// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "bootstrapper.h"
#include "debug.h"
#include "execution.h"
#include "string-stream.h"
#include "platform.h"
namespace v8 {
namespace internal {
ThreadLocalTop Top::thread_local_;
Mutex* Top::break_access_ = OS::CreateMutex();
NoAllocationStringAllocator* preallocated_message_space = NULL;
Address top_addresses[] = {
#define C(name) reinterpret_cast
(Top::name()),
TOP_ADDRESS_LIST(C)
TOP_ADDRESS_LIST_PROF(C)
#undef C
NULL
};
Address Top::get_address_from_id(Top::AddressId id) {
return top_addresses[id];
}
char* Top::Iterate(ObjectVisitor* v, char* thread_storage) {
ThreadLocalTop* thread = reinterpret_cast(thread_storage);
Iterate(v, thread);
return thread_storage + sizeof(ThreadLocalTop);
}
void Top::Iterate(ObjectVisitor* v, ThreadLocalTop* thread) {
v->VisitPointer(&(thread->pending_exception_));
v->VisitPointer(&(thread->pending_message_obj_));
v->VisitPointer(
bit_cast(&(thread->pending_message_script_)));
v->VisitPointer(bit_cast(&(thread->context_)));
v->VisitPointer(&(thread->scheduled_exception_));
for (v8::TryCatch* block = thread->try_catch_handler_;
block != NULL;
block = block->next_) {
v->VisitPointer(bit_cast(&(block->exception_)));
v->VisitPointer(bit_cast(&(block->message_)));
}
// Iterate over pointers on native execution stack.
for (StackFrameIterator it(thread); !it.done(); it.Advance()) {
it.frame()->Iterate(v);
}
}
void Top::Iterate(ObjectVisitor* v) {
ThreadLocalTop* current_t = &thread_local_;
Iterate(v, current_t);
}
void Top::InitializeThreadLocal() {
thread_local_.c_entry_fp_ = 0;
thread_local_.handler_ = 0;
#ifdef ENABLE_LOGGING_AND_PROFILING
thread_local_.js_entry_sp_ = 0;
#endif
thread_local_.stack_is_cooked_ = false;
thread_local_.try_catch_handler_ = NULL;
thread_local_.context_ = NULL;
int id = ThreadManager::CurrentId();
thread_local_.thread_id_ = (id == 0) ? ThreadManager::kInvalidId : id;
thread_local_.external_caught_exception_ = false;
thread_local_.failed_access_check_callback_ = NULL;
clear_pending_exception();
clear_pending_message();
clear_scheduled_exception();
thread_local_.save_context_ = NULL;
thread_local_.catcher_ = NULL;
}
// Create a dummy thread that will wait forever on a semaphore. The only
// purpose for this thread is to have some stack area to save essential data
// into for use by a stacks only core dump (aka minidump).
class PreallocatedMemoryThread: public Thread {
public:
PreallocatedMemoryThread() : keep_running_(true) {
wait_for_ever_semaphore_ = OS::CreateSemaphore(0);
data_ready_semaphore_ = OS::CreateSemaphore(0);
}
// When the thread starts running it will allocate a fixed number of bytes
// on the stack and publish the location of this memory for others to use.
void Run() {
EmbeddedVector local_buffer;
// Initialize the buffer with a known good value.
OS::StrNCpy(local_buffer, "Trace data was not generated.\n",
local_buffer.length());
// Publish the local buffer and signal its availability.
data_ = local_buffer.start();
length_ = local_buffer.length();
data_ready_semaphore_->Signal();
while (keep_running_) {
// This thread will wait here until the end of time.
wait_for_ever_semaphore_->Wait();
}
// Make sure we access the buffer after the wait to remove all possibility
// of it being optimized away.
