return static_cast(val); } else { if (val < kMinInt) return kMinInt; if (val > kMaxInt) return kMaxInt; return static_cast(val); } } // Tests both signed and unsigned conversion. WASM_SIMD_TEST(I32x4ConvertF32x4) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected_signed = 1; byte expected_unsigned = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_F32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprI32x4SConvertF32x4, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected_signed), WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprI32x4UConvertF32x4, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, expected_unsigned), WASM_ONE); FOR_FLOAT32_INPUTS(i) { if (SkipFPValue(*i)) continue; int32_t signed_value = ConvertToInt(*i, false); int32_t unsigned_value = ConvertToInt(*i, true); CHECK_EQ(1, r.Call(*i, signed_value, unsigned_value)); } } // Tests both signed and unsigned conversion from I16x8 (unpacking). WASM_SIMD_TEST(I32x4ConvertI16x8) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte unpacked_signed = 1; byte unpacked_unsigned = 2; byte zero_value = 3; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); byte simd3 = r.AllocateLocal(kWasmS128); byte simd4 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL( simd0, WASM_SIMD_I16x8_REPLACE_LANE(0, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(zero_value))), WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8High, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, unpacked_signed), WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8High, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd2, I32, unpacked_unsigned), WASM_SET_LOCAL(simd3, WASM_SIMD_UNOP(kExprI32x4SConvertI16x8Low, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK4(I32x4, simd3, I32, zero_value, unpacked_signed, unpacked_signed, unpacked_signed), WASM_SET_LOCAL(simd4, WASM_SIMD_UNOP(kExprI32x4UConvertI16x8Low, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK4(I32x4, simd4, I32, zero_value, unpacked_unsigned, unpacked_unsigned, unpacked_unsigned), WASM_ONE); FOR_INT16_INPUTS(i) { int32_t unpacked_signed = static_cast(Widen(*i)); int32_t unpacked_unsigned = static_cast(UnsignedWiden(*i)); CHECK_EQ(1, r.Call(*i, unpacked_signed, unpacked_unsigned, 0)); } } void RunI32x4UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int32UnOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE); FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); } } WASM_SIMD_TEST(I32x4Neg) { RunI32x4UnOpTest(execution_tier, lower_simd, kExprI32x4Neg, Negate); } WASM_SIMD_TEST(S128Not) { RunI32x4UnOpTest(execution_tier, lower_simd, kExprS128Not, Not); } void RunI32x4BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int32BinOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_SIMD_TEST(I32x4Add) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Add, Add); } WASM_SIMD_TEST(I32x4Sub) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Sub, Sub); } WASM_SIMD_TEST(I32x4Mul) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4Mul, Mul); } WASM_SIMD_TEST(I32x4MinS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinS, Minimum); } WASM_SIMD_TEST(I32x4MaxS) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxS, Maximum); } WASM_SIMD_TEST(I32x4MinU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MinU, UnsignedMinimum); } WASM_SIMD_TEST(I32x4MaxU) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprI32x4MaxU, UnsignedMaximum); } WASM_SIMD_TEST(S128And) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128And, And); } WASM_SIMD_TEST(S128Or) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Or, Or); } WASM_SIMD_TEST(S128Xor) { RunI32x4BinOpTest(execution_tier, lower_simd, kExprS128Xor, Xor); } void RunI32x4CompareOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int32CompareOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd1, I32, expected), WASM_ONE); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_SIMD_TEST(I32x4Eq) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4Eq, Equal); } WASM_SIMD_TEST(I32x4Ne) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4Ne, NotEqual); } WASM_SIMD_TEST(I32x4LtS) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4LtS, Less); } WASM_SIMD_TEST(I32x4LeS) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4LeS, LessEqual); } WASM_SIMD_TEST(I32x4GtS) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4GtS, Greater); } WASM_SIMD_TEST(I32x4GeS) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4GeS, GreaterEqual); } WASM_SIMD_TEST(I32x4LtU) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4LtU, UnsignedLess); } WASM_SIMD_TEST(I32x4LeU) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4LeU, UnsignedLessEqual); } WASM_SIMD_TEST(I32x4GtU) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4GtU, UnsignedGreater); } WASM_SIMD_TEST(I32x4GeU) { RunI32x4CompareOpTest(execution_tier, lower_simd, kExprI32x4GeU, UnsignedGreaterEqual); } void RunI32x4ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int32ShiftOp expected_op) { for (int shift = 1; shift < 