OS::StrNCpy(local_buffer, "PreallocatedMemoryThread shutting down.\n",
local_buffer.length());
}
static char* data() {
if (data_ready_semaphore_ != NULL) {
// Initial access is guarded until the data has been published.
data_ready_semaphore_->Wait();
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
return data_;
}
static unsigned length() {
if (data_ready_semaphore_ != NULL) {
// Initial access is guarded until the data has been published.
data_ready_semaphore_->Wait();
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
return length_;
}
static void StartThread() {
if (the_thread_ != NULL) return;
the_thread_ = new PreallocatedMemoryThread();
the_thread_->Start();
}
// Stop the PreallocatedMemoryThread and release its resources.
static void StopThread() {
if (the_thread_ == NULL) return;
the_thread_->keep_running_ = false;
wait_for_ever_semaphore_->Signal();
// Wait for the thread to terminate.
the_thread_->Join();
if (data_ready_semaphore_ != NULL) {
delete data_ready_semaphore_;
data_ready_semaphore_ = NULL;
}
delete wait_for_ever_semaphore_;
wait_for_ever_semaphore_ = NULL;
// Done with the thread entirely.
delete the_thread_;
the_thread_ = NULL;
}
private:
// Used to make sure that the thread keeps looping even for spurious wakeups.
bool keep_running_;
// The preallocated memory thread singleton.
static PreallocatedMemoryThread* the_thread_;
// This semaphore is used by the PreallocatedMemoryThread to wait for ever.
static Semaphore* wait_for_ever_semaphore_;
// Semaphore to signal that the data has been initialized.
static Semaphore* data_ready_semaphore_;
// Location and size of the preallocated memory block.
static char* data_;
static unsigned length_;
DISALLOW_COPY_AND_ASSIGN(PreallocatedMemoryThread);
};
PreallocatedMemoryThread* PreallocatedMemoryThread::the_thread_ = NULL;
Semaphore* PreallocatedMemoryThread::wait_for_ever_semaphore_ = NULL;
Semaphore* PreallocatedMemoryThread::data_ready_semaphore_ = NULL;
char* PreallocatedMemoryThread::data_ = NULL;
unsigned PreallocatedMemoryThread::length_ = 0;
static bool initialized = false;
void Top::Initialize() {
CHECK(!initialized);
InitializeThreadLocal();
// Only preallocate on the first initialization.
if (FLAG_preallocate_message_memory && (preallocated_message_space == NULL)) {
// Start the thread which will set aside some memory.
PreallocatedMemoryThread::StartThread();
preallocated_message_space =
new NoAllocationStringAllocator(PreallocatedMemoryThread::data(),
PreallocatedMemoryThread::length());
PreallocatedStorage::Init(PreallocatedMemoryThread::length() / 4);
}
initialized = true;
}
void Top::TearDown() {
if (initialized) {
// Remove the external reference to the preallocated stack memory.
if (preallocated_message_space != NULL) {
delete preallocated_message_space;
preallocated_message_space = NULL;
}
PreallocatedMemoryThread::StopThread();
initialized = false;
}
}
// There are cases where the C stack is separated from JS stack (ARM simulator).
// To figure out the order of top-most JS try-catch handler and the top-most C
// try-catch handler, the C try-catch handler keeps a reference to the top-most
// JS try_catch handler when it was created.
//
// Here is a picture to explain the idea:
// Top::thread_local_.handler_ Top::thread_local_.try_catch_handler_
//
// | |
// v v
//
// | JS handler | | C try_catch handler |
// | next |--+ +-------- | js_handler_ |
// | | | next_ |--+
// | | |
// | JS handler |--+ <---------+ |
// | next |
//
// If the top-most JS try-catch handler is not equal to
// Top::thread_local_.try_catch_handler_.js_handler_, it means the JS handler
// is on the top. Otherwise, it means the C try-catch handler is on the top.
//
void Top::RegisterTryCatchHandler(v8::TryCatch* that) {
StackHandler* handler =
reinterpret_cast(thread_local_.handler_);
// Find the top-most try-catch handler.
while (handler != NULL && !handler->is_try_catch()) {
handler = handler->next();
}
that->js_handler_ = handler; // casted to void*
thread_local_.try_catch_handler_ = that;
}
void Top::UnregisterTryCatchHandler(v8::TryCatch* that) {
ASSERT(thread_local_.try_catch_handler_ == that);
thread_local_.try_catch_handler_ = that->next_;
thread_local_.catcher_ = NULL;
}
void Top::MarkCompactPrologue(bool is_compacting) {
MarkCompactPrologue(is_compacting, &thread_local_);
}
void Top::MarkCompactPrologue(bool is_compacting, char* data) {
MarkCompactPrologue(is_compacting, reinterpret_cast(data));
}
void Top::MarkCompactPrologue(bool is_compacting, ThreadLocalTop* thread) {
if (is_compacting) {
StackFrame::CookFramesForThread(thread);
}
}
void Top::MarkCompactEpilogue(bool is_compacting, char* data) {
MarkCompactEpilogue(is_compacting, reinterpret_cast(data));
}
void Top::MarkCompactEpilogue(bool is_compacting) {
MarkCompactEpilogue(is_compacting, &thread_local_);
}
void Top::MarkCompactEpilogue(bool is_compacting, ThreadLocalTop* thread) {
if (is_compacting) {
StackFrame::UncookFramesForThread(thread);
}
}
static int stack_trace_nesting_level = 0;
static StringStream* incomplete_message = NULL;
Handle Top::StackTrace() {
if (stack_trace_nesting_level == 0) {
stack_trace_nesting_level++;
HeapStringAllocator allocator;
StringStream::ClearMentionedObjectCache();
StringStream accumulator(&allocator);
incomplete_message = &accumulator;
PrintStack(&accumulator);
Handle stack_trace = accumulator.ToString();
incomplete_message = NULL;
stack_trace_nesting_level = 0;
return stack_trace;
} else if (stack_trace_nesting_level == 1) {
stack_trace_nesting_level++;
OS::PrintError(
"\n\nAttempt to print stack while printing stack (double fault)\n");
OS::PrintError(
"If you are lucky you may find a partial stack dump on stdout.\n\n");
incomplete_message->OutputToStdOut();
return Factory::empty_symbol();
} else {
OS::Abort();
// Unreachable
return Factory::empty_symbol();
}
}
void Top::PrintStack() {
if (stack_trace_nesting_level == 0) {
stack_trace_nesting_level++;
StringAllocator* allocator;
if (preallocated_message_space == NULL) {
allocator = new HeapStringAllocator();
} else {
allocator = preallocated_message_space;
}
NativeAllocationChecker allocation_checker(
!FLAG_preallocate_message_memory ?
NativeAllocationChecker::ALLOW :
NativeAllocationChecker::DISALLOW);
StringStream::ClearMentionedObjectCache();
StringStream accumulator(allocator);
incomplete_message = &accumulator;
PrintStack(&accumulator);
accumulator.OutputToStdOut();
accumulator.Log();
incomplete_message = NULL;
stack_trace_nesting_level = 0;
if (preallocated_message_space == NULL) {
// Remove the HeapStringAllocator created above.
delete allocator;
}
} else if (stack_trace_nesting_level == 1) {
stack_trace_nesting_level++;
OS::PrintError(
"\n\nAttempt to print stack while printing stack (double fault)\n");
OS::PrintError(
"If you are lucky you may find a partial stack dump on stdout.\n\n");
incomplete_message->OutputToStdOut();
}
}
static void PrintFrames(StringStream* accumulator,
StackFrame::PrintMode mode) {
StackFrameIterator it;
for (int i = 0; !it.done(); it.Advance()) {
it.frame()->Print(accumulator, mode, i++);
}
}
void Top::PrintStack(StringStream* accumulator) {
// The MentionedObjectCache is not GC-proof at the moment.
AssertNoAllocation nogc;
ASSERT(StringStream::IsMentionedObjectCacheClear());
// Avoid printing anything if there are no frames.
if (c_entry_fp(GetCurrentThread()) == 0) return;
accumulator->Add(
"\n==== Stack trace ============================================\n\n");
PrintFrames(accumulator, StackFrame::OVERVIEW);
accumulator->Add(
"\n==== Details ================================================\n\n");
PrintFrames(accumulator, StackFrame::DETAILS);
accumulator->PrintMentionedObjectCache();
accumulator->Add("=====================\n\n");
}
void Top::SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback) {
ASSERT(thread_local_.failed_access_check_callback_ == NULL);
thread_local_.failed_access_check_callback_ = callback;
}
void Top::ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type) {
if (!thread_local_.failed_access_check_callback_) return;
ASSERT(receiver->IsAccessCheckNeeded());
ASSERT(Top::context());
// The callers of this method are not expecting a GC.
AssertNoAllocation no_gc;
// Get the data object from access check info.
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
Object* info = constructor->shared()->function_data();
if (info == Heap::undefined_value()) return;
Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
if (data_obj == Heap::undefined_value()) return;
HandleScope scope;
Handle receiver_handle(receiver);
Handle data(AccessCheckInfo::cast(data_obj)->data());
thread_local_.failed_access_check_callback_(
v8::Utils::ToLocal(receiver_handle),
type,
v8::Utils::ToLocal(data));
}
enum MayAccessDecision {
YES, NO, UNKNOWN
};
static MayAccessDecision MayAccessPreCheck(JSObject* receiver,
v8::AccessType type) {
// During bootstrapping, callback functions are not enabled yet.
if (Bootstrapper::IsActive()) return YES;
if (receiver->IsJSGlobalProxy()) {
Object* receiver_context = JSGlobalProxy::cast(receiver)->context();
if (!receiver_context->IsContext()) return NO;
// Get the global context of current top context.
// avoid using Top::global_context() because it uses Handle.
Context* global_context = Top::context()->global()->global_context();
if (receiver_context == global_context) return YES;
if (Context::cast(receiver_context)->security_token() ==
global_context->security_token())
return YES;
}
return UNKNOWN;
}
bool Top::MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type) {
ASSERT(receiver->IsAccessCheckNeeded());
// Check for compatibility between the security tokens in the
// current lexical context and the accessed object.
ASSERT(Top::context());
// The callers of this method are not expecting a GC.
AssertNoAllocation no_gc;
MayAccessDecision decision = MayAccessPreCheck(receiver, type);
if (decision != UNKNOWN) return decision == YES;
// Get named access check callback
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
Object* info = constructor->shared()->function_data();
if (info == Heap::undefined_value()) return false;
Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
if (data_obj == Heap::undefined_value()) return false;
Object* fun_obj = AccessCheckInfo::cast(data_obj)->named_callback();
v8::NamedSecurityCallback callback =
v8::ToCData(fun_obj);
if (!callback) return false;
HandleScope scope;
Handle receiver_handle(receiver);
Handle key_handle(key);
Handle data(AccessCheckInfo::cast(data_obj)->data());
LOG(ApiNamedSecurityCheck(key));
bool result = false;
{
// Leaving JavaScript.
VMState state(EXTERNAL);
result = callback(v8::Utils::ToLocal(receiver_handle),
v8::Utils::ToLocal(key_handle),
type,
v8::Utils::ToLocal(data));
}
return result;
}
bool Top::MayIndexedAccess(JSObject* receiver,
uint32_t index,
v8::AccessType type) {
ASSERT(receiver->IsAccessCheckNeeded());
// Check for compatibility between the security tokens in the
// current lexical context and the accessed object.
ASSERT(Top::context());
// The callers of this method are not expecting a GC.
AssertNoAllocation no_gc;
MayAccessDecision decision = MayAccessPreCheck(receiver, type);
if (decision != UNKNOWN) return decision == YES;
// Get indexed access check callback
JSFunction* constructor = JSFunction::cast(receiver->map()->constructor());
Object* info = constructor->shared()->function_data();
if (info == Heap::undefined_value()) return false;
Object* data_obj = FunctionTemplateInfo::cast(info)->access_check_info();
if (data_obj == Heap::undefined_value()) return false;
Object* fun_obj = AccessCheckInfo::cast(data_obj)->indexed_callback();
v8::IndexedSecurityCallback callback =
v8::ToCData(fun_obj);
if (!callback) return false;
HandleScope scope;
Handle receiver_handle(receiver);
Handle data(AccessCheckInfo::cast(data_obj)->data());
LOG(ApiIndexedSecurityCheck(index));
bool result = false;
{
// Leaving JavaScript.
VMState state(EXTERNAL);
result = callback(v8::Utils::ToLocal(receiver_handle),
index,
type,
v8::Utils::ToLocal(data));
}
return result;
}
const char* Top::kStackOverflowMessage =
"Uncaught RangeError: Maximum call stack size exceeded";
Failure* Top::StackOverflow() {
HandleScope scope;
Handle key = Factory::stack_overflow_symbol();
Handle boilerplate =
Handle::cast(GetProperty(Top::builtins(), key));
Handle exception = Copy(boilerplate);
// TODO(1240995): To avoid having to call JavaScript code to compute
// the message for stack overflow exceptions which is very likely to
// double fault with another stack overflow exception, we use a
// precomputed message. This is somewhat problematic in that it
// doesn't use ReportUncaughtException to determine the location
// from where the exception occurred. It should probably be
// reworked.
DoThrow(*exception, NULL, kStackOverflowMessage);
return Failure::Exception();
}
Failure* Top::TerminateExecution() {
DoThrow(Heap::termination_exception(), NULL, NULL);
return Failure::Exception();
}
Failure* Top::Throw(Object* exception, MessageLocation* location) {
DoThrow(exception, location, NULL);
return Failure::Exception();
}
Failure* Top::ReThrow(Object* exception, MessageLocation* location) {
// Set the exception being re-thrown.
set_pending_exception(exception);
return Failure::Exception();
}
Failure* Top::ThrowIllegalOperation() {
return Throw(Heap::illegal_access_symbol());
}
void Top::ScheduleThrow(Object* exception) {
// When scheduling a throw we first throw the exception to get the
// error reporting if it is uncaught before rescheduling it.
Throw(exception);
thread_local_.scheduled_exception_ = pending_exception();
thread_local_.external_caught_exception_ = false;
clear_pending_exception();
}
Object* Top::PromoteScheduledException() {
Object* thrown = scheduled_exception();
clear_scheduled_exception();
// Re-throw the exception to avoid getting repeated error reporting.
return ReThrow(thrown);
}
void Top::PrintCurrentStackTrace(FILE* out) {
StackTraceFrameIterator it;
while (!it.done()) {
HandleScope scope;
// Find code position if recorded in relocation info.
JavaScriptFrame* frame = it.frame();
int pos = frame->code()->SourcePosition(frame->pc());
Handle pos_obj(Smi::FromInt(pos));
// Fetch function and receiver.
Handle fun(JSFunction::cast(frame->function()));
Handle recv(frame->receiver());
// Advance to the next JavaScript frame and determine if the
// current frame is the top-level frame.
it.Advance();
Handle is_top_level = it.done()
? Factory::true_value()
: Factory::false_value();
// Generate and print stack trace line.
Handle line =
Execution::GetStackTraceLine(recv, fun, pos_obj, is_top_level);
if (line->length() > 0) {
line->PrintOn(out);
fprintf(out, "\n");
}
}
}
void Top::ComputeLocation(MessageLocation* target) {
*target = MessageLocation(empty_script(), -1, -1);
StackTraceFrameIterator it;
if (!it.done()) {
JavaScriptFrame* frame = it.frame();
JSFunction* fun = JSFunction::cast(frame->function());
Object* script = fun->shared()->script();
if (script->IsScript() &&
!(Script::cast(script)->source()->IsUndefined())) {
int pos = frame->code()->SourcePosition(frame->pc());
// Compute the location from the function and the reloc info.
Handle