32; ++shift) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL( simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT4(I32x4, simd, I32, expected), WASM_ONE); FOR_INT32_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); } } } WASM_SIMD_TEST(I32x4Shl) { RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4Shl, LogicalShiftLeft); } WASM_SIMD_TEST(I32x4ShrS) { RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrS, ArithmeticShiftRight); } WASM_SIMD_TEST(I32x4ShrU) { RunI32x4ShiftOpTest(execution_tier, lower_simd, kExprI32x4ShrU, LogicalShiftRight); } // Tests both signed and unsigned conversion from I8x16 (unpacking). WASM_SIMD_TEST(I16x8ConvertI8x16) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte unpacked_signed = 1; byte unpacked_unsigned = 2; byte zero_value = 3; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); byte simd3 = r.AllocateLocal(kWasmS128); byte simd4 = r.AllocateLocal(kWasmS128); BUILD( r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_REPLACE_LANE(0, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(zero_value))), WASM_SET_LOCAL(simd1, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16High, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, unpacked_signed), WASM_SET_LOCAL(simd2, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16High, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd2, I32, unpacked_unsigned), WASM_SET_LOCAL(simd3, WASM_SIMD_UNOP(kExprI16x8SConvertI8x16Low, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK8(I16x8, simd3, I32, zero_value, unpacked_signed, unpacked_signed, unpacked_signed, unpacked_signed, unpacked_signed, unpacked_signed, unpacked_signed), WASM_SET_LOCAL(simd4, WASM_SIMD_UNOP(kExprI16x8UConvertI8x16Low, WASM_GET_LOCAL(simd0))), WASM_SIMD_CHECK8(I16x8, simd4, I32, zero_value, unpacked_unsigned, unpacked_unsigned, unpacked_unsigned, unpacked_unsigned, unpacked_unsigned, unpacked_unsigned, unpacked_unsigned), WASM_ONE); FOR_INT8_INPUTS(i) { int32_t unpacked_signed = static_cast(Widen(*i)); int32_t unpacked_unsigned = static_cast(UnsignedWiden(*i)); CHECK_EQ(1, r.Call(*i, unpacked_signed, unpacked_unsigned, 0)); } } void RunI16x8UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int16UnOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE); FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); } } WASM_SIMD_TEST(I16x8Neg) { RunI16x8UnOpTest(execution_tier, lower_simd, kExprI16x8Neg, Negate); } // Tests both signed and unsigned conversion from I32x4 (packing). WASM_SIMD_TEST(I16x8ConvertI32x4) { WasmRunner r( execution_tier, lower_simd); byte a = 0; byte b = 1; // indices for packed signed params byte ps_a = 2; byte ps_b = 3; // indices for packed unsigned params byte pu_a = 4; byte pu_b = 5; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd2, WASM_SIMD_BINOP(kExprI16x8SConvertI32x4, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK8(I16x8, simd2, I32, ps_a, ps_a, ps_a, ps_a, ps_b, ps_b, ps_b, ps_b), WASM_SET_LOCAL(simd2, WASM_SIMD_BINOP(kExprI16x8UConvertI32x4, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK8(I16x8, simd2, I32, pu_a, pu_a, pu_a, pu_a, pu_b, pu_b, pu_b, pu_b), WASM_ONE); FOR_INT32_INPUTS(i) { FOR_INT32_INPUTS(j) { // packed signed values int32_t ps_a = Narrow(*i); int32_t ps_b = Narrow(*j); // packed unsigned values int32_t pu_a = UnsignedNarrow(*i); int32_t pu_b = UnsignedNarrow(*j); // Sign-extend here, since ExtractLane sign extends. if (pu_a & 0x8000) pu_a |= 0xFFFF0000; if (pu_b & 0x8000) pu_b |= 0xFFFF0000; CHECK_EQ(1, r.Call(*i, *j, ps_a, ps_b, pu_a, pu_b)); } } } void RunI16x8BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int16BinOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, expected), WASM_ONE); FOR_INT16_INPUTS(i) { FOR_INT16_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_SIMD_TEST(I16x8Add) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Add, Add); } WASM_SIMD_TEST(I16x8AddSaturateS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSaturateS, AddSaturate); } WASM_SIMD_TEST(I16x8Sub) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Sub, Sub); } WASM_SIMD_TEST(I16x8SubSaturateS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSaturateS, SubSaturate); } WASM_SIMD_TEST(I16x8Mul) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8Mul, Mul); } WASM_SIMD_TEST(I16x8MinS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinS, Minimum); } WASM_SIMD_TEST(I16x8MaxS) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxS, Maximum); } WASM_SIMD_TEST(I16x8AddSaturateU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8AddSaturateU, UnsignedAddSaturate); } WASM_SIMD_TEST(I16x8SubSaturateU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8SubSaturateU, UnsignedSubSaturate); } WASM_SIMD_TEST(I16x8MinU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MinU, UnsignedMinimum); } WASM_SIMD_TEST(I16x8MaxU) { RunI16x8BinOpTest(execution_tier, lower_simd, kExprI16x8MaxU, UnsignedMaximum); } void RunI16x8CompareOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int16CompareOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd1, I32, expected), WASM_ONE); FOR_INT16_INPUTS(i) { FOR_INT16_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_SIMD_TEST(I16x8Eq) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8Eq, Equal); } WASM_SIMD_TEST(I16x8Ne) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8Ne, NotEqual); } WASM_SIMD_TEST(I16x8LtS) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8LtS, Less); } WASM_SIMD_TEST(I16x8LeS) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8LeS, LessEqual); } WASM_SIMD_TEST(I16x8GtS) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8GtS, Greater); } WASM_SIMD_TEST(I16x8GeS) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8GeS, GreaterEqual); } WASM_SIMD_TEST(I16x8GtU) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8GtU, UnsignedGreater); } WASM_SIMD_TEST(I16x8GeU) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8GeU, UnsignedGreaterEqual); } WASM_SIMD_TEST(I16x8LtU) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8LtU, UnsignedLess); } WASM_SIMD_TEST(I16x8LeU) { RunI16x8CompareOpTest(execution_tier, lower_simd, kExprI16x8LeU, UnsignedLessEqual); } void RunI16x8ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int16ShiftOp expected_op) { for (int shift = 1; shift < 16; ++shift) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL( simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT8(I16x8, simd, I32, expected), WASM_ONE); FOR_INT16_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); } } } WASM_SIMD_TEST(I16x8Shl) { RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8Shl, LogicalShiftLeft); } WASM_SIMD_TEST(I16x8ShrS) { RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrS, ArithmeticShiftRight); } WASM_SIMD_TEST(I16x8ShrU) { RunI16x8ShiftOpTest(execution_tier, lower_simd, kExprI16x8ShrU, LogicalShiftRight); } void RunI8x16UnOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int8UnOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd, WASM_SIMD_UNOP(simd_op, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE); FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i))); } } WASM_SIMD_TEST(I8x16Neg) { RunI8x16UnOpTest(execution_tier, lower_simd, kExprI8x16Neg, Negate); } // Tests both signed and unsigned conversion from I16x8 (packing). WASM_SIMD_TEST(I8x16ConvertI16x8) { WasmRunner r( execution_tier, lower_simd); byte a = 0; byte b = 1; // indices for packed signed params byte ps_a = 2; byte ps_b = 3; // indices for packed unsigned params byte pu_a = 4; byte pu_b = 5; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); byte simd2 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I16x8_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd2, WASM_SIMD_BINOP(kExprI8x16SConvertI16x8, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK16(I8x16, simd2, I32, ps_a, ps_a, ps_a, ps_a, ps_a, ps_a, ps_a, ps_a, ps_b, ps_b, ps_b, ps_b, ps_b, ps_b, ps_b, ps_b), WASM_SET_LOCAL(simd2, WASM_SIMD_BINOP(kExprI8x16UConvertI16x8, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK16(I8x16, simd2, I32, pu_a, pu_a, pu_a, pu_a, pu_a, pu_a, pu_a, pu_a, pu_b, pu_b, pu_b, pu_b, pu_b, pu_b, pu_b, pu_b), WASM_ONE); FOR_INT16_INPUTS(i) { FOR_INT16_INPUTS(j) { // packed signed values int32_t ps_a = Narrow(*i); int32_t ps_b = Narrow(*j); // packed unsigned values int32_t pu_a = UnsignedNarrow(*i); int32_t pu_b = UnsignedNarrow(*j); // Sign-extend here, since ExtractLane sign extends. if (pu_a & 0x80) pu_a |= 0xFFFFFF00; if (pu_b & 0x80) pu_b |= 0xFFFFFF00; CHECK_EQ(1, r.Call(*i, *j, ps_a, ps_b, pu_a, pu_b)); } } } void RunI8x16BinOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int8BinOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, expected), WASM_ONE); FOR_INT8_INPUTS(i) { FOR_INT8_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_SIMD_TEST(I8x16Add) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Add, Add); } WASM_SIMD_TEST(I8x16AddSaturateS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSaturateS, AddSaturate); } WASM_SIMD_TEST(I8x16Sub) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Sub, Sub); } WASM_SIMD_TEST(I8x16SubSaturateS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSaturateS, SubSaturate); } WASM_SIMD_TEST(I8x16MinS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinS, Minimum); } WASM_SIMD_TEST(I8x16MaxS) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxS, Maximum); } WASM_SIMD_TEST(I8x16AddSaturateU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16AddSaturateU, UnsignedAddSaturate); } WASM_SIMD_TEST(I8x16SubSaturateU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16SubSaturateU, UnsignedSubSaturate); } WASM_SIMD_TEST(I8x16MinU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MinU, UnsignedMinimum); } WASM_SIMD_TEST(I8x16MaxU) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16MaxU, UnsignedMaximum); } void RunI8x16CompareOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int8CompareOp expected_op) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte b = 1; byte expected = 2; byte simd0 = r.AllocateLocal(kWasmS128); byte simd1 = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd0, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL(simd1, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(b))), WASM_SET_LOCAL(simd1, WASM_SIMD_BINOP(simd_op, WASM_GET_LOCAL(simd0), WASM_GET_LOCAL(simd1))), WASM_SIMD_CHECK_SPLAT16(I8x16, simd1, I32, expected), WASM_ONE); FOR_INT8_INPUTS(i) { FOR_INT8_INPUTS(j) { CHECK_EQ(1, r.Call(*i, *j, expected_op(*i, *j))); } } } WASM_SIMD_TEST(I8x16Eq) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16Eq, Equal); } WASM_SIMD_TEST(I8x16Ne) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16Ne, NotEqual); } WASM_SIMD_TEST(I8x16GtS) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16GtS, Greater); } WASM_SIMD_TEST(I8x16GeS) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16GeS, GreaterEqual); } WASM_SIMD_TEST(I8x16LtS) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16LtS, Less); } WASM_SIMD_TEST(I8x16LeS) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16LeS, LessEqual); } WASM_SIMD_TEST(I8x16GtU) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16GtU, UnsignedGreater); } WASM_SIMD_TEST(I8x16GeU) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16GeU, UnsignedGreaterEqual); } WASM_SIMD_TEST(I8x16LtU) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16LtU, UnsignedLess); } WASM_SIMD_TEST(I8x16LeU) { RunI8x16CompareOpTest(execution_tier, lower_simd, kExprI8x16LeU, UnsignedLessEqual); } WASM_SIMD_TEST(I8x16Mul) { RunI8x16BinOpTest(execution_tier, lower_simd, kExprI8x16Mul, Mul); } void RunI8x16ShiftOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, Int8ShiftOp expected_op) { for (int shift = 1; shift < 8; ++shift) { WasmRunner r(execution_tier, lower_simd); byte a = 0; byte expected = 1; byte simd = r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(simd, WASM_SIMD_I8x16_SPLAT(WASM_GET_LOCAL(a))), WASM_SET_LOCAL( simd, WASM_SIMD_SHIFT_OP(simd_op, shift, WASM_GET_LOCAL(simd))), WASM_SIMD_CHECK_SPLAT16(I8x16, simd, I32, expected), WASM_ONE); FOR_INT8_INPUTS(i) { CHECK_EQ(1, r.Call(*i, expected_op(*i, shift))); } } } WASM_SIMD_TEST(I8x16Shl) { RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16Shl, LogicalShiftLeft); } WASM_SIMD_TEST(I8x16ShrS) { RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrS, ArithmeticShiftRight); } WASM_SIMD_TEST(I8x16ShrU) { RunI8x16ShiftOpTest(execution_tier, lower_simd, kExprI8x16ShrU, LogicalShiftRight); } // Test Select by making a mask where the 0th and 3rd lanes are true and the // rest false, and comparing for non-equality with zero to convert to a boolean // vector. #define WASM_SIMD_SELECT_TEST(format) \ WASM_SIMD_TEST(S##format##Select) { \ WasmRunner r(execution_tier, lower_simd); \ byte val1 = 0; \ byte val2 = 1; \ byte src1 = r.AllocateLocal(kWasmS128); \ byte src2 = r.AllocateLocal(kWasmS128); \ byte zero = r.AllocateLocal(kWasmS128); \ byte mask = r.AllocateLocal(kWasmS128); \ BUILD(r, \ WASM_SET_LOCAL(src1, \ WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \ WASM_SET_LOCAL(src2, \ WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \ WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \ WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 1, WASM_GET_LOCAL(zero), WASM_I32V(-1))), \ WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 2, WASM_GET_LOCAL(mask), WASM_I32V(-1))), \ WASM_SET_LOCAL( \ mask, \ WASM_SIMD_SELECT( \ format, \ WASM_SIMD_BINOP(kExprI##format##Ne, WASM_GET_LOCAL(mask), \ WASM_GET_LOCAL(zero)), \ WASM_GET_LOCAL(src1), WASM_GET_LOCAL(src2))), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 1), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, val1, 2), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE); \ \ CHECK_EQ(1, r.Call(0x12, 0x34)); \ } WASM_SIMD_SELECT_TEST(32x4) WASM_SIMD_SELECT_TEST(16x8) WASM_SIMD_SELECT_TEST(8x16) // Test Select by making a mask where the 0th and 3rd lanes are non-zero and the // rest 0. The mask is not the result of a comparison op. #define WASM_SIMD_NON_CANONICAL_SELECT_TEST(format) \ WASM_SIMD_TEST(S##format##NonCanonicalSelect) { \ WasmRunner r(execution_tier, \ lower_simd); \ byte val1 = 0; \ byte val2 = 1; \ byte combined = 2; \ byte src1 = r.AllocateLocal(kWasmS128); \ byte src2 = r.AllocateLocal(kWasmS128); \ byte zero = r.AllocateLocal(kWasmS128); \ byte mask = r.AllocateLocal(kWasmS128); \ BUILD(r, \ WASM_SET_LOCAL(src1, \ WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val1))), \ WASM_SET_LOCAL(src2, \ WASM_SIMD_I##format##_SPLAT(WASM_GET_LOCAL(val2))), \ WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \ WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 1, WASM_GET_LOCAL(zero), WASM_I32V(0xF))), \ WASM_SET_LOCAL(mask, WASM_SIMD_I##format##_REPLACE_LANE( \ 2, WASM_GET_LOCAL(mask), WASM_I32V(0xF))), \ WASM_SET_LOCAL(mask, WASM_SIMD_SELECT(format, WASM_GET_LOCAL(mask), \ WASM_GET_LOCAL(src1), \ WASM_GET_LOCAL(src2))), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 0), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, combined, 1), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, combined, 2), \ WASM_SIMD_CHECK_LANE(I##format, mask, I32, val2, 3), WASM_ONE); \ \ CHECK_EQ(1, r.Call(0x12, 0x34, 0x32)); \ } WASM_SIMD_NON_CANONICAL_SELECT_TEST(32x4) WASM_SIMD_NON_CANONICAL_SELECT_TEST(16x8) WASM_SIMD_NON_CANONICAL_SELECT_TEST(8x16) // Test binary ops with two lane test patterns, all lanes distinct. template void RunBinaryLaneOpTest( ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, const std::array& expected) { WasmRunner r(execution_tier, lower_simd); // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7]. T* src0 = r.builder().AddGlobal(kWasmS128); T* src1 = r.builder().AddGlobal(kWasmS128); static const int kElems = kSimd128Size / sizeof(T); for (int i = 0; i < kElems; i++) { WriteLittleEndianValue(&src0[i], i); WriteLittleEndianValue(&src1[i], kElems + i); } if (simd_op == kExprS8x16Shuffle) { BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_S8x16_SHUFFLE_OP(simd_op, expected, WASM_GET_GLOBAL(0), WASM_GET_GLOBAL(1))), WASM_ONE); } else { BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_BINOP(simd_op, WASM_GET_GLOBAL(0), WASM_GET_GLOBAL(1))), WASM_ONE); } CHECK_EQ(1, r.Call()); for (size_t i = 0; i < expected.size(); i++) { CHECK_EQ(ReadLittleEndianValue(&src0[i]), expected[i]); } } WASM_SIMD_TEST(I32x4AddHoriz) { // Inputs are [0 1 2 3] and [4 5 6 7]. RunBinaryLaneOpTest(execution_tier, lower_simd, kExprI32x4AddHoriz, {{1, 5, 9, 13}}); } WASM_SIMD_TEST(I16x8AddHoriz) { // Inputs are [0 1 2 3 4 5 6 7] and [8 9 10 11 12 13 14 15]. RunBinaryLaneOpTest(execution_tier, lower_simd, kExprI16x8AddHoriz, {{1, 5, 9, 13, 17, 21, 25, 29}}); } WASM_SIMD_TEST(F32x4AddHoriz) { // Inputs are [0.0f 1.0f 2.0f 3.0f] and [4.0f 5.0f 6.0f 7.0f]. RunBinaryLaneOpTest(execution_tier, lower_simd, kExprF32x4AddHoriz, {{1.0f, 5.0f, 9.0f, 13.0f}}); } // Test shuffle ops. void RunShuffleOpTest(ExecutionTier execution_tier, LowerSimd lower_simd, WasmOpcode simd_op, const std::array& shuffle) { // Test the original shuffle. RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, shuffle); // Test a non-canonical (inputs reversed) version of the shuffle. std::array other_shuffle(shuffle); for (size_t i = 0; i < shuffle.size(); ++i) other_shuffle[i] ^= kSimd128Size; RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, other_shuffle); // Test the swizzle (one-operand) version of the shuffle. std::array swizzle(shuffle); for (size_t i = 0; i < shuffle.size(); ++i) swizzle[i] &= (kSimd128Size - 1); RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, swizzle); // Test the non-canonical swizzle (one-operand) version of the shuffle. std::array other_swizzle(shuffle); for (size_t i = 0; i < shuffle.size(); ++i) other_swizzle[i] |= kSimd128Size; RunBinaryLaneOpTest(execution_tier, lower_simd, simd_op, other_swizzle); } #if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || \ V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_IA32 #define SHUFFLE_LIST(V) \ V(S128Identity) \ V(S32x4Dup) \ V(S32x4ZipLeft) \ V(S32x4ZipRight) \ V(S32x4UnzipLeft) \ V(S32x4UnzipRight) \ V(S32x4TransposeLeft) \ V(S32x4TransposeRight) \ V(S32x2Reverse) \ V(S32x4Irregular) \ V(S16x8Dup) \ V(S16x8ZipLeft) \ V(S16x8ZipRight) \ V(S16x8UnzipLeft) \ V(S16x8UnzipRight) \ V(S16x8TransposeLeft) \ V(S16x8TransposeRight) \ V(S16x4Reverse) \ V(S16x2Reverse) \ V(S16x8Irregular) \ V(S8x16Dup) \ V(S8x16ZipLeft) \ V(S8x16ZipRight) \ V(S8x16UnzipLeft) \ V(S8x16UnzipRight) \ V(S8x16TransposeLeft) \ V(S8x16TransposeRight) \ V(S8x8Reverse) \ V(S8x4Reverse) \ V(S8x2Reverse) \ V(S8x16Irregular) enum ShuffleKey { #define SHUFFLE_ENUM_VALUE(Name) k##Name, SHUFFLE_LIST(SHUFFLE_ENUM_VALUE) #undef SHUFFLE_ENUM_VALUE kNumShuffleKeys }; using Shuffle = std::array; using ShuffleMap = std::map; ShuffleMap test_shuffles = { {kS128Identity, {{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}}}, {kS32x4Dup, {{16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19, 16, 17, 18, 19}}}, {kS32x4ZipLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}}}, {kS32x4ZipRight, {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}}}, {kS32x4UnzipLeft, {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}}}, {kS32x4UnzipRight, {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}}}, {kS32x4TransposeLeft, {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}}}, {kS32x4TransposeRight, {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}}}, {kS32x2Reverse, // swizzle only {{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11}}}, {kS32x4Irregular, {{0, 1, 2, 3, 16, 17, 18, 19, 16, 17, 18, 19, 20, 21, 22, 23}}}, {kS16x8Dup, {{18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19, 18, 19}}}, {kS16x8ZipLeft, {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}}}, {kS16x8ZipRight, {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}}}, {kS16x8UnzipLeft, {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}}}, {kS16x8UnzipRight, {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}}}, {kS16x8TransposeLeft, {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}}}, {kS16x8TransposeRight, {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}}}, {kS16x4Reverse, // swizzle only {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}}}, {kS16x2Reverse, // swizzle only {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}}}, {kS16x8Irregular, {{0, 1, 16, 17, 16, 17, 0, 1, 4, 5, 20, 21, 6, 7, 22, 23}}}, {kS8x16Dup, {{19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19}}}, {kS8x16ZipLeft, {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}}, {kS8x16ZipRight, {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}}}, {kS8x16UnzipLeft, {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}}}, {kS8x16UnzipRight, {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}}}, {kS8x16TransposeLeft, {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}}}, {kS8x16TransposeRight, {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}}}, {kS8x8Reverse, // swizzle only {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}}}, {kS8x4Reverse, // swizzle only {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}}}, {kS8x2Reverse, // swizzle only {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}}}, {kS8x16Irregular, {{0, 16, 0, 16, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}}}, }; #define SHUFFLE_TEST(Name) \ WASM_SIMD_TEST(Name) { \ ShuffleMap::const_iterator it = test_shuffles.find(k##Name); \ DCHECK_NE(it, test_shuffles.end()); \ RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, \ it->second); \ } SHUFFLE_LIST(SHUFFLE_TEST) #undef SHUFFLE_TEST #undef SHUFFLE_LIST // Test shuffles that blend the two vectors (elements remain in their lanes.) WASM_SIMD_TEST(S8x16Blend) { std::array expected; for (int bias = 1; bias < kSimd128Size; bias++) { for (int i = 0; i < bias; i++) expected[i] = i; for (int i = bias; i < kSimd128Size; i++) expected[i] = i + kSimd128Size; RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, expected); } } // Test shuffles that concatenate the two vectors. WASM_SIMD_TEST(S8x16Concat) { std::array expected; // n is offset or bias of concatenation. for (int n = 1; n < kSimd128Size; ++n) { int i = 0; // last kLanes - n bytes of first vector. for (int j = n; j < kSimd128Size; ++j) { expected[i++] = j; } // first n bytes of second vector for (int j = 0; j < n; ++j) { expected[i++] = j + kSimd128Size; } RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, expected); } } // Combine 3 shuffles a, b, and c by applying both a and b and then applying c // to those two results. Shuffle Combine(const Shuffle& a, const Shuffle& b, const Shuffle& c) { Shuffle result; for (int i = 0; i < kSimd128Size; ++i) { result[i] = c[i] < kSimd128Size ? a[c[i]] : b[c[i] - kSimd128Size]; } return result; } const Shuffle& GetRandomTestShuffle(v8::base::RandomNumberGenerator* rng) { return test_shuffles[static_cast(rng->NextInt(kNumShuffleKeys))]; } // Test shuffles that are random combinations of 3 test shuffles. Completely // random shuffles almost always generate the slow general shuffle code, so // don't exercise as many code paths. WASM_SIMD_TEST(S8x16ShuffleFuzz) { v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator(); static const int kTests = 100; for (int i = 0; i < kTests; ++i) { auto shuffle = Combine(GetRandomTestShuffle(rng), GetRandomTestShuffle(rng), GetRandomTestShuffle(rng)); RunShuffleOpTest(execution_tier, lower_simd, kExprS8x16Shuffle, shuffle); } } void AppendShuffle(const Shuffle& shuffle, std::vector* buffer) { byte opcode[] = {WASM_SIMD_OP(kExprS8x16Shuffle)}; for (size_t i = 0; i < arraysize(opcode); ++i) buffer->push_back(opcode[i]); for (size_t i = 0; i < kSimd128Size; ++i) buffer->push_back((shuffle[i])); } void BuildShuffle(std::vector& shuffles, std::vector* buffer) { // Perform the leaf shuffles on globals 0 and 1. size_t row_index = (shuffles.size() - 1) / 2; for (size_t i = row_index; i < shuffles.size(); ++i) { byte operands[] = {WASM_GET_GLOBAL(0), WASM_GET_GLOBAL(1)}; for (size_t j = 0; j < arraysize(operands); ++j) buffer->push_back(operands[j]); AppendShuffle(shuffles[i], buffer); } // Now perform inner shuffles in the correct order on operands on the stack. do { for (size_t i = row_index / 2; i < row_index; ++i) { AppendShuffle(shuffles[i], buffer); } row_index /= 2; } while (row_index != 0); byte epilog[] = {kExprSetGlobal, static_cast(0), WASM_ONE}; for (size_t j = 0; j < arraysize(epilog); ++j) buffer->push_back(epilog[j]); } void RunWasmCode(ExecutionTier execution_tier, LowerSimd lower_simd, const std::vector& code, std::array* result) { WasmRunner r(execution_tier, lower_simd); // Set up two test patterns as globals, e.g. [0, 1, 2, 3] and [4, 5, 6, 7]. int8_t* src0 = r.builder().AddGlobal(kWasmS128); int8_t* src1 = r.builder().AddGlobal(kWasmS128); for (int i = 0; i < kSimd128Size; ++i) { WriteLittleEndianValue(&src0[i], i); WriteLittleEndianValue(&src1[i], kSimd128Size + i); } r.Build(code.data(), code.data() + code.size()); CHECK_EQ(1, r.Call()); for (size_t i = 0; i < kSimd128Size; i++) { (*result)[i] = ReadLittleEndianValue(&src0[i]); } } // Test multiple shuffles executed in sequence. WASM_SIMD_COMPILED_TEST(S8x16MultiShuffleFuzz) { v8::base::RandomNumberGenerator* rng = CcTest::random_number_generator(); static const int kShuffles = 100; for (int i = 0; i < kShuffles; ++i) { // Create an odd number in [3..23] of random test shuffles so we can build // a complete binary tree (stored as a heap) of shuffle operations. The leaf // shuffles operate on the test pattern inputs, while the interior shuffles // operate on the results of the two child shuffles. int num_shuffles = rng->NextInt(10) * 2 + 3; std::vector shuffles; for (int j = 0; j < num_shuffles; ++j) { shuffles.push_back(GetRandomTestShuffle(rng)); } // Generate the code for the shuffle expression. std::vector buffer; BuildShuffle(shuffles, &buffer); // Run the code using the interpreter to get the expected result. std::array expected; RunWasmCode(ExecutionTier::kInterpreter, kNoLowerSimd, buffer, &expected); // Run the SIMD or scalar lowered compiled code and compare results. std::array result; RunWasmCode(execution_tier, lower_simd, buffer, &result); for (size_t i = 0; i < kSimd128Size; ++i) { CHECK_EQ(result[i], expected[i]); } } } #endif // V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS || // V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_IA32 // Boolean unary operations are 'AllTrue' and 'AnyTrue', which return an integer // result. Use relational ops on numeric vectors to create the boolean vector // test inputs. Test inputs with all true, all false, one true, and one false. #define WASM_SIMD_BOOL_REDUCTION_TEST(format, lanes) \ WASM_SIMD_TEST(ReductionTest##lanes) { \ WasmRunner r(execution_tier, lower_simd); \ byte zero = r.AllocateLocal(kWasmS128); \ byte one_one = r.AllocateLocal(kWasmS128); \ byte reduced = r.AllocateLocal(kWasmI32); \ BUILD(r, WASM_SET_LOCAL(zero, WASM_SIMD_I##format##_SPLAT(WASM_ZERO)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_GET_LOCAL(zero), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_GET_LOCAL(zero), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_GET_LOCAL(zero), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_GET_LOCAL(zero), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_SET_LOCAL(one_one, \ WASM_SIMD_I##format##_REPLACE_LANE( \ lanes - 1, WASM_GET_LOCAL(zero), WASM_ONE)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_GET_LOCAL(one_one), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AnyTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_GET_LOCAL(one_one), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_EQ(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Eq, \ WASM_GET_LOCAL(one_one), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_SET_LOCAL( \ reduced, WASM_SIMD_UNOP(kExprS1x##lanes##AllTrue, \ WASM_SIMD_BINOP(kExprI##format##Ne, \ WASM_GET_LOCAL(one_one), \ WASM_GET_LOCAL(zero)))), \ WASM_IF(WASM_I32_NE(WASM_GET_LOCAL(reduced), WASM_ZERO), \ WASM_RETURN1(WASM_ZERO)), \ WASM_ONE); \ CHECK_EQ(1, r.Call()); \ } WASM_SIMD_BOOL_REDUCTION_TEST(32x4, 4) WASM_SIMD_BOOL_REDUCTION_TEST(16x8, 8) WASM_SIMD_BOOL_REDUCTION_TEST(8x16, 16) WASM_SIMD_TEST(SimdI32x4ExtractWithF32x4) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I( WASM_I32_EQ(WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_F32x4_SPLAT(WASM_F32(30.5))), WASM_I32_REINTERPRET_F32(WASM_F32(30.5))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdF32x4ExtractWithI32x4) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I(WASM_F32_EQ(WASM_SIMD_F32x4_EXTRACT_LANE( 0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(15))), WASM_F32_REINTERPRET_I32(WASM_I32V(15))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdF32x4AddWithI32x4) { // Choose two floating point values whose sum is normal and exactly // representable as a float. const int kOne = 0x3F800000; const int kTwo = 0x40000000; WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I( WASM_F32_EQ( WASM_SIMD_F32x4_EXTRACT_LANE( 0, WASM_SIMD_BINOP(kExprF32x4Add, WASM_SIMD_I32x4_SPLAT(WASM_I32V(kOne)), WASM_SIMD_I32x4_SPLAT(WASM_I32V(kTwo)))), WASM_F32_ADD(WASM_F32_REINTERPRET_I32(WASM_I32V(kOne)), WASM_F32_REINTERPRET_I32(WASM_I32V(kTwo)))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdI32x4AddWithF32x4) { WasmRunner r(execution_tier, lower_simd); BUILD(r, WASM_IF_ELSE_I( WASM_I32_EQ( WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_BINOP(kExprI32x4Add, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25)), WASM_SIMD_F32x4_SPLAT(WASM_F32(31.5)))), WASM_I32_ADD(WASM_I32_REINTERPRET_F32(WASM_F32(21.25)), WASM_I32_REINTERPRET_F32(WASM_F32(31.5)))), WASM_I32V(1), WASM_I32V(0))); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdI32x4Local) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))), WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(0))); CHECK_EQ(31, r.Call()); } WASM_SIMD_TEST(SimdI32x4SplatFromExtract) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(0, WASM_SIMD_I32x4_EXTRACT_LANE( 0, WASM_SIMD_I32x4_SPLAT(WASM_I32V(76)))), WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_GET_LOCAL(0))), WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1))); CHECK_EQ(76, r.Call()); } WASM_SIMD_TEST(SimdI32x4For) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_I32x4_SPLAT(WASM_I32V(31))), WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_LOCAL(1), WASM_I32V(53))), WASM_SET_LOCAL(1, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_LOCAL(1), WASM_I32V(23))), WASM_SET_LOCAL(0, WASM_I32V(0)), WASM_LOOP( WASM_SET_LOCAL( 1, WASM_SIMD_BINOP(kExprI32x4Add, WASM_GET_LOCAL(1), WASM_SIMD_I32x4_SPLAT(WASM_I32V(1)))), WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(5)), WASM_BR(1))), WASM_SET_LOCAL(0, WASM_I32V(1)), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)), WASM_I32V(36)), WASM_SET_LOCAL(0, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_LOCAL(1)), WASM_I32V(58)), WASM_SET_LOCAL(0, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_LOCAL(1)), WASM_I32V(28)), WASM_SET_LOCAL(0, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)), WASM_I32V(36)), WASM_SET_LOCAL(0, WASM_I32V(0))), WASM_GET_LOCAL(0)); CHECK_EQ(1, r.Call()); } WASM_SIMD_TEST(SimdF32x4For) { WasmRunner r(execution_tier, lower_simd); r.AllocateLocal(kWasmI32); r.AllocateLocal(kWasmS128); BUILD(r, WASM_SET_LOCAL(1, WASM_SIMD_F32x4_SPLAT(WASM_F32(21.25))), WASM_SET_LOCAL(1, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_LOCAL(1), WASM_F32(19.5))), WASM_SET_LOCAL(0, WASM_I32V(0)), WASM_LOOP( WASM_SET_LOCAL( 1, WASM_SIMD_BINOP(kExprF32x4Add, WASM_GET_LOCAL(1), WASM_SIMD_F32x4_SPLAT(WASM_F32(2.0)))), WASM_IF(WASM_I32_NE(WASM_INC_LOCAL(0), WASM_I32V(3)), WASM_BR(1))), WASM_SET_LOCAL(0, WASM_I32V(1)), WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_LOCAL(1)), WASM_F32(27.25)), WASM_SET_LOCAL(0, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_LOCAL(1)), WASM_F32(25.5)), WASM_SET_LOCAL(0, WASM_I32V(0))), WASM_GET_LOCAL(0)); CHECK_EQ(1, r.Call()); } template void SetVectorByLanes(T* v, const std::array& arr) { for (int lane = 0; lane < numLanes; lane++) { WriteLittleEndianValue(&v[lane], arr[lane]); } } template const T GetScalar(T* v, int lane) { constexpr int kElems = kSimd128Size / sizeof(T); const int index = lane; USE(kElems); DCHECK(index >= 0 && index < kElems); return ReadLittleEndianValue(&v[index]); } WASM_SIMD_TEST(SimdI32x4GetGlobal) { WasmRunner r(execution_tier, lower_simd); // Pad the globals with a few unused slots to get a non-zero offset. r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused int32_t* global = r.builder().AddGlobal(kWasmS128); SetVectorByLanes(global, {{0, 1, 2, 3}}); r.AllocateLocal(kWasmI32); BUILD( r, WASM_SET_LOCAL(1, WASM_I32V(1)), WASM_IF(WASM_I32_NE(WASM_I32V(0), WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(4))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_I32V(1), WASM_SIMD_I32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(4))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_I32V(2), WASM_SIMD_I32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(4))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_IF(WASM_I32_NE(WASM_I32V(3), WASM_SIMD_I32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(4))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_GET_LOCAL(1)); CHECK_EQ(1, r.Call(0)); } WASM_SIMD_TEST(SimdI32x4SetGlobal) { WasmRunner r(execution_tier, lower_simd); // Pad the globals with a few unused slots to get a non-zero offset. r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused r.builder().AddGlobal(kWasmI32); // purposefully unused int32_t* global = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_SPLAT(WASM_I32V(23))), WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(4), WASM_I32V(34))), WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(4), WASM_I32V(45))), WASM_SET_GLOBAL(4, WASM_SIMD_I32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(4), WASM_I32V(56))), WASM_I32V(1)); CHECK_EQ(1, r.Call(0)); CHECK_EQ(GetScalar(global, 0), 23); CHECK_EQ(GetScalar(global, 1), 34); CHECK_EQ(GetScalar(global, 2), 45); CHECK_EQ(GetScalar(global, 3), 56); } WASM_SIMD_TEST(SimdF32x4GetGlobal) { WasmRunner r(execution_tier, lower_simd); float* global = r.builder().AddGlobal(kWasmS128); SetVectorByLanes(global, {{0.0, 1.5, 2.25, 3.5}}); r.AllocateLocal(kWasmI32); BUILD( r, WASM_SET_LOCAL(1, WASM_I32V(1)), WASM_IF(WASM_F32_NE(WASM_F32(0.0), WASM_SIMD_F32x4_EXTRACT_LANE(0, WASM_GET_GLOBAL(0))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_F32(1.5), WASM_SIMD_F32x4_EXTRACT_LANE(1, WASM_GET_GLOBAL(0))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_F32(2.25), WASM_SIMD_F32x4_EXTRACT_LANE(2, WASM_GET_GLOBAL(0))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_IF(WASM_F32_NE(WASM_F32(3.5), WASM_SIMD_F32x4_EXTRACT_LANE(3, WASM_GET_GLOBAL(0))), WASM_SET_LOCAL(1, WASM_I32V(0))), WASM_GET_LOCAL(1)); CHECK_EQ(1, r.Call(0)); } WASM_SIMD_TEST(SimdF32x4SetGlobal) { WasmRunner r(execution_tier, lower_simd); float* global = r.builder().AddGlobal(kWasmS128); BUILD(r, WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_SPLAT(WASM_F32(13.5))), WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(1, WASM_GET_GLOBAL(0), WASM_F32(45.5))), WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(2, WASM_GET_GLOBAL(0), WASM_F32(32.25))), WASM_SET_GLOBAL(0, WASM_SIMD_F32x4_REPLACE_LANE(3, WASM_GET_GLOBAL(0), WASM_F32(65.0))), WASM_I32V(1)); CHECK_EQ(1, r.Call(0)); CHECK_EQ(GetScalar(global, 0), 13.5f); CHECK_EQ(GetScalar(global, 1), 45.5f); CHECK_EQ(GetScalar(global, 2), 32.25f); CHECK_EQ(GetScalar(global, 3), 65.0f); } WASM_SIMD_COMPILED_TEST(SimdLoadStoreLoad) { WasmRunner r(execution_tier, lower_simd); int32_t* memory = r.builder().AddMemoryElems(kWasmPageSize / sizeof(int32_t)); // Load memory, store it, then reload it and extract the first lane. Use a // non-zero offset into the memory of 1 lane (4 bytes) to test indexing. BUILD(r, WASM_SIMD_STORE_MEM(WASM_I32V(4), WASM_SIMD_LOAD_MEM(WASM_I32V(4))), WASM_SIMD_I32x4_EXTRACT_LANE(0, WASM_SIMD_LOAD_MEM(WASM_I32V(4)))); FOR_INT32_INPUTS(i) { int32_t expected = *i; r.builder().WriteMemory(&memory[1], expected); CHECK_EQ(expected, r.Call()); } } #undef WASM_SIMD_TEST #undef WASM_SIMD_CHECK_LANE #undef WASM_SIMD_CHECK4 #undef WASM_SIMD_CHECK_SPLAT4 #undef WASM_SIMD_CHECK8 #undef WASM_SIMD_CHECK_SPLAT8 #undef WASM_SIMD_CHECK16 #undef WASM_SIMD_CHECK_SPLAT16 #undef WASM_SIMD_CHECK_F32_LANE #undef WASM_SIMD_CHECK_F32x4 #undef WASM_SIMD_CHECK_SPLAT_F32x4 #undef WASM_SIMD_CHECK_F32_LANE_ESTIMATE #undef WASM_SIMD_CHECK_SPLAT_F32x4_ESTIMATE #undef TO_BYTE #undef WASM_SIMD_OP #undef WASM_SIMD_SPLAT #undef WASM_SIMD_UNOP #undef WASM_SIMD_BINOP #undef WASM_SIMD_SHIFT_OP #undef WASM_SIMD_CONCAT_OP #undef WASM_SIMD_SELECT #undef WASM_SIMD_F32x4_SPLAT #undef WASM_SIMD_F32x4_EXTRACT_LANE #undef WASM_SIMD_F32x4_REPLACE_LANE #undef WASM_SIMD_I32x4_SPLAT #undef WASM_SIMD_I32x4_EXTRACT_LANE #undef WASM_SIMD_I32x4_REPLACE_LANE #undef WASM_SIMD_I16x8_SPLAT #undef WASM_SIMD_I16x8_EXTRACT_LANE #undef WASM_SIMD_I16x8_REPLACE_LANE #undef WASM_SIMD_I8x16_SPLAT #undef WASM_SIMD_I8x16_EXTRACT_LANE #undef WASM_SIMD_I8x16_REPLACE_LANE #undef WASM_SIMD_S8x16_SHUFFLE_OP #undef WASM_SIMD_LOAD_MEM #undef WASM_SIMD_STORE_MEM #undef WASM_SIMD_SELECT_TEST #undef WASM_SIMD_NON_CANONICAL_SELECT_TEST #undef WASM_SIMD_COMPILED_TEST #undef WASM_SIMD_BOOL_REDUCTION_TEST } // namespace test_run_wasm_simd } // namespace wasm } // namespace internal } // namespace